1
|
Jian C, Huang X, Long H, Liao M, Wu X. Heteroarylation of Sulfenamides for Modular Synthesis of Antimicrobial Sulfilimines via Sulfinimidoyl Fluoride Intermediates. Org Lett 2025; 27:5464-5470. [PMID: 40392228 DOI: 10.1021/acs.orglett.5c01455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
We herein disclose a mild metal-free strategy for the construction of heteroaryl-derived sulfilimines. Central to this approach is the in situ generated sulfinimidoyl fluoride intermediate that exhibits an optimal balance of reactivity and stability for efficient S(IV)-derived SuFEx reactions with heteroarenes without Lewis acids or base additives. This protocol enables the rapid incorporation of a broad range of heteroarenes to afford diverse sulfilimine scaffolds with potent antimicrobial activities against plant pathogens.
Collapse
Affiliation(s)
- Chunyan Jian
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals of Guizhou University, Huaxi District, Guiyang 550025, China
| | - Xuan Huang
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals of Guizhou University, Huaxi District, Guiyang 550025, China
| | - Hongyan Long
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals of Guizhou University, Huaxi District, Guiyang 550025, China
| | - Minghong Liao
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals of Guizhou University, Huaxi District, Guiyang 550025, China
| | - Xingxing Wu
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals of Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
2
|
Chen AN, He Y, Zhang Z, Wang YC, Xie YY. Electrochemically Promoted Synthesis of N-Sulfonyl Sulfinimidate Esters and Sulfilimines from Sulfonamides, Thiophenols, Thioethers, and Alcohols. J Org Chem 2025; 90:6672-6685. [PMID: 40340455 DOI: 10.1021/acs.joc.5c00050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
In this work, we report an electrochemical method for the straightforward preparation of scarcely accessible sulfinimidate esters from readily available sulfonamides, thiophenols, and alcohols. Mechanistic experiments show that sulfur oxidation at the anodic surface generates an electrophilic intermediate, which subsequently undergoes nucleophilic substitution. Moreover, sulfilimines can be obtained in moderate-to-excellent yields when thioethers are used as the S-donor instead of thiophenols via a dehydrogenateive imination process. This method is also characterized by mild reaction condition, operational simplicity, high atomic economic efficiency, easy later drug synthesis, and modification, as well as scaling up to a gram scale.
Collapse
Affiliation(s)
- An-Ning Chen
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, People's Republic of China
| | - Yan He
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, People's Republic of China
| | - Zhang Zhang
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, People's Republic of China
| | - Ying-Chun Wang
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, People's Republic of China
| | - Yu-Yang Xie
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, People's Republic of China
| |
Collapse
|
3
|
Zhuang X, Li H, Feng Z, Wang H. Visible-Light-Mediated Copper-Catalyzed S-Arylation of Sulfenamides with Aryl Thianthrenium Salts. Org Lett 2025; 27:4886-4892. [PMID: 40314649 DOI: 10.1021/acs.orglett.5c01145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
The site-selective incorporation of sulfilimine functionalities into aromatic compounds provides a vital strategy for drug discovery in medicinal chemistry. However, green and sustainable methods for realizing the goal are still limited. Here, we report a copper-catalyzed S-arylation of sulfenamides with aryl thianthrenium salts irradiated by visible light without the photocatalyst, which exhibited fine functional-group compatibility and gave the desired products in high yields. Mechanistic investigations revealed that the key to achieving these results is the generation of an electron donor-acceptor (EDA) complex between sulfenamides and aryl thianthrenium salts under basic conditions.
Collapse
Affiliation(s)
- Xiangyu Zhuang
- Key Laboratory of Marine Drugs, Ministry of Education; Molecular Synthesis Center, and School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
| | - Hao Li
- Key Laboratory of Marine Drugs, Ministry of Education; Molecular Synthesis Center, and School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
| | - Zhaoyu Feng
- Key Laboratory of Marine Drugs, Ministry of Education; Molecular Synthesis Center, and School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
| | - Hongyu Wang
- Key Laboratory of Marine Drugs, Ministry of Education; Molecular Synthesis Center, and School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, P. R. China
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China
| |
Collapse
|
4
|
Wu XB, Shen Y, Jiang HJ, Gong LZ. Cu-Catalyzed Enantioselective S-Arylation of Sulfenamides Enabled by Confined Ligands. Org Lett 2025; 27:2845-2851. [PMID: 40110930 DOI: 10.1021/acs.orglett.5c00132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Chiral sulfilimines, aza analogues of sulfoxides, are essential in natural products and pharmaceuticals, highlighting the importance of their synthesis in asymmetric catalysis. However, efficient approaches for synthesizing chiral diaryl sulfilimines are still rare and challenging, particularly for those with two sterically similar aryl groups. Herein, we present a mild and efficient protocol for generating diverse enantioenriched diaryl and aryl alkyl sulfilimines via copper-catalyzed enantioselective S-arylation of N-acyl sulfenamides with diaryliodonium salts. A bulky PyBox ligand is crucial for stereocontrol, delivering various sulfilimines with up to 95% ee (51 examples).
