1
|
Li D, Wei J, Ren L, Zhou L, Huang L, Yu Y, Wei S, Hao N, Wang J, Yang L, Pan X, Fu Q, Lu J. Dual Photoexcited Palladium and Photoredox-Catalyzed Remote C(sp 3)-H Acylation of Hydroxyamides. Org Lett 2025; 27:4479-4484. [PMID: 40254955 DOI: 10.1021/acs.orglett.5c00881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Herein, we report an unprecedented dual photoexcited palladium and photoredox-catalyzed remote C(sp3)-H acylation of amides free of external acylating reagents through sequential N-O/C-H/C-O bond cleavage and chemoselective C-C bond formation. This dual catalytic system shows high efficiency, good atom economy by deletion of oxygen, and diverse functional group tolerance. Experimental investigation of the reaction mechanism revealed that O-acyl hydroxamides enabled by photoexcited palladium generated the alkyl radicals via a 1,5-HAT process mediated by amidyl radicals and a palladium carboxylate complex, which, undergoing photoredox-catalyzed phosphoranyl radical-mediated C-O bond cleavage, leads to coupling with alkyl radicals to deliver the final products.
Collapse
Affiliation(s)
- Daling Li
- Green Pharmaceutical Technology Key Laboratory of Luzhou, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Jun Wei
- Green Pharmaceutical Technology Key Laboratory of Luzhou, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Lixu Ren
- Green Pharmaceutical Technology Key Laboratory of Luzhou, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Lingmin Zhou
- Green Pharmaceutical Technology Key Laboratory of Luzhou, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Liya Huang
- Green Pharmaceutical Technology Key Laboratory of Luzhou, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Ying Yu
- Green Pharmaceutical Technology Key Laboratory of Luzhou, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Siping Wei
- Green Pharmaceutical Technology Key Laboratory of Luzhou, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Na Hao
- Green Pharmaceutical Technology Key Laboratory of Luzhou, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Jun Wang
- Green Pharmaceutical Technology Key Laboratory of Luzhou, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Lin Yang
- Green Pharmaceutical Technology Key Laboratory of Luzhou, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Xianchao Pan
- Green Pharmaceutical Technology Key Laboratory of Luzhou, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Qiang Fu
- Green Pharmaceutical Technology Key Laboratory of Luzhou, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Ji Lu
- Green Pharmaceutical Technology Key Laboratory of Luzhou, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
2
|
Li PP, Yang Z, Cai SQ, Liang W, Fang SC, Zhao JF, Pan B, Du F. Palladium-Catalyzed and Photoinduced Site-Selective Alkynylation and Oxidation of the Remote C(sp 3)-H. Org Lett 2025; 27:2602-2608. [PMID: 40063055 DOI: 10.1021/acs.orglett.5c00271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
A general and efficient method for the direct alkynylation and oxidation of remote C(sp3)-H bonds under photoirradiation is described. In this reaction, the Pd catalyst acts as both a photocatalyst to generate the nitrogen radical and a cross-coupling catalyst with a terminal alkyne. Attractive features of this system include good functional group tolerance, scalability, convenient reagents, and an operating system. The utility of this protocol is highlighted by its application for derivatization of several valuable aza-heterocycles such as caspase-3 inhibitor and azepinone derivatives.
