1
|
Wu LT, Diao H, Wu Y, Shu JS, He ZY, Xu P, Chen SQ, Li P, Zhang Z, Xu H. Synthesis of Highly Functionalized Indolizines via NIS-Promoted Spiroannulation/Ring-Opening Aromatization of Alkylidene Oxindoles with 2-(Pyridin-2-yl)acetate Derivatives. J Org Chem 2025; 90:4046-4053. [PMID: 40062558 DOI: 10.1021/acs.joc.5c00026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
A novel NIS-promoted domino reaction of alkylidene oxindoles with 2-(pyridin-2-yl)acetate derivatives has been established, enabling the efficient and straightforward synthesis of a vast variety of highly functionalized indolizines via sequential spiroannulation and ring-opening aromatization processes. The protocol features mild reaction conditions, broad substrate scope, high efficiency, scalability, and applicability for the preparation of CF3-containing indolizines. Furthermore, the functional groups in the indolizine framework provide the feasibility for follow-up derivatization. Based on mechanistic studies, a plausible radical mechanism is proposed to elucidate the formation of indolizines.
Collapse
Affiliation(s)
- Luan-Ting Wu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| | - Honglin Diao
- Technology Center, China Tobacco Anhui Industrial Co., Ltd., Hefei 230088, P. R. China
| | - Yi Wu
- Technology Center, China Tobacco Anhui Industrial Co., Ltd., Hefei 230088, P. R. China
| | - Jun-Sheng Shu
- Technology Center, China Tobacco Anhui Industrial Co., Ltd., Hefei 230088, P. R. China
| | - Zeng-Yang He
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
- Technology Center, China Tobacco Anhui Industrial Co., Ltd., Hefei 230088, P. R. China
| | - Peng Xu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| | - Si-Qi Chen
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| | - Pinhua Li
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| | - Ze Zhang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| | - Hui Xu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| |
Collapse
|
2
|
Zhang X, Li F, Zhou Y, Zhang J, Zhou B, Chen L, Lin J, Zhang C. Synthesis of Multisubstituted Arylnitriles via Tf 2O-Mediated Benzannulation of Enaminones with Acylacetonitriles. Org Lett 2025; 27:2400-2405. [PMID: 40025936 DOI: 10.1021/acs.orglett.5c00261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
A novel and efficient method for the synthesis of multisubstituted arylnitriles via Tf2O-mediated [3 + 2 + 1] benzannulation of enaminones and acylacetonitriles has been developed. This reaction proceeds under mild conditions with excellent functional group compatibility. Mechanistic studies have revealed that the cyclization involves two consecutive nucleophilic additions, followed by a cascade Knoevenagel condensation and aromatization. Additionally, trifluoromethanesulfonate 6 has been identified as a crucial intermediate in this process.
Collapse
Affiliation(s)
- Xiaohan Zhang
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun, 336000, P.R. China
| | - Fei Li
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun, 336000, P.R. China
| | - Yue Zhou
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun, 336000, P.R. China
| | - Junxian Zhang
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun, 336000, P.R. China
| | - Benwei Zhou
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun, 336000, P.R. China
| | - Lulu Chen
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun, 336000, P.R. China
| | - Jianping Lin
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun, 336000, P.R. China
| | - Changyuan Zhang
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun, 336000, P.R. China
| |
Collapse
|
3
|
Lin J, Tian J, Lu Y, Xu Y, Chen L, Jiang Y, Guo M, Zhang X, Zhang C. Divergent Synthesis of Enynals and Dihydrobenzo[ f]isoquinolines via Deoxyalkynylation of Enaminones Enabled by the Cooperative Action of Tf 2O/Pd/Cu. J Org Chem 2024; 89:16419-16425. [PMID: 39462843 DOI: 10.1021/acs.joc.4c01603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
A variety of enynals and dihydrobenzo[f]isoquinolines were effectively synthesized with favorable functional group compatibility via deoxyalkynylation of enaminones enabled by the cooperative action of Tf2O/Pd/Cu. The reaction system demonstrated the ability to be expanded to the deoxyarylation/deoxyaryloxylation of enaminones with arylboronic acids or phenols, facilitating the efficient formation of C-C/C-O bonds and showcasing the practicality and versatility of the methodology.