Collapse
Affiliation(s)
- Xiao-Bao Wu
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yue Shen
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hua-Jie Jiang
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
| | - Liu-Zhu Gong
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
5
|
He M, Zhang R, Ma D. Assembly of (Hetero)aryl Sulfoximines via Copper-Catalyzed S-Arylation of Sulfinamides with (Hetero)aryl Halides. Org Lett 2025; 27:2947-2951. [PMID: 40102049 DOI: 10.1021/acs.orglett.5c00535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
The combination of CuI and 4-(dimethylamino)picolinamide offers an effective catalytic system for the successful coupling of (hetero)aryl halides (I and Br) with sulfinamides for the first time. A large number of functional groups and heterocycles were tolerated under the coupling conditions, providing a powerful approach for diverse synthesis of pharmaceutically important (hetero)aryl sulfoximines. The efficiency of the coupling reaction was highly dependent upon the electronic nature of (hetero)aryl halides and the substituents at the amide part of sulfinamides. By using enantioenriched sulfinamides as the coupling partners, the reaction proceeds in a highly stereospecific manner to afford (hetero)aryl sulfoximines with excellent enantioselectivity.
Collapse
Affiliation(s)
- Mingchuang He
- Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Lu, Shanghai 200062, China
| | - Rongxing Zhang
- Shenzhen Key Laboratory of Cross-Coupling Reactions & Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Dawei Ma
- Shenzhen Key Laboratory of Cross-Coupling Reactions & Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
6
|
Yan XB, Zhao R, Miao YH, Liu MM, Mei GJ. Regioselective N-arylation of N-Acylsulfenamides Enabled by o-Quinone Diimides. Org Lett 2025; 27:2146-2150. [PMID: 40013773 DOI: 10.1021/acs.orglett.5c00198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
The functionalization of N-acylsulfenamides is a research focus in organosulfur chemistry, as the N-S array has unique properties and versatile applications. Although great progress has been made in S-functionalization, the N-functionalization, especially the N-arylation of N-acylsulfenamides, has rarely been explored because of the lower nucleophilicity of the N-site. Herein, we report a Brønsted acid-catalyzed regioselective N-arylation reaction of N-acylsulfenamides with o-quinone diimides. Under mild and metal-free conditions, a wide range of N-arylated N-acylsulfenamides have been prepared in good yields with excellent regioselectivity. The ease of gram-scale synthesis and transformations into useful sulfonamides demonstrates their synthetic practicality.
Collapse
Affiliation(s)
- Xue-Bin Yan
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Rui Zhao
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yu-Hang Miao
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Meng-Meng Liu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Guang-Jian Mei
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
7
|
Shen Y, Wu XB, Jiang HJ, Gong LZ. Anionic Stereogenic-at-Cobalt(III) Complex-Enabled Asymmetric Oxidation of N, N-Dialkyl Sulfenamides. Org Lett 2025; 27:2060-2064. [PMID: 40008849 DOI: 10.1021/acs.orglett.4c04857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
An asymmetric oxidation of N,N-dialkyl sulfenamides is exhibited by using anionic stereogenic-at-cobalt(III) complexes as catalysts. This protocol provides an alternative approach to access a diverse set of chiral tertiary sulfinamides with high enantioselectivities (24 examples, up to 94:6 e.r.). Additionally, control experiments suggest that this protocol could be accomplished through a chiral cationic S(IV) intermediate.
Collapse
Affiliation(s)
- Yue Shen
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiao-Bao Wu
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hua-Jie Jiang
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
| | - Liu-Zhu Gong
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
8
|
Greenwood NS, Boyer ZW, Ellman JA, Gnamm C. Sulfilimines from a Medicinal Chemist's Perspective: Physicochemical and in Vitro Parameters Relevant for Drug Discovery. J Med Chem 2025; 68:4079-4100. [PMID: 39787298 PMCID: PMC11867876 DOI: 10.1021/acs.jmedchem.4c02714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
While sulfoximines are nowadays a well established functional group for medicinal chemistry, the properties of sulfilimines are significantly less well studied, and no sulfilimine has progressed to the clinic to date. In this account, the physicochemical and in vitro properties of sulfilimines are reported and compared to those of sulfoximines and other more traditional functional groups. Furthermore, the impact on the physicochemical and in vitro properties of real drug scaffolds is studied in two series of sulfilimine-containing analogs of imatinib and hNE inhibitors. We show that sulfilimines can be chemically and configurationally stable under physiologically relevant conditions and that they are basic and highly polar and thus are often beneficial for solubility and metabolic stability, although at the cost of reduced permeability. We conclude that S-cyclopropyl,S-(hetero)aryl and S,S-di(hetero)aryl sulfilimines are so far neglected but potentially valuable S(IV) based pharmacophores that deserve to be considered as part of the medicinal chemistry toolbox.