Collapse
Affiliation(s)
- Pan-Pan Li
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
- Department of Pharmacy of the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Zhi Yang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Shao-Qun Cai
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Wu Liang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Shi-Cui Fang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Jun-Fei Zhao
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Bin Pan
- College of Pharmacy, Third Military Medical University, Shapingba, Chongqing, 400038, China
| | - Fei Du
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
3
|
Tang LN, Miao JC, Chen M. Recent advances in photoinitiated Pd-catalyzed desaturation and Heck-type reactions via 1,5-hydrogen atom transfer. Chem Commun (Camb) 2025; 61:4621-4629. [PMID: 40009017 DOI: 10.1039/d4cc06349j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Photoredox-catalyzed 1,5-hydrogen atom transfer has rapidly developed, which has made remarkable achievements in the activation of remote C(sp3)-H bonds and successfully addressed the selectivity issues faced by transition metal catalysis. In recent years, the discovery of hybrid Pd radical intermediates and their application in photoredox-catalyzed 1,5-hydrogen atom transfer has gained considerable importance, which obviated the necessity of an additional photosensitizer. In light of the significant role of alkenes in organic synthesis and hybrid Pd radical intermediates, this review aims to summarize efforts on photoinduced Pd-catalyzed radical relay Heck and desaturation reactions via 1,5-hydrogen atom transfer, briefly discussing the design, selectivity, reaction mechanisms and future research prospects.
Collapse
Affiliation(s)
- Lu-Ning Tang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Chang-zhou University, Changzhou, 213164, China.
| | - Jia-Cheng Miao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Chang-zhou University, Changzhou, 213164, China.
| | - Ming Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Chang-zhou University, Changzhou, 213164, China.
| |
Collapse
|
4
|
Cheung KPS, Gevorgyan V. Illuminating Palladium Catalysis. Acc Chem Res 2025; 58:861-876. [PMID: 40009731 DOI: 10.1021/acs.accounts.4c00815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
ConspectusThe past decade has witnessed significant advancements of visible-light-induced photocatalysis, establishing it as a powerful and versatile tool in organic synthesis. The major focus of this field has centered on the development of methodologies that either rely solely on photocatalysts or combine photocatalysis with other catalytic methods, such as transition metal catalysis, to address a broader and more diverse array of transformations. Within this rapidly evolving area, a subfield that we refer to as transition metal photocatalysis has garnered significant attention due to its growing impact and mechanistic uniqueness. A distinguishing feature of this subfield is the dual functionality of a single transition metal complex, which not only acts as a photocatalyst to initiate photochemical processes but also functions as a traditional catalyst, facilitating key bond-breaking and bond-forming events. As such, an exogenous photocatalyst is not required in transition metal photocatalysis. However, the implications of harnessing both the excited- and ground-state reactivities of the transition metal complex can extend beyond this simplification. One of the most compelling aspects of this area is that photoexcited transition metal complexes can exhibit unique reactivities inaccessible through conventional thermal or dual photocatalytic approaches. These distinct reactivities can be leveraged to accomplish novel transformations either by engaging an entirely different substrate pool or by unlocking new reactivities of known substrates.In 2016, our group pioneered the use of phosphine-ligated palladium catalysts that can be photoexcited upon visible-light irradiation to engage diverse substrates in radical reactions. In our initial discovery, we showed that photoexcitation can redirect the well-established oxidative addition of a Pd(0) complex into aryl iodides toward an unprecedented radical process, generating hybrid aryl Pd(I) radical species. We subsequently extended this novel strategy to the formation of alkyl radicals from alkyl halides. These reactive radical intermediates have been harnessed in a wide variety of transformations, including desaturation, alkyl Heck reactions, and alkene difunctionalization cascades, among others.Seeking to further expand this new avenue, we achieved the first example of asymmetric palladium photocatalysis in the context of allylic C-H amination, where the palladium catalyst now plays triple duty by additionally controlling the stereochemical outcome of the reaction. In parallel to reaction discovery, we have also established that diazo compounds, strained molecules, and electron-deficient alkenes can serve as alkyl radical precursors beyond organic halides and redox-active esters. Notably, the engagement of electron-deficient alkenes has been made possible by the photoinduced hydricity enhancement of Pd-H species, representing a new mode of photoexcited reactivity.This Account presents our discovery and development of visible-light-induced palladium catalysis, organized by the type of transformations explored. Given the rapid progress in the field, we anticipate that this Account will provide readers with guiding principles and inspiration for designing and developing more efficient and novel transformations.