Collapse
Affiliation(s)
- Jianping Lin
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, P. R. China
| | - Jiakai Tian
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, P. R. China
| | - Yu Lu
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, P. R. China
| | - Yiming Xu
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, P. R. China
| | - Lulu Chen
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, P. R. China
| | - Yucai Jiang
- Department of Pharmacy, Affiliated Hospital of Putian University, Putian 35110, P. R. China
| | - Mengping Guo
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, P. R. China
| | - Xiaohan Zhang
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, P. R. China
| | - Changyuan Zhang
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, P. R. China
| |
Collapse
|
4
|
Zhang X, Zhang J, Liu Z, Bi W, Shen J, Li G. Efficient Solvent-Free Synthesis of Indolizines Using CuBr Catalyst from Pyridine, Acetophenone, and Electron-Deficient Alkenes. Molecules 2024; 29:2061. [PMID: 38731552 PMCID: PMC11085153 DOI: 10.3390/molecules29092061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/20/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
Herein, we have developed a new approach for the synthesis of indolizine via Cu-catalyzed reaction of pyridine, acetophenone, and nitroolefin under mild conditions in high yields. This reaction involved the formation of C-N and C-C bonds and new indolizine compounds with high stereoselectivity and excellent functional group tolerance.
Collapse
Affiliation(s)
- Xueguo Zhang
- Department of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China
| | | | | | | | | | - Guang Li
- Department of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
5
|
Zhang K, Liu C, Abdukerem D, Mao Z, Zhu W, Xia K, Abdukader A. Synthesis of α/β-Aromatic Peroxy Thiols Mediated by Iodine Source. J Org Chem 2024; 89:3049-3057. [PMID: 38332634 DOI: 10.1021/acs.joc.3c02518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Peroxygenated compounds have wide applications in various fields, including chemistry, pharmaceutical chemistry, medicine, and materials science. However, there is still a need for more efficient and environmentally friendly synthesis methods for such compounds. Herein, we investigated the two-step, one-pot, regioselective synthesis of α/β-aromatic peroxy thiols. We explored various substrates and solvents for the reaction and identified the optimal reaction conditions. We successfully obtained several peroxy thiols in moderate to good yields via the selective generation of effective intermediates of iodoalkyl peroxides at room temperature without the need for metal catalysts.
Collapse
Affiliation(s)
- Kaifa Zhang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; Urumqi Key Laboratory of Green and Synthesis Technology Key Laboratory of Oil and Fine Chemicals; College of Chemistry, Xinjiang University, Urumqi 830017, China
| | - Changhong Liu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; Urumqi Key Laboratory of Green and Synthesis Technology Key Laboratory of Oil and Fine Chemicals; College of Chemistry, Xinjiang University, Urumqi 830017, China
| | - Dilshat Abdukerem
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; Urumqi Key Laboratory of Green and Synthesis Technology Key Laboratory of Oil and Fine Chemicals; College of Chemistry, Xinjiang University, Urumqi 830017, China
| | - Zechuan Mao
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; Urumqi Key Laboratory of Green and Synthesis Technology Key Laboratory of Oil and Fine Chemicals; College of Chemistry, Xinjiang University, Urumqi 830017, China
| | - Wenli Zhu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; Urumqi Key Laboratory of Green and Synthesis Technology Key Laboratory of Oil and Fine Chemicals; College of Chemistry, Xinjiang University, Urumqi 830017, China
| | - Kun Xia
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; Urumqi Key Laboratory of Green and Synthesis Technology Key Laboratory of Oil and Fine Chemicals; College of Chemistry, Xinjiang University, Urumqi 830017, China
| | - Ablimit Abdukader
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; Urumqi Key Laboratory of Green and Synthesis Technology Key Laboratory of Oil and Fine Chemicals; College of Chemistry, Xinjiang University, Urumqi 830017, China
| |
Collapse
|
6
|
Liu Q, Wang F, He ZY, Zhang H, Wang JR, Li QH, Zhang Z, Xu H. Switchable Synthesis of Spirodihydroindolizines and Indolizines from Aurones and Pyridin-2-yl Active Methylene Compounds. J Org Chem 2024; 89:1753-1761. [PMID: 38252457 DOI: 10.1021/acs.joc.3c02459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
A novel and flexible domino reaction of aurones with pyridin-2-yl active methylene compounds promoted by I2/BF3 has been developed to afford spirodihydroindolizines and indolizines in a controllable manner. When the reaction was performed in 1,2-dichloroethane at 80 °C, a variety of spirodihydroindolizines were obtained, whereas it almost exclusively provided a series of indolizines when the reaction was performed in a mixed solvent of 1,2-dichloroethane and N,N-dimethylformamide at a relatively higher temperature of 100 °C. Being metal-free, excellent product selectivity, high atom economy, good functional group tolerance, and feasibility for large-scale synthesis are the salient features of the developed methodology.
Collapse
Affiliation(s)
- Quan Liu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| | - Feng Wang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| | - Zeng-Yang He
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
- Technology Center, China Tobacco Anhui Industrial Co., Ltd., Hefei 230088, P. R. China
| | - Hui Zhang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| | - Jia-Rong Wang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| | - Qing-Hai Li
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| | - Ze Zhang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| | - Hui Xu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| |
Collapse
|
7
|
Zhang C, Lin J, Wang L, Mei Y, Wang L, Xie Y, Lu Y, Tian J, Wang W, Chen L, Guo M, Zhou C. Tf 2O-Mediated Tandem Reaction of Enaminones for the Synthesis of Functionalized Conjugated-Enals/β-Naphthalaldehydes. J Org Chem 2024; 89:373-378. [PMID: 38096478 DOI: 10.1021/acs.joc.3c02108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
A highly efficient and regioselective method for constructing functionalized conjugated enals via the Tf2O-mediated tandem reaction of enaminones with thiophenols has been described. Chain products with excellent stereoselectivity could be obtained through substrate regulation. Additionally, a feasible method for synthesizing β-naphthalaldehydes through PhSO2Na/DABCO promoting hydrogen atom transfer process has also been reported here. Mechanism studies have shown that 2-formyl vinyl triflate 8 and sulfonylated enal 9 were the key intermediates in this process.
Collapse
Affiliation(s)
- Changyuan Zhang
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, P. R. China
| | - Jianping Lin
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, P. R. China
| | - Li Wang
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, P. R. China
| | - Yingxuan Mei
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, P. R. China
- Department of Basic Medicine, Yichun Vocational Technical College, Yichun 336000, P. R. China
| | - Lanjing Wang
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, P. R. China
| | - Yuqing Xie
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, P. R. China
| | - Yu Lu
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, P. R. China
| | - Jiakai Tian
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, P. R. China
| | - Wei Wang
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, P. R. China
| | - Lulu Chen
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, P. R. China
| | - Mengping Guo
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, P. R. China
| | - Cailong Zhou
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, P. R. China
| |
Collapse
|
8
|
Farghaly TA, Alosaimy AM, Al-Qurashi NT, Masaret GS, Abdulwahab HG. The most Recent Compilation of Reactions of Enaminone Derivatives with various Amine Derivatives to Generate Biologically Active Compounds. Mini Rev Med Chem 2024; 24:793-843. [PMID: 37711104 DOI: 10.2174/1389557523666230913164038] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 09/16/2023]
Abstract
Heterocyclic derivatives serve as the fundamental components of both natural and synthetic drugs. Enaminones play a crucial role as foundational units in the synthesis of numerous bioactive heterocyclic compounds, including pyrazoles, pyridines, oxazoles, isoxazoles, as well as fused heterocyclic structures like indoles, carbazoles, quinolines, acridines, and phenanthridines. These diverse heterocyclic rings are well-known for their various therapeutic activities, encompassing anticancer, anti-inflammatory, antimicrobial, antidepressant, and antiviral properties. By reacting with nitrogenbased nucleophiles, enaminones can generate bioactive azoles, azines, and their fused systems. This study focuses on the recent advancements in enaminone reactions with (a) nitrogen-based nucleophiles, such as aliphatic amines, derivatives of aniline, heterocyclic amines, hydroxylamine, hydrazine derivatives, guanidine derivatives, urea, and thiourea derivatives, and (b) nitrogen-based electrophiles, such as diazonium salts. These reactions have led to the synthesis of a wide range of bioactive fused heterocyclic compounds from 2010 to the end of 2022.
Collapse
Affiliation(s)
- Thoraya A Farghaly
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah Almukaramah, Saudi Arabia
| | - Amal M Alosaimy
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah Almukaramah, Saudi Arabia
| | - Nadia T Al-Qurashi
- Department of Basic Science, University College in Adam, Umm Al-Qura University, Makkah Almukkarramah, Saudi Arabia
| | - Ghada S Masaret
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah Almukaramah, Saudi Arabia
| | - Hanan Gaber Abdulwahab
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
9
|
Subba P, Sadhu MM, Singh VK. Chiral Phosphoric Acid-Catalyzed Asymmetric Friedel-Crafts Addition of Indolizine to Cyclic N-Sulfonyl Imine. J Org Chem 2023; 88:14676-14687. [PMID: 37787981 DOI: 10.1021/acs.joc.3c01686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
A highly efficient chiral phosphoric acid-catalyzed enantioselective Friedel-Crafts addition of indolizine to cyclic N-sulfonyl imine has been established. The newly developed protocol, which probably proceeds via a monoactivation reaction pathway, allows the access of enantioenriched sulfonamide functionalized indolizines with excellent yields (up to 99%) and enantioselectivities (up to 99%). Moreover, the synthetic utility of this protocol has been explored with some chemical transformations.
Collapse
Affiliation(s)
- Parbat Subba
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Milon M Sadhu
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Vinod K Singh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|