Collapse
Affiliation(s)
- Nathaniel S Greenwood
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Zachary W Boyer
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Jonathan A Ellman
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Christian Gnamm
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany
| |
Collapse
|
9
|
Fang W, Meng YD, Ding SY, Wang JY, Pei ZH, Shen ML, Yao CZ, Li Q, Gu Z, Yu J, Jiang HJ. Asymmetric S-Arylation of Sulfenamides to Access Axially Chiral Sulfilimines Enabled by Anionic Stereogenic-at-Cobalt(III) Complexes. Angew Chem Int Ed Engl 2025; 64:e202419596. [PMID: 39625341 DOI: 10.1002/anie.202419596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024]
Abstract
An efficient enantioselective coupling reaction between sulfenamides and cyclic diaryliodonium salts is established via adaptive Cu/anionic stereogenic-at-Co(III) complex combined catalysis, precisely synthesizing a broad range of axially chiral sulfilimines with excellent enantioselectivities, diastereoselectivities, regioselectivities, and chemoselectivities (67 examples under same conditions, up to 98 % ee). The following thermodynamically controlled pyramidal inversion enables efficient stereodivegent synthesis of all four stereoisomers. Mechanistic studies suggest that anionic stereogenic-at-cobalt(III) complexes serve as counteranions of diaryliodonium and anionic ligand of Cu(I) catalyst simultaneously, which could be regarded as an explanation for outstanding selectivities.
Collapse
Affiliation(s)
- Wei Fang
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, 230036, China
| | - Yan-Dong Meng
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, 230036, China
| | - Shu-Ying Ding
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, 230036, China
| | - Ju-Yan Wang
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, 230036, China
| | - Zheng-Hao Pei
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, 230036, China
| | - Meng-Lan Shen
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, 230036, China
| | - Chuan-Zhi Yao
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, 230036, China
| | - Qiankun Li
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, 230036, China
| | - Zhenhua Gu
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Jie Yu
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, 230036, China
| | - Hua-Jie Jiang
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, 230036, China
| |
Collapse
|
10
|
Xiao Z, Pu M, Li Y, Yang W, Wang F, Feng X, Liu X. Asymmetric Catalytic Synthesis of Allylic Sulfenamides from Vinyl α-Diazo Compounds by a Rearrangement Route. Angew Chem Int Ed Engl 2025; 64:e202414712. [PMID: 39226119 DOI: 10.1002/anie.202414712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/05/2024]
Abstract
The asymmetric rearrangement of allylic sulfilimines is an effective route to synthetically attractive targets, such as allylic sulfenamides. The current methods are limited to chirality transfer from chiral allylic sulfilimine precursors. Herein, we report a general and fundamentally new rearrangement route to access optically enriched allylic sulfenamides and their derivatives. The process involves S-alkylation and an unusual S-to-N rearrangement step. A chiral nickel complex enables the transformation of a broad scope of sulfenamides and vinyl α-diazo pyrazoleamides under mild conditions. Various allylic sulfenamides have been synthesized with excellent γ-regioselectivity and enantioselectivity, and can be efficiently converted into sulfinamide and 4-aminobutenoic acid derivatives. In addition, DFT calculations demonstrate the connection between the spin state and conformation of the nickel vinyl carbenoid, as well as an unknown rearrangement process.
Collapse
Affiliation(s)
- Zhijie Xiao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Maoping Pu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Yuzhen Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Wei Yang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Fei Wang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610047, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
11
|
Chen WL, Fang S, Song JL, Hu Q, Zhang SS, Shu B. Base-Promoted Sulfur Arylation of Sulfenamides to Oxonium Aryne Precursors: Chemoselective Synthesis of Sulfilimines and o-Sulfanylanilines. J Org Chem 2025; 90:448-457. [PMID: 39680633 DOI: 10.1021/acs.joc.4c02373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
In this study, a metal-free and efficient method for the synthesis of sulfilimines and o-sulfanylanilines in high yields with excellent chemoselectivities from oxonium aryne precursors with sulfenamides has been developed. This method features mild reaction conditions, simple operations, a general substrate scope, and good tolerance of functional groups. In addition, scale-up synthesis, related applications, and preliminary mechanistic explorations were also investigated.
Collapse
Affiliation(s)
- Wang-Liang Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Sheng Fang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Jia-Lin Song
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Qiong Hu
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Shang-Shi Zhang
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Bing Shu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| |
Collapse
|
12
|
Zhang ZK, Yuan Y, Peng H, Han Y, Zhang J, Yang J. Synthesis of Sulfinamidines via Iron-Catalyzed Nitrene Transfer Reaction with Sulfenamides. J Org Chem 2024; 89:17609-17614. [PMID: 39557583 DOI: 10.1021/acs.joc.4c02286] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
An iron-catalyzed nitrene transfer reaction for the rapid synthesis of sulfinamidines from readily available sulfenamides is reported. This method features mild conditions, short reaction times, and a broad substrate scope, allowing the preparation of a variety of sulfinamidines in good to excellent yields. The synthetic utility of the sulfinamidine products was further demonstrated through their conversion to other valuable sulfur(VI) compounds, such as sulfondiimidoyl fluorides, sulfinamidiate esters, and sulfonimidamides. Preliminary efforts in the development of an asymmetric variant showed moderate enantioselectivity.
Collapse
Affiliation(s)
- Zhi-Kun Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Yin Yuan
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Huiling Peng
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Yidan Han
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541006, China
| | - Junliang Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Junfeng Yang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
- Fudan Zhangjiang Institute, Shanghai 201203, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
13
|
Wu X, Zheng J, He FS, Wu J. Ligand-Enabled Copper-Catalyzed Ullmann-Type S-C Bond Formation to Access Sulfilimines. Org Lett 2024; 26:8200-8205. [PMID: 39264317 DOI: 10.1021/acs.orglett.4c03116] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
A copper-catalyzed Ullmann-type cross-coupling reaction of sulfenamides with aryl iodides is developed. The key to success is the use of a 2-methylnaphthalen-1-amine-derived amide ligand, which enables the formation of an S-C bond to access functionalized sulfilimines in good to excellent yields at room temperature. This method has the advantages of mild conditions, a broad substrate scope, good functional group compatibility, and high chemoselectivity. The utility of this protocol is highlighted through late-stage modification of drug-relevant molecules and sulfilimine product derivatization.
Collapse
Affiliation(s)
- Xianda Wu
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Jiayi Zheng
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Fu-Sheng He
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Jie Wu
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou 318000, Zhejiang, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
14
|
Yu T, Jin Z, Ji Y, Yang A, Jia P. Photoredox-Catalyzed Difunctionalization of Alkenes with Sulfilimines. Org Lett 2024; 26:7944-7948. [PMID: 39255005 DOI: 10.1021/acs.orglett.4c02971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Herein, we disclose a facile photoinduced difunctionalization of alkenes, enabling the synthesis of valuable β-amino alcohols, β-amino ethers, and 1,2-diamines with diverse nucleophiles. The protocol relies on the use of readily accessible dibenzothiophene-based sulfilimines as novel N-radical precursors, showcasing high functional-group tolerance and exclusive regioselectivity under mild reaction conditions.
Collapse
Affiliation(s)
- Tingwei Yu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhe Jin
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yan Ji
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Aihong Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Penghao Jia
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
15
|
Yuan Y, Han Y, Zhang ZK, Sun S, Wu K, Yang J, Zhang J. Enantioselective Arylation of Sulfenamides to Access Sulfilimines Enabled by Palladium Catalysis. Angew Chem Int Ed Engl 2024; 63:e202409541. [PMID: 38935325 DOI: 10.1002/anie.202409541] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
Sulfur-containing functional groups have garnered considerable attention due to their common occurrence in ligands, pharmaceuticals, and insecticides. Nevertheless, enantioselective synthesis of sulfilimines, particularly diaryl sulfilimines remains a challenging and persistent goal. Herein we report a highly enantio- and chemoselective cross-coupling of sulfenamides with aryl diazonium salt to construct diverse S(IV) stereocenters by Pd catalysis. Bisphosphine ligands bearing sulfinamide groups play a crucial role in achieving high reactivity and selectivity. This approach provides a general, modular and divergent framework for quickly synthesizing chiral sulfilimines and sulfoximines that are otherwise challenging to access. In addition, the origins of the high chemoselectivity and enantioselectivity were extensively investigated using density functional theory calculations.
Collapse
Affiliation(s)
- Yin Yuan
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai, 200438, China
| | - Yidan Han
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541006, China
| | - Zhi-Kun Zhang
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai, 200438, China
| | - Shijin Sun
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai, 200438, China
| | - Ke Wu
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai, 200438, China
| | - Junfeng Yang
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai, 200438, China
- Fudan Zhangjiang Institute, Shanghai, 201203, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Junliang Zhang
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai, 200438, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| |
Collapse
|
16
|
Arichi N, Amano T, Wu S, Inuki S, Ohno H. Synthesis of Sulfilimines via Visible-Light-Mediated Triplet Energy Transfer to Sulfonyl Azides. Chemistry 2024; 30:e202401842. [PMID: 38923056 DOI: 10.1002/chem.202401842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/21/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024]
Abstract
Sulfilimines and their derivatives have garnered considerable interest in both synthetic and medicinal chemistry. Photochemical nitrene transfer to sulfides is known as a conventional synthetic approach to sulfilimines. However, the existing methods have a limited substrate scope stemming from the incompatibility of singlet nitrene intermediates with nucleophilic functional groups. Herein, we report the synthesis of N-sulfonyl sulfilimines via visible-light-mediated energy transfer to sulfonyl azides, uncovering the previously overlooked reactivity of triplet nitrenes with sulfides. This reaction features broad functional group tolerance, water compatibility, and amenability to the late-stage functionalization of drugs. Thus, this work represents an important example of energy transfer chemistry that overcomes challenges in traditional synthetic methods.
Collapse
Affiliation(s)
- Norihito Arichi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Tsuyoshi Amano
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Shuhan Wu
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Shinsuke Inuki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hiroaki Ohno
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
17
|
V R PP, Mercy A AH, K N, S R, Nandi GC. 1,2-Difunctionalization of Aryne with Sulfenamide and Organohalide: Mild and Metal-Free Access to S-( o-Halo)aryl Sulfilimine. J Org Chem 2024; 89:9043-9050. [PMID: 38842348 DOI: 10.1021/acs.joc.4c00296] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
A mild and metal-free approach has been developed for 1,2-difunctionalization of aryne using sulfenamides as a nucleophile and a halogen source (CX4) as an electrophile to synthesize S-(o-halo)aryl sulfilimines. The late-stage functionalizations of halide handles via Suzuki-Miyaura and Buchwald-Hartwig reactions exhibit the synthetic utilities of the products. The chemoselectivity, regioselectivity, rapidity, and use of economical CCl4 are the advantages of this protocol.
Collapse
Affiliation(s)
- Padma Priya V R
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620015, India
| | - Antony Haritha Mercy A
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620015, India
| | - Natarajan K
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620015, India
| | - Ravindra S
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620015, India
| | - Ganesh Chandra Nandi
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620015, India
| |
Collapse
|
18
|
Han Y, Yuan Y, Qi S, Zhang ZK, Kong X, Yang J, Zhang J. Copper-Catalyzed Sulfur Alkylation of Sulfenamides with N-Sulfonylhydrazones. Org Lett 2024; 26:3906-3910. [PMID: 38683227 DOI: 10.1021/acs.orglett.4c01086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Sulfilimines are valuable compounds in both organic synthesis and pharmaceuticals. In this study, we present a copper-catalyzed sulfur alkylation of sulfenamides with N-sulfonylhydrazones. In contrast to prior findings, hydrazones derived from aldehydes act as donor-type carbene precursors, effectively engaging in coupling with sulfenamides via a copper catalyst, demonstrating exclusive S selectivity. The utility of the protocol was highlighted in the rapid access to a wide range of sulfoximine derivatives.
Collapse
Affiliation(s)
- Yidan Han
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi 541006, People's Republic of China
| | - Yin Yuan
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, People's Republic of China
| | - Shutao Qi
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, People's Republic of China
| | - Zhi-Kun Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, People's Republic of China
| | - Xiangfei Kong
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi 541006, People's Republic of China
| | - Junfeng Yang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, People's Republic of China
- Zhuhai Fudan Innovation Institute, Zhuhai, Guangdong 519000, People's Republic of China
| | - Junliang Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, People's Republic of China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, People's Republic of China
| |
Collapse
|
19
|
Gunasekera S, Pryyma A, Jung J, Greenwood R, Patrick BO, Perrin DM. Diphenylphosphinylhydroxylamine (DPPH) Affords Late-Stage S-imination to access free-NH Sulfilimines and Sulfoximines. Angew Chem Int Ed Engl 2024; 63:e202314906. [PMID: 38289976 DOI: 10.1002/anie.202314906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/01/2024]
Abstract
Sulfilimines, as potential aza-isosteres of sulfoxides, are valued as building blocks, auxiliaries, ligands, bioconjugation handles, and as precursors to versatile S(VI) scaffolds including sulfoximines and sulfondiimines. Here, we report a thioether imination methodology that exploits O-(diphenylphosphinyl)hydroxyl amine (DPPH). Under mild, metal-free, and biomolecule-compatible conditions, DPPH enables late-stage S-imination on peptides, natural products, and a clinically trialled drug, and shows both excellent chemoselectivity and broad functional group tolerance. This methodological report is extended to an efficient and high-yielding one-pot reaction for accessing free-NH sulfoximines with diverse substrates including ones of potential clinical importance. In the presence of a rhodium catalyst, sulfoxides are S-iminated in higher yields to afford free-NH sulfoximines. S-imination was validated on an oxidatively delicate amatoxin to give sulfilimine and sulfoximine congeners. Interestingly, these new sulfilimine and sulfoximine-amatoxins show cytotoxicity. This method is further extended to create sulfilimine and sulfoximine-Fulvestrant and buthionine analogues.
Collapse
Affiliation(s)
- Shanal Gunasekera
- Chemistry Department, University of British Columbia, 2036 Main Mall, V6T 1Z1, Vancouver, B.C., Canada
| | - Alla Pryyma
- Chemistry Department, University of British Columbia, 2036 Main Mall, V6T 1Z1, Vancouver, B.C., Canada
| | - Jimin Jung
- Chemistry Department, University of British Columbia, 2036 Main Mall, V6T 1Z1, Vancouver, B.C., Canada
| | - Rebekah Greenwood
- Chemistry Department, University of British Columbia, 2036 Main Mall, V6T 1Z1, Vancouver, B.C., Canada
| | - Brian O Patrick
- Chemistry Department, University of British Columbia, 2036 Main Mall, V6T 1Z1, Vancouver, B.C., Canada
| | - David M Perrin
- Chemistry Department, University of British Columbia, 2036 Main Mall, V6T 1Z1, Vancouver, B.C., Canada
| |
Collapse
|
20
|
Zhang M, Liu L, Tan Y, Jing Y, Liu Y, Wang Z, Wang Q. Decarboxylative Radical Sulfilimination via Photoredox, Copper, and Brønsted Base Catalysis. Angew Chem Int Ed Engl 2024; 63:e202318344. [PMID: 38126567 DOI: 10.1002/anie.202318344] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 12/23/2023]
Abstract
Sulfilimines, the aza-variants of sulfoxides, are key structural motifs in natural products, pharmaceuticals, and agrochemicals; and sulfilimine synthesis is therefore important in organic chemistry. However, methods for radical sulfilimination remain elusive, and as a result, the structural diversity of currently available sulfilimines is limited. Herein, we report the first protocol for decarboxylative radical sulfilimination reactions between sulfenamides and N-hydroxyphthalimide esters of primary, secondary, and tertiary alkyl carboxylic acids, which were achieved via a combination of photoredox, copper, and Brønsted base catalysis. This novel protocol provided a wide variety of sulfilimines, in addition to serving as an efficient route for the synthesis of S-alkyl/S-aryl homocysteine sulfilimines and S-(4-methylphenyl) homocysteine sulfoximine. Moreover, it could be used for late-stage introduction of a sulfilimine group into structurally complex molecules, thereby avoiding the need to preserve labile organosulfur moieties through multistep synthetic sequences. A mechanism involving photocatalytic substrate transformation and copper-mediated C(sp3 )-S bond formation is proposed.
Collapse
Affiliation(s)
- Mingjun Zhang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Lixia Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yuhao Tan
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yue Jing
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Ziwen Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin, 300071, P. R. China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
21
|
Greenwood NS, Cerny NP, Deziel AP, Ellman JA. Synthesis of N-Acylsulfenamides from (Hetero)Aryl Iodides and Boronic Acids by One-Pot Sulfur-Arylation and Dealkylation. Angew Chem Int Ed Engl 2024; 63:e202315701. [PMID: 38015869 PMCID: PMC10813656 DOI: 10.1002/anie.202315701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 11/30/2023]
Abstract
A general one-pot approach to diverse N-acylsulfenamides from a common S-phenethylsulfenamide starting material is reported. This approach was demonstrated by C-S bond formation utilizing commercially abundant (hetero)aryl iodides and boronic acids to provide sulfilimine intermediates that undergo thermal elimination of styrene. In contrast, all prior approaches to N-acylsulfenamides rely on thiol inputs to introduce sulfenamide S-substituents. A broad scope of reaction inputs was demonstrated including for approved drugs and drug precursors with dense display of functionality. Several different types of sulfur functionalization were performed on a sulfenamide derived from a complex precursor of the blockbuster anticoagulant drug apixaban, highlighting the utility of this approach for the introduction of high oxidation state sulfur groups in complex bioactive compounds. Mechanistic studies established that the key styrene elimination step proceeds by a concerted elimination that does not require reagents or catalysts, and therefore, this one-pot approach should be applicable to the synthesis of N-acylsulfenamides utilizing diverse electrophiles and reaction conditions for C-S bond formation.
Collapse
Affiliation(s)
- Nathaniel S Greenwood
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, CT 06520, USA
| | - Nicholas P Cerny
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, CT 06520, USA
| | - Anthony P Deziel
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, CT 06520, USA
| | - Jonathan A Ellman
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, CT 06520, USA
| |
Collapse
|
22
|
Huang G, Ye J, Tan M, Chen Y, Lu X. Copper-Catalyzed Aerobic S-Amination of Sulfenamides for the Synthesis of Sulfinamidines. J Org Chem 2023; 88:16116-16121. [PMID: 37982347 DOI: 10.1021/acs.joc.3c01353] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Herein, we present a copper-catalyzed oxidative amination of sulfenamides for the synthesis of sulfinamidines. By the employment of air as the terminal oxidant, a diverse array of secondary and primary amines can be efficiently transformed into their corresponding products. This method is well-suited for last-stage functionalization, and the underlying mechanism has been investigated. The transformation is characterized by exceptional chemoselectivity, mild conditions, facile operation, and broad substrate compatibility, which have significant implications for the fields of pharmaceuticals and organic synthesis.
Collapse
Affiliation(s)
- Guoling Huang
- Laboratory of Marine Green Fine Chemicals, School of Chemistry and Chemical Engineering, Lingnan Normal University (LNU), 29 Cunjin Road, Zhanjiang, 524048, P. R. China
| | - Jianlin Ye
- Laboratory of Marine Green Fine Chemicals, School of Chemistry and Chemical Engineering, Lingnan Normal University (LNU), 29 Cunjin Road, Zhanjiang, 524048, P. R. China
| | - Minxi Tan
- Laboratory of Marine Green Fine Chemicals, School of Chemistry and Chemical Engineering, Lingnan Normal University (LNU), 29 Cunjin Road, Zhanjiang, 524048, P. R. China
| | - Yuetong Chen
- Laboratory of Marine Green Fine Chemicals, School of Chemistry and Chemical Engineering, Lingnan Normal University (LNU), 29 Cunjin Road, Zhanjiang, 524048, P. R. China
| | - Xunbo Lu
- Laboratory of Marine Green Fine Chemicals, School of Chemistry and Chemical Engineering, Lingnan Normal University (LNU), 29 Cunjin Road, Zhanjiang, 524048, P. R. China
| |
Collapse
|
23
|
Zou X, Wang H, Gao B. Synthesis of Sulfoximines by Copper-Catalyzed Oxidative Coupling of Sulfinamides and Aryl Boronic Acids. Org Lett 2023; 25:7656-7660. [PMID: 37823578 DOI: 10.1021/acs.orglett.3c02970] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
A novel copper-catalyzed cross-coupling reaction of sulfinamides and aryl boronic acids is developed. The reaction is highly chemoselective and stereospecific, which allows mild synthesis of optically pure sulfoximines with broad scope and functional group tolerance. The utility of this method is demonstrated by the asymmetric synthesis of pharmaceutical intermediates.
Collapse
Affiliation(s)
- Xi Zou
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Hanbing Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Bing Gao
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| |
Collapse
|
24
|
Guo Y, Zhuang Z, Feng X, Ma Q, Li N, Jin C, Yoshida H, Tan J. Selective S-Arylation of Sulfenamides with Arynes: Access to Sulfilimines. Org Lett 2023; 25:7192-7197. [PMID: 37733632 DOI: 10.1021/acs.orglett.3c02785] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Sulfilimines, the aza analogues of sulfoxides, are of increasing interest in medicinal and agrochemical research programs. However, the development of efficient routes for their synthesis has remained relatively unexplored. In this study, we report a transition metal-free, selective S-arylation reaction between sulfenamides and arynes, enabling the facile preparation of structurally diverse sulfilimines under mild and redox-neutral conditions in good yields. The application value of our method was further demonstrated by scale-up synthesis, downstream derivatization, and robustness screen.
Collapse
Affiliation(s)
- Yifeng Guo
- College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China
| | - Zhe Zhuang
- College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China
| | - Xiaoying Feng
- College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China
| | - Quanyu Ma
- College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China
| | - Ningning Li
- College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China
| | - Chaochao Jin
- College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China
| | - Hiroto Yoshida
- Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Jiajing Tan
- College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China
| |
Collapse
|
25
|
Xie P, Zheng Y, Luo Y, Luo J, Wu L, Cai Z, He L. Synthesis of Sulfilimines via Multicomponent Reaction of Arynes, Sulfamides, and Thiosulfonates. Org Lett 2023; 25:6133-6138. [PMID: 37579216 DOI: 10.1021/acs.orglett.3c02217] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
In this work, a facile and efficient method for the synthesis of sulfilimines through multicomponent reaction of arynes, sulfamides, and thiosulfonates was developed. A variety of structurally diverse substrates and functional groups were very compatible in the reaction, giving the corresponding sulfilimines in good to high yields. This protocol could be conducted on a gram scale, and the product was easily converted to sulfide and sulfoximine. Mechanism studies revealed that sulfenamide generated in situ is the key intermediate for the reaction.
Collapse
Affiliation(s)
- Pei Xie
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Yating Zheng
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Yuping Luo
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Jinyun Luo
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Leifang Wu
- Analysis and Testing Center of Shihezi University, Shihezi University, Shihezi 832000, P. R. China
| | - Zhihua Cai
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Lin He
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| |
Collapse
|
26
|
Huang G, Ye J, Bashir MA, Chen Y, Chen W, Lu X. Hypervalent Iodine Mediated Synthesis of Sulfinamidines from Sulfenamides. J Org Chem 2023; 88:11728-11734. [PMID: 37506052 DOI: 10.1021/acs.joc.3c00999] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
In this study, we present a novel, efficient method for the oxidative amination of sulfenamides using diacetoxyiodobenzene (PhI(OAc)2) and amines under basic conditions. This innovative technique streamlines the synthesis of sulfinamidines under mild, metal-free conditions, achieving outstanding yields of up to 99%. Furthermore, we propose possible pathways that elucidate the observed molecular sequence of events in this reaction. This cutting-edge approach not only advances the synthesis of valuable sulfinamidine compounds but also expands the synthetic toolbox available to chemists, paving the way for future discoveries in organic synthesis and potential applications in medicinal chemistry.
Collapse
Affiliation(s)
- Guoling Huang
- Laboratory of Marine Green Fine Chemicals, School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang, 524048, P. R. China
| | - Jianlin Ye
- Laboratory of Marine Green Fine Chemicals, School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang, 524048, P. R. China
| | | | - Yuetong Chen
- Laboratory of Marine Green Fine Chemicals, School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang, 524048, P. R. China
| | - Wenjing Chen
- Laboratory of Marine Green Fine Chemicals, School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang, 524048, P. R. China
| | - Xunbo Lu
- Laboratory of Marine Green Fine Chemicals, School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang, 524048, P. R. China
| |
Collapse
|
27
|
Abstract
An efficient and metal-free approach for the synthesis of sulfilimines from sulfenamides with aryne and cyclohexyne precursors has been developed. The reaction proceeds through unusual S-C bond formation, which offers a novel and practical entry to access a wide range of sulfilimines in moderate to good yields with excellent chemoselectivity. Moreover, this protocol is amenable to gram-scale synthesis and is applicable to the transformation of the products into useful sulfoximines.
Collapse
Affiliation(s)
- Xianda Wu
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Jiaojiang 318000, Zhejiang, China
| | - Minghong Chen
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Jiaojiang 318000, Zhejiang, China
| | - Fu-Sheng He
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Jiaojiang 318000, Zhejiang, China
| | - Jie Wu
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Jiaojiang 318000, Zhejiang, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
28
|
Greenwood NS, Ellman JA. Sulfur-Arylation of Sulfenamides via Ullmann-Type Coupling with (Hetero)aryl Iodides. Org Lett 2023; 25:4759-4764. [PMID: 37338140 PMCID: PMC10330900 DOI: 10.1021/acs.orglett.3c01874] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Sulfur-(hetero)arylation of sulfenamides with commercially abundant (hetero)aryl iodides by Ullmann-type coupling with inexpensive copper(I) iodide as the catalyst is reported. A broad scope of reaction inputs was demonstrated, including both aryl and alkyl sulfenamides and highly sterically hindered aryl and 5- and 6-membered ring heteroaryl iodides. Relevant to many bioactive high oxidation state sulfur compounds, the (hetero)arylation of S-methyl sulfenamides is reported, including for complex aryl iodides. Smiles rearrangement of electron-deficient S-heteroaryl sulfilimines is also disclosed.
Collapse
Affiliation(s)
| | - Jonathan A. Ellman
- Department of Chemistry, Yale University, New Haven, Connecticut, 06520, United States
| |
Collapse
|
29
|
Wu X, Li Y, Chen M, He FS, Wu J. Metal-Free Chemoselective S-Arylation of Sulfenamides To Access Sulfilimines. J Org Chem 2023. [PMID: 37327035 DOI: 10.1021/acs.joc.3c00961] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A novel and efficient S-arylation of sulfenamides with diaryliodonium salts for the synthesis of sulfilimines is developed. The reaction proceeds smoothly under transition-metal-free and air conditions, giving rapid access to sulfilimines in good to excellent yields via selective S-C bond formation. This protocol is scalable and exhibits a broad substrate scope, good functional group tolerance, and excellent chemoselectivity.
Collapse
Affiliation(s)
- Xianda Wu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China
- School of Pharmaceutical and Chemical Engineering and Institute for Advanced Studies, Taizhou University, Taizhou, Zhejiang 3180000, China
| | - Yuqing Li
- School of Pharmaceutical and Chemical Engineering and Institute for Advanced Studies, Taizhou University, Taizhou, Zhejiang 3180000, China
| | - Minghong Chen
- School of Pharmaceutical and Chemical Engineering and Institute for Advanced Studies, Taizhou University, Taizhou, Zhejiang 3180000, China
| | - Fu-Sheng He
- School of Pharmaceutical and Chemical Engineering and Institute for Advanced Studies, Taizhou University, Taizhou, Zhejiang 3180000, China
| | - Jie Wu
- School of Pharmaceutical and Chemical Engineering and Institute for Advanced Studies, Taizhou University, Taizhou, Zhejiang 3180000, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
30
|
Champlin AT, Ellman JA. Preparation of Sulfilimines by Sulfur-Alkylation of N-Acyl Sulfenamides with Alkyl Halides. J Org Chem 2023; 88:7607-7614. [PMID: 37221855 PMCID: PMC10257216 DOI: 10.1021/acs.joc.3c00750] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Sulfur alkylation of N-acyl sulfenamides with alkyl halides provides sulfilimines in 47% to 98% yields. A broad scope was established with a variety of aryl and alkyl sulfenamides, including for different N-acyl groups. Alkyl halides with different steric and electronic properties were effective inputs, including methyl, primary, secondary, benzyl, and propargyl halides. A proof-of-concept asymmetric phase-transfer alkylation was also demonstrated. A sulfilimine product was readily converted to an N-acyl and to a free sulfoximine, which represent important motifs in medicinal chemistry.
Collapse
Affiliation(s)
- Andrew T. Champlin
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Jonathan A. Ellman
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
31
|
Zhou Q, Li J, Wang T, Yang X. Base-Promoted S-Arylation of Sulfenamides for the Synthesis of Sulfilimines. Org Lett 2023. [PMID: 37267093 DOI: 10.1021/acs.orglett.3c01436] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Sulfilimines are key intermediates to common motifs in medicines and agrochemicals. Typically, this class of compounds are prepared by imidation of thioethers, transition-metal-catalyzed or base-promoted sulfur alkylation and transition-metal-catalyzed sulfur arylation. Here, we report a practical and efficient base-mediated sulfur arylation reaction for the preparation of sulfilimines. A wide range of N-acyl and N-aryl sulfenamides react with various diaryliodonium salts smoothly to afford the sulfilimines in high yields with excellent chemoselectivities.
Collapse
Affiliation(s)
- Qinglong Zhou
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Jiaomeng Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Tianyi Wang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Xing Yang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| |
Collapse
|