Collapse
Affiliation(s)
- Kelvin Pak Shing Cheung
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| | - Vladimir Gevorgyan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| |
Collapse
|
5
|
Zeng L, Zhang Y, Hu M, He DL, Ouyang XH, Li JH. Divergent Synthesis of ( E)- and ( Z)-Alkenones via Photoredox C(sp 3)-H Alkenylation-Dehydrogenation of o-Iodoarylalkanols with Alkynes. Org Lett 2024; 26:10096-10101. [PMID: 39546467 DOI: 10.1021/acs.orglett.4c03707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
A photoredox C(sp3)-H alkenylation-dehydrogenation of o-iodoarylalkanols with terminal alkynes for the synthesis of (E)- and (Z)-quaternary carbon center-containing pent-4-en-1-ones is described. The stereoselectivity depends on the utilization of alkynes and photocatalysts. While using an organic photocatalyst like 4-DPAIPN manipulates the C(sp3)-H alkenylation-dehydrogenation of o-iodoarylalkanols with arylalkynes to assemble (E)-pent-4-en-1-ones, in the case of an Ir potocatalyst such as Ir(ppy)2(dtbbpy)PF6 the reaction with arylalkynes delivers (Z)-pent-4-en-1-ones. For alkylalkynes, the reaction furnishes (E)-pent-4-en-1-ones exclusively in the presence of 4-DPAIPN or Ir(ppy)2(dtbbpy)PF6.
Collapse
Affiliation(s)
- Liang Zeng
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Yin Zhang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Ming Hu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - De-Liang He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Xuan-Hui Ouyang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jin-Heng Li
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
6
|
Sheng XX, Qiu CY, Wang LN, Du YJ, Tang LN, Chen JM, Liu GY, Yang S, Zheng PF, Chen M. Transition-Metal-Free Radical Relay Cascade Annulation of Amides: Access to Antitumor Active Benzo[b]azepine and Oxindole Derivatives. Chemistry 2024; 30:e202402402. [PMID: 39186035 DOI: 10.1002/chem.202402402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 08/27/2024]
Abstract
Efficient transition-metal-free synthesis of benzo[b]azepines and oxindoles is achieved via a radical relay cascade strategy employing halogen atom transfer (XAT) for aryl radical generation followed by intramolecular hydrogen atom transfer (HAT). Optimization yielded moderate to substantial yields under visible light irradiation. Preliminary biological assessments revealed promising anti-tumor activity for select compounds. This study underscores the potential of XAT-mediated radical relay cascades in medicinal chemistry and anticancer drug discovery.
Collapse
Affiliation(s)
- Xia-Xin Sheng
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 21 Gehu Road, Changzhou, 213164, China
| | - Chao-Ying Qiu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 21 Gehu Road, Changzhou, 213164, China
| | - Li-Na Wang
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, No. 30 Gaotanyan Street, Chongqing, 400038, China
| | - Yu-Jia Du
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 21 Gehu Road, Changzhou, 213164, China
| | - Lu-Ning Tang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 21 Gehu Road, Changzhou, 213164, China
| | - Jia-Ming Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 21 Gehu Road, Changzhou, 213164, China
| | - Guo-Ying Liu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 21 Gehu Road, Changzhou, 213164, China
| | - Sen Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 21 Gehu Road, Changzhou, 213164, China
| | - Peng-Fei Zheng
- College of Pharmacy, Army Medical University, No. 30 Gaotanyan Street, Chongqing, 400038, China
| | - Ming Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 21 Gehu Road, Changzhou, 213164, China
| |
Collapse
|
7
|
Zhang TZ, Shen MQ, Zhang Q, Fu MC. Alcohols as Alkyl Electrophiles for Deoxygenative Heck Reaction Enabled by Excited State Pd Catalysis. Org Lett 2024; 26:8890-8898. [PMID: 39356970 DOI: 10.1021/acs.orglett.4c03343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Here, we present a general method for the photoinduced Pd-catalyzed deoxygenative Heck reaction of vinyl arenes with ortho-iodophenyl-thionocarbonate derived from alcohols. Mechanistic studies reveal that the deoxygenation involves a 5-endo-trig cyclization and fragmentation process, with radical addition identified as the rate-determining step in this transformation. This one-pot procedure demonstrates excellent selectivity for less hindered hydroxyl groups in diols, facilitating late-stage functionalization of complex molecules and scalability to gram-scale synthesis. The protocol highlights significant synthetic potential and can be extended to the cascade 1,1-difunctionalization of isocyanides and the intermolecular radical cascade cyclization of N-arylacrylamides.
Collapse
Affiliation(s)
- Tian-Zhen Zhang
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Department Flexible Composite Materials Key Technology Center, Hefei University of Technology, Hefei 230009, China
| | - Meng-Qi Shen
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Department Flexible Composite Materials Key Technology Center, Hefei University of Technology, Hefei 230009, China
| | - Qi Zhang
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Department Flexible Composite Materials Key Technology Center, Hefei University of Technology, Hefei 230009, China
| | - Ming-Chen Fu
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Department Flexible Composite Materials Key Technology Center, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
8
|
Deng KY, Xie ZZ, Yuan CP, Guan JP, Chen K, Xiang HY, Yang H. Photoinduced 1,5-HAT-enabled 1,7-hydrosulfonylation of allylic ethers and amides. Chem Commun (Camb) 2024; 60:11984-11987. [PMID: 39351683 DOI: 10.1039/d4cc03557g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2024]
Abstract
Herein, we report a photoinduced 1,7-hydrosulfonylation of allylic ethers and amides via a sequential Pd-mediated 1,5-HAT process and Pd-catalyzed allylic nucleophilic attack of arylsulfonates. This rationally designed synthetic protocol allows for facile construction of a series of structurally novel allylic sulfonated scaffolds, and features mild conditions, cheap and readily available raw materials and functional group compatibility.
Collapse
Affiliation(s)
- Ke-Yi Deng
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
| | - Zhen-Zhen Xie
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
| | - Chu-Ping Yuan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
| | - Jian-Ping Guan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
| | - Hao-Yue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
| |
Collapse
|
9
|
Yang S, Qiu CY, Hu H, Jiang Y, Chen M. Visible-Light-Driven Synthesis of N-Alkyl α-Amino Acid Derivatives from Unactivated Alkyl Bromides and In Situ Generated Imines. Org Lett 2024; 26:8416-8423. [PMID: 39311501 DOI: 10.1021/acs.orglett.4c03297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
One-pot, multicomponent reactions are known for their green and efficient nature. We report a novel three-component reaction of alkyl amines, alkyl glyoxylates, and unactivated alkyl bromides under visible-light-induced palladium catalysis, yielding N-alkyl unnatural α-amino acid derivatives. This method offers mild conditions, broad substrate scope, and excellent functional group tolerance without requiring stoichiometric organometallic reagents. The approach has promising applications in protein engineering and drug discovery.
Collapse
Affiliation(s)
- Sen Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Chao-Ying Qiu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Hao Hu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Yan Jiang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Ming Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| |
Collapse
|
10
|
Zhan YF, Chen JM, Sheng XX, Qiu CY, Jiang Y, Yang S, Chen M. Photoinduced copper catalyzed nitrogen-to-alkyl radical relay Sonogashira-type coupling of o-alkylbenzamides with alkynes. Chem Commun (Camb) 2024; 60:7906-7909. [PMID: 38979947 DOI: 10.1039/d4cc02861a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
This report describes a copper-catalyzed, photoinduced N-to-alkyl radical relay Sonogashira-type reactions at benzylic sites in o-alkylbenzamides with alkynes. The process employs an N-to-alkyl radical mechanism, initiated through the copper-catalyzed reductive generation of nitrogen radicals. Radical translocation is facilitated by a 1,5-hydrogen atom transfer (1,5-HAT), leading to the formation of translocated carbon radicals. These radicals are then subjected to copper-catalyzed alkynylation. The methodology exhibits broad sub-strate scope and applicability to the synthesis of