1
|
Wang AL, Zhao HH, Jiang HW, Xu PF. Photosensitized Imino-Sulfamoylation of Alkenes with Oxime Carbamates. Org Lett 2025; 27:4880-4885. [PMID: 40311065 DOI: 10.1021/acs.orglett.5c01128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
In this study, we have devised a strategy that employs oxime carbamate as a bifunctional diamination reagent in combination with SO2 to realize imino-sulfamoylation of alkenes. This protocol is characterized by its mild conditions, operational simplicity, and metal-free nature, while demonstrating broad functional group tolerance for alkenes. Furthermore, the application of this method provides an accessible route to a diverse range of β-amino sulfonamide derivatives.
Collapse
Affiliation(s)
- Ai-Lian Wang
- State Key Laboratory of Natural Product Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Huan-Huan Zhao
- State Key Laboratory of Natural Product Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Hao-Wen Jiang
- State Key Laboratory of Natural Product Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Peng-Fei Xu
- State Key Laboratory of Natural Product Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, Gansu, China
| |
Collapse
|
2
|
Liu JH, Tian ZY, Wu ZY, Huang TL, Hai L, Guo L, Wu Y, Yang Z. Visible-Light-Induced 4CzIPN-Catalyzed Alkylamination of Alkenes via Cyclobutanone Oxime Esters and Anilines. J Org Chem 2025; 90:5763-5772. [PMID: 40262172 DOI: 10.1021/acs.joc.4c02172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
We disclosed an organophotoredox-catalyzed three-component oxidative radical-polar crossover strategy for constructing 1,2-alkylamination products. Cycloketone oxime derivatives were used as cyanoalkyl radical precursors and anilines were used as the nucleophiles. This facile protocol shows a good reaction yield and broad substrate scope.
Collapse
Affiliation(s)
- Jiang-Hong Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17 Southern Renmin Road, Chengdu, Sichuan 610041, People's Republic of China
| | - Ze-Yu Tian
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17 Southern Renmin Road, Chengdu, Sichuan 610041, People's Republic of China
| | - Zhen-Ye Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17 Southern Renmin Road, Chengdu, Sichuan 610041, People's Republic of China
| | - Tian-Le Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17 Southern Renmin Road, Chengdu, Sichuan 610041, People's Republic of China
| | - Li Hai
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17 Southern Renmin Road, Chengdu, Sichuan 610041, People's Republic of China
| | - Li Guo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17 Southern Renmin Road, Chengdu, Sichuan 610041, People's Republic of China
| | - Yong Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17 Southern Renmin Road, Chengdu, Sichuan 610041, People's Republic of China
| | - Zhongzhen Yang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
3
|
Petek N, Zorko T, Škrinjar M, Grošelj U, Svete J, Kočar D, Štefane B. Copper(I)-Photocatalyzed Addition of Trichloromethanesulfenyl Chloride to Olefinic Compounds. Molecules 2025; 30:661. [PMID: 39942765 PMCID: PMC11821038 DOI: 10.3390/molecules30030661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/28/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025] Open
Abstract
Atom transfer radical addition (ATRA) reactions are essential transformations in organic synthetic chemistry that enable the atom-economic difunctionalization of abundant olefin feedstocks. In this way, a rich chemical space can be opened up by well-planned combinations of simple starting materials. To build an efficient photocatalytic transformation, the reactivity of trichloromethanesulfenyl chloride toward alkenes and alkynes was investigated under photocatalytic Cu(I) reaction conditions. In this study, we found that trichloromethanesulfenyl chloride can be added to a series of olefins (such as styrenes and electron-rich and -poor olefins) in the presence of 1 mol% [Cu(dmp)2]BF4 photocatalyst and blue LED irradiation, producing α-chloro trichloromethylthioethers in good yields. Experimental and theoretical (DFT) mechanistic studies are consistent with the proposed radical chain mechanism of transformation. This study may serve as a valuable reference for the development of new coupling reactions that are economical and highly efficient processes.
Collapse
Affiliation(s)
| | | | | | | | | | - Drago Kočar
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Bogdan Štefane
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| |
Collapse
|
4
|
Shen L, Liu J, Peng X, Lei Z, Wang Z, Zeng YF. Photoredox-Catalyzed Three-Component Sulfonaminoalkynylation of Alkenes via a Radial/Polar Crossover. J Org Chem 2025; 90:1656-1662. [PMID: 39835916 DOI: 10.1021/acs.joc.4c02796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
We report a photoredox-catalyzed three-component sulfonaminoalkynylation of alkenes with N-aminopyridine salts and potassium alkynyltrifluoroborate salts. This aminoalkylation reaction underwent a radial/polar crossover mechanism, which was distinguished from the previous reports. A variety of β-alkynylated sulfonamides were obtained in moderate to excellent yields. The versatility of this method was further evidenced by its successful application in modifying biological molecules in advanced stages of development.
Collapse
Affiliation(s)
- Lixian Shen
- Hunan Provincial Key Laboratory of Basic and Clinical Pharmacological Research of Gastrointestinal Cancer, Department of Pharmacy, the Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
- School of Pharmaceutical Science, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Jie Liu
- School of Pharmaceutical Science, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xue Peng
- School of Pharmaceutical Science, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Zhengwen Lei
- School of Pharmaceutical Science, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Zhen Wang
- School of Pharmaceutical Science, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- MOE Key Lab of Rare Pediatric Diseases, University of South China, Hengyang, Hunan 421001, China
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China
| | - Yao-Fu Zeng
- School of Pharmaceutical Science, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
5
|
Huang R, Wang W, Lu K, Zhao X. Visible-light-induced cascade radical cyclization to access sulfamoylated benzo[4,5]imidazo[2,1- a]isoquinolin-6(5 H)-ones. Org Biomol Chem 2025; 23:892-899. [PMID: 39635756 DOI: 10.1039/d4ob01809e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
We report, for the first time, a visible-light-induced cascade radical sulfamoylation and cyclization of 2-arylbenzoimidazoles using sulfamoyl chlorides as sulfamoylation reagents to access sulfamoylated benzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-ones. The readily available nature of sulfamoyl chlorides and the metal-free conditions make this method a promising strategy for the synthesis of these compounds.
Collapse
Affiliation(s)
- Rong Huang
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key laboratory of Inorganic-organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Normal University, Tianjin, 300387, China.
| | - Wenbo Wang
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key laboratory of Inorganic-organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Normal University, Tianjin, 300387, China.
| | - Kui Lu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Xia Zhao
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key laboratory of Inorganic-organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Normal University, Tianjin, 300387, China.
| |
Collapse
|
6
|
Yu S, Cheng Y, Pan C, Yu JT. Access to 1-aryl-pyrazolin-5-ones via photoinduced chemoselective cyclization of N-methacrylo aldehyde hydrazones. Chem Commun (Camb) 2025; 61:1196-1199. [PMID: 39698818 DOI: 10.1039/d4cc05976j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
A photocatalytic sulfamoylation/5-endo-trig cyclization of (E)-N'-arylidene-N-phenylmethacrylohydrazides with sulfamoyl chlorides was developed. The chemoselective intramolecular addition of the carbon-centered radical intermediate to the CN bond in the hydrazone motif gave the sulfamoylated pyrazolin-5-one. Besides, sulfonyl chlorides are also suitable reaction partners to access sulfonylated pyrazolin-5-ones. This approach is characterized by mild reaction conditions, broad substrates scope, excellent selectivity and the late-stage modification of drug molecules.
Collapse
Affiliation(s)
- Sheng Yu
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
| | - Yangjian Cheng
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
| | - Changduo Pan
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
- School of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou 213001, P. R. China.
| | - Jin-Tao Yu
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
| |
Collapse
|
7
|
Wu ZJ, Li Z, Ren Y, Meng LG. Overcoming Selectivity Trade-Offs in Alkene Azidodifluoroalkylation: An Enlightening Synergistic Catalytic Approach. Org Lett 2025; 27:115-120. [PMID: 39715577 DOI: 10.1021/acs.orglett.4c04015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Recent advances in dual catalysis involving biomimetic conversion strategies that utilize radical ligand transfer (RLT) often rely on large doses of precious metal additives. The role of these additives within the mechanism remains ambiguous, leading to complex reaction conditions, uncertain pathways, and increased costs. These challenges complicate the study of the reaction process and are accompanied by potential safety risks. To address these issues, azide salt was used as an alternative to TMSN3. This replacement not only avoids the drawbacks associated with almost parallel research on alkene azidodifluoroalkylation but also eliminates the need for ligands. Comparative analysis indicates that existing biomimetic synergistic catalysis strategies require Ag2CO3 additives to enhance selectivity in alkene difunctionalization reactions, highlighting the superior simplicity, environmental friendliness, and operational ease of our developed synergistic catalysis strategy. Furthermore, under the guidance of our proposed mechanism, an alkene azidosulfonation was designed, validating the innovative and practical applicability of our synergistic catalysis approach.
Collapse
Affiliation(s)
- Zhao-Juan Wu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Anhui Provincial Key Laboratory of Synthetic Chemistry and Applications, Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, People's Republic of China
| | - Ziyang Li
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Anhui Provincial Key Laboratory of Synthetic Chemistry and Applications, Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, People's Republic of China
| | - Yue Ren
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Anhui Provincial Key Laboratory of Synthetic Chemistry and Applications, Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, People's Republic of China
| | - Ling-Guo Meng
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Anhui Provincial Key Laboratory of Synthetic Chemistry and Applications, Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, People's Republic of China
| |
Collapse
|
8
|
Das KK, Hajra A. Non-directed oxidative annulation of 2-arylindazoles with electron deficient olefins via visible light photocatalysis. Chem Commun (Camb) 2024; 60:10402-10405. [PMID: 39224066 DOI: 10.1039/d4cc03657c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
A new visible-light-mediated non-directed oxidative annulation between 2-arylindazoles and electron-deficient olefins using commercially available piperidine-1-sulfonyl chloride as the radical precursor to afford fused 5,6-dihydroindazolo[2,3-a]quinolines has been developed under mild reaction conditions. This transformation occurs via two consecutive C-H bond functionalizations. The mechanistic investigation results indicate that the reaction progresses through a radical pathway forming a 2-(2-aryl-2H-indazol-3-yl)-3-piperidin-1-ylsulfonyl derivative as an intermediate.
Collapse
Affiliation(s)
- Krishna Kanta Das
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India.
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India.
| |
Collapse
|
9
|
Chi Z, Zhou Y, Liu B, Xu X, Liu X, Liang Y. Nickel-catalyzed regiodivergent sulfonylarylation of 1,3-enynes to access allenes and dienes. Chem Sci 2024; 15:13271-13278. [PMID: 39183907 PMCID: PMC11339949 DOI: 10.1039/d4sc03067b] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/02/2024] [Indexed: 08/27/2024] Open
Abstract
The radical-mediated difunctionalization of 1,3-enynes facilitates rapid access to structurally diverse allenes and dienes. Whereas, owing to the existence of multiple active sites in conjugated 1,3-enynes, regulating selectivity in difunctionalized addition via a single transition-metal-catalyzed radical tandem process remains elusive. Herein, we disclose an intriguing protocol of substrate-controlled nickel-catalyzed regiodivergent sulfonylarylation of 1,3-enynes with the assistance of sulfonyl chlorides and arylboronic acids. This valuable synthetic utility respectively delivers a series of highly functionalized and synthetically challenging allenyl sulfones and dienyl sulfones from fine-tuned 1,3-enynes by one step, which provides a facile approach for complex sulfone-containing drug molecules synthesis.
Collapse
Affiliation(s)
- Zhuomin Chi
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 P. R. China
| | - Yongchao Zhou
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 P. R. China
| | - Bingbing Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 P. R. China
| | - Xiaojing Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 P. R. China
| | - Xueyuan Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 P. R. China
| | - Yongmin Liang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 P. R. China
| |
Collapse
|
10
|
Huang T, Liu J, Wu Z, Tian Z, Hai L, Wu Y. Photoredox-Catalyzed Alkylamination of Alkenes via Oxidative Radical-Polar Crossover and Site-Selective 1,5-Hydrogen Atom Transfer. Org Lett 2024; 26:6847-6852. [PMID: 39110700 DOI: 10.1021/acs.orglett.4c02331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
We reported the visible-light-mediated photoredox-catalyzed oxidative radical-polar crossover and 1,5-hydrogen atom transfer combined site-selective remote C(sp3)-N cross-coupling alkylamination of alkenes. Various anilines and hydroxamides (1,5-hydrogen atom transfer reagents) could be tolerated. The mechanistic studies indicated the radical nature of the reaction and the indispensability of light and photocatalyst. Stern-Volmer fluorescence quenching and cyclic voltammetry experiments have been used to outline the proposed reaction pathway.
Collapse
Affiliation(s)
- Tianle Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, 17 Southern Renmin Road, Chengdu, Sichuan 610041, People's Republic of China
| | - Jianghong Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, 17 Southern Renmin Road, Chengdu, Sichuan 610041, People's Republic of China
| | - Zhenye Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, 17 Southern Renmin Road, Chengdu, Sichuan 610041, People's Republic of China
| | - Zeyu Tian
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, 17 Southern Renmin Road, Chengdu, Sichuan 610041, People's Republic of China
| | - Li Hai
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, 17 Southern Renmin Road, Chengdu, Sichuan 610041, People's Republic of China
| | - Yong Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, 17 Southern Renmin Road, Chengdu, Sichuan 610041, People's Republic of China
| |
Collapse
|
11
|
Mei YT, Zhang H, Jiang Y, Gu YJ, Deng JL, Yang D, Jing LH, Shi MS. Modular access to diarylmethyl sulfonamides via visible light-promoted cross-coupling reactions. Chem Commun (Camb) 2024; 60:8589-8592. [PMID: 39045678 DOI: 10.1039/d4cc02571g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
We report a novel and efficient method for the preparation of diarylmethyl sulfonamide derivatives through visible-light-induced sulfamoylation of para-quinone methides with sulfamoyl chlorides under mild, metal-free conditions. This protocol demonstrates excellent tolerance toward a wide range of functional groups, affording the corresponding products in moderate to high yields. Preliminary mechanism studies revealed that the excited photocatalyst rhodamine 6G* was mainly quenched by para-quinone methides and the generated diarylmethyl radical intermediates then underwent radical-radical cross-coupling with sulfamoyl radicals to yield the diarylmethyl sulfonamides.
Collapse
Affiliation(s)
- Yu-Tong Mei
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| | - Hui Zhang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| | - Yu Jiang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| | - Yu-Jia Gu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| | - Jiang-Lai Deng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| | - Dan Yang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| | - Lin-Hai Jing
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| | - Ming-Song Shi
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang 621099, China.
| |
Collapse
|
12
|
Smyrnov V, Waser J. Photocatalytic Decarboxylative Functionalization of Cyclopropenes via Cyclopropenium Cation Intermediates. Angew Chem Int Ed Engl 2024; 63:e202404265. [PMID: 38802318 DOI: 10.1002/anie.202404265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
A photocatalytic decarboxylative functionalization of cyclopropenes is reported. Starting from a broad range of redox-active ester-substituted cyclopropenes, cyclopropenylphthalimides can be synthesized in the absence of a nucleophile. Alternatively, different carbon and heteroatom nucleophiles can be introduced. The transformation proceeds most probably through the formation of an aromatic cyclopropenium cation, followed by trapping with the nucleophiles.
Collapse
Affiliation(s)
- Vladyslav Smyrnov
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| |
Collapse
|
13
|
Liu Q, Wang X, Gu X, Dai H, Huang Z, Zhao Y. Visible-Light-Induced Difunctionalization of 3-Butenoic Acid with Bromodifluoromethyl Heteroarylsulfones. Org Lett 2024; 26:6449-6453. [PMID: 39037910 DOI: 10.1021/acs.orglett.4c02277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Herein, we report a visible-light-induced iridium-promoted direct bifunctionalization of 3-butenoic acid with bromodifluoromethyl heteroarylsulfones. This methodology enables the concurrent introduction of difluoromethyl heteroarylsulfone and bromine groups into 3-butenoic acid under mild reaction conditions. Various α-substituted 3-butenoic acids and bromodifluoromethyl heteroarylsulfones were found to be compatible, yielding the corresponding products in moderate to good yields. This method opens a new route for the synthesis of fluorocarboxylic acid derivatives.
Collapse
Affiliation(s)
- Qianqian Liu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science Soochow University, Suzhou 215123, P. R. China
| | - Xiaoping Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science Soochow University, Suzhou 215123, P. R. China
| | - Xuefeng Gu
- Yonghua Chemical Co., Ltd., Xiangqiao Village, Zhitang (heshi) Town, Changshu 215500, P. R. China
| | - Huiming Dai
- Yonghua Chemical Co., Ltd., Xiangqiao Village, Zhitang (heshi) Town, Changshu 215500, P. R. China
| | - Zhibin Huang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science Soochow University, Suzhou 215123, P. R. China
| | - Yingsheng Zhao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science Soochow University, Suzhou 215123, P. R. China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453000, P. R. China
| |
Collapse
|
14
|
Li W, Diao C, Lu Y, Li H. Photoinduced Vicinal Sulfamoyloximation of Alkenes: Harnessing Bifunctional Nitrosamines via a Rapid Radical Trapping Strategy. Org Lett 2024; 26:6253-6258. [PMID: 39018472 DOI: 10.1021/acs.orglett.4c02245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
We developed a photoinduced method for vicinal sulfamoyloximation of alkenes using N-nitrosamines as bifunctional reagents, with DABSO serving as both a sulfonyl source and a rapid aminyl radical trap. This strategy prevents radical recombination, enabling bifunctional activation under neutral conditions to generate key sulfamoyl radicals. It accommodates broad substrate scope and functional group compatibility, enabling late-stage modifications of bioactive molecules and expanding sulfonamide diversity in organic synthesis.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Chenchen Diao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Yilian Lu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Huaifeng Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
15
|
Borrel J, Waser J. SOMOphilic alkyne vs radical-polar crossover approaches: The full story of the azido-alkynylation of alkenes. Beilstein J Org Chem 2024; 20:701-713. [PMID: 38590536 PMCID: PMC10999984 DOI: 10.3762/bjoc.20.64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 03/21/2024] [Indexed: 04/10/2024] Open
Abstract
We report the detailed background for the discovery and development of the synthesis of homopropargylic azides by the azido-alkynylation of alkenes. Initially, a strategy involving SOMOphilic alkynes was adopted, but only resulted in a 29% yield of the desired product. By switching to a radical-polar crossover approach and after optimization, a high yield (72%) of the homopropargylic azide was reached. Full insights are given about the factors that were essential for the success of the optimization process.
Collapse
Affiliation(s)
- Julien Borrel
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCSO, BCH 4306, 1015 Lausanne, Switzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCSO, BCH 4306, 1015 Lausanne, Switzerland
| |
Collapse
|
16
|
Li W, Huang Z, Zhong D, Li H. Photocatalyst-Free Activation of Sulfamoyl Chlorides for Regioselective Sulfamoyl-Oximation of Alkenes via Hydrogen Atom Transfer (HAT) and Halogen-Atom Transfer (XAT) Relay Strategy. Org Lett 2024; 26:2062-2067. [PMID: 38451173 DOI: 10.1021/acs.orglett.4c00314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
The use of readily available and diverse sulfamoyl chlorides for synthesizing sulfonamide compounds presents an intriguing, yet significantly underexplored strategy. Activating sulfamoyl chlorides via single-electron reduction poses challenges due to their high reduction potential. Alternatively, the SO2-Cl bond in sulfamoyl chlorides could be readily cleaved by XAT. However, the existing methodologies have been limited to either the use of photocatalyst or the monofunctionalization of activated alkenes. Here, we report a regioselective sulfamoyl-oximation of alkenes by involving the activation of sulfamoyl chlorides through a HAT and XAT relay strategy in a photocatalyst-free way. The key to this success lies in the dual roles of tert-butyl nitrite (TBN), which not only serves as the source of oximes but also acts as the HAT reagent to generate the crucial XAT reactive species. The exclusion of metal catalysts or photosensitizers for utilizing light energy renders this protocol versatile and universally applicable for synthesizing a broad range of structurally diverse oxime-containing alkyl sulfonamides.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Zhihua Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Deliang Zhong
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Huaifeng Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
17
|
Xiao ZL, Xie ZZ, Yuan CP, Deng KY, Chen K, Chen HB, Xiang HY, Yang H. Photosensitized 1,2-Difunctionalization of Alkenes to Access β-Amino Sulfonamides. Org Lett 2024; 26:2108-2113. [PMID: 38440974 DOI: 10.1021/acs.orglett.4c00432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
A metal-free photosensitized 1,2-imino-sulfamoylation of olefins by employing a tailor-made sulfamoyl carbamate as the difunctionalization reagent has been established. This protocol exhibits versatility across a broad substrate scope, including aryl and aliphatic alkenes, leading to the synthesis of diverse β-imino sulfonamides in moderate to good yields. This method is characterized by its metal-free reaction system, mild reaction conditions, excellent regioselectivity, and high atom economy, serving as a promising platform for the preparation of β-amino sulfonamide-containing molecules, particularly in the context of drug discovery.
Collapse
Affiliation(s)
- Ze-Long Xiao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Zhen-Zhen Xie
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Chu-Ping Yuan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Ke-Yi Deng
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
- Xiangjiang Laboratory, Changsha 410205, China
| | - Hong-Bin Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
- Jiangxi Time Chemical Company, Ltd., C Park of Jinxi Xiangliao Industry, Fuzhou 344800, P. R. China
| | - Hao-Yue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
- Xiangjiang Laboratory, Changsha 410205, China
| |
Collapse
|
18
|
Teng S, Zhou JS, Huang W. New chemistry of alkynyl trifluoroborates under transition metal catalyst-free conditions. Org Chem Front 2024; 11:5985-6003. [DOI: 10.1039/d4qo01398k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
This review summarizes recent advances in alkynyl trifluoroborate chemistry, emphasizing their unique reactivity and stability in organic synthesis and biological applications under transition metal catalyst-free conditions.
Collapse
Affiliation(s)
- Shenghan Teng
- Strait Laboratory of Flexible Electronics (SLoFE), Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, 350117, China
| | - Jianrong Steve Zhou
- State Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, 2199 Lishui Road, Nanshan District, Shenzhen 518055, China
| | - Wei Huang
- Strait Laboratory of Flexible Electronics (SLoFE), Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, 350117, China
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
19
|
Li HC, Zhao KY, Tan Y, Wang HS, Wang WS, Chen XL, Yu B. Visible-Light-Promoted Intermolecular β-Acyl Difunctionalization of Alkenes via Oxidative Radical-Polar Crossover. Org Lett 2023; 25:8067-8071. [PMID: 37939226 DOI: 10.1021/acs.orglett.3c03121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
A visible-light-induced β-acyl difunctionalization of alkenes with acyl oxime esters and various nucleophiles was developed to achieve molecular complexity from readily available raw materials via oxidative radical-polar crossover. A variety of nucleophiles, including NH-sulfoximines, indoles, indazole, and trimethoxybenzene, were all effectively applicable to the sustainable reaction system. The novel synthetic strategy features mild reaction conditions, a broad substrate scope (39 examples), easy scale-up, and excellent regioselectivity.
Collapse
Affiliation(s)
- Hao-Cong Li
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Ke-Yuan Zhao
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yan Tan
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing Forestry University, Nanjing 210037, China
| | - Hao-Sen Wang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Wen-Shan Wang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xiao-Lan Chen
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Bing Yu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
20
|
Chen R, Yin D, Lu L, Feng XT, Dou Y, Zhu Y, Fan S. Synthesis of α-Trifluoromethyl Alkynes through Fluoroalkynylation of gem-Difluoroalkenes. Org Lett 2023; 25:7293-7297. [PMID: 37772796 DOI: 10.1021/acs.orglett.3c02512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
A trifluoromethylalkynylation reaction of gem-difluoroalkenes with alkynyl sulfoxide by photoredox radical addition with good functional group tolerance in moderate to high yields, is developed for the synthesis of α-trifluoromethyl alkyne. This reaction features simple operation and inexpensive raw materials and provides an expeditious route to synthesize biologically relevant fluorine-containing alkynyl compounds with diverse structural skeletons.
Collapse
Affiliation(s)
- Rui Chen
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Dengyu Yin
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Lishuai Lu
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xiao-Tian Feng
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yandong Dou
- Anhui Heryi Pharmaceutical Co., Ltd., Chuzhou 239000, China
| | - Yanwu Zhu
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Shilu Fan
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
21
|
Borrel J, Waser J. Azido-alkynylation of alkenes through radical-polar crossover. Chem Sci 2023; 14:9452-9460. [PMID: 37712015 PMCID: PMC10498506 DOI: 10.1039/d3sc03309k] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/10/2023] [Indexed: 09/16/2023] Open
Abstract
We report an azido-alkynylation of alkenes allowing a straightforward access to homopropargylic azides by combining hypervalent iodine reagents and alkynyl-trifluoroborate salts. The design of a photocatalytic redox-neutral radical polar crossover process was key to develop this transformation. A variety of homopropargylic azides possessing electron-rich and -poor aryls, heterocycles or ether substituents could be accessed in 34-84% yield. The products are synthetically useful building blocks that could be easily transformed into pyrroles or bioactive amines.
Collapse
Affiliation(s)
- Julien Borrel
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne EPFL SB ISIC LCSO, BCH 4306 1015 Lausanne Switzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne EPFL SB ISIC LCSO, BCH 4306 1015 Lausanne Switzerland
| |
Collapse
|
22
|
Ogawa A, Yamamoto Y. Multicomponent Reactions between Heteroatom Compounds and Unsaturated Compounds in Radical Reactions. Molecules 2023; 28:6356. [PMID: 37687185 PMCID: PMC10488953 DOI: 10.3390/molecules28176356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/18/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
In this mini-review, we present our concepts for designing multicomponent reactions with reference to a series of sequential radical reactions that we have developed. Radical reactions are well suited for the design of multicomponent reactions due to their high functional group tolerance and low solvent sensitivity. We have focused on the photolysis of interelement compounds with a heteroatom-heteroatom single bond, which readily generates heteroatom-centered radicals, and have studied the photoinduced radical addition of interelement compounds to unsaturated compounds. First, the background of multicomponent radical reactions is described, and basic concepts and methodology for the construction of multicomponent reactions are explained. Next, examples of multicomponent reactions involving two interelement compounds and one unsaturated compound are presented, as well as examples of multicomponent reactions involving one interelement compound and two unsaturated compounds. Furthermore, multicomponent reactions involving intramolecular cyclization processes are described.
Collapse
Affiliation(s)
- Akiya Ogawa
- Organization for Research Promotion, Osaka Metropolitan University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Yuki Yamamoto
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-4-37 Takeda, Kofu 400-8510, Japan;
| |
Collapse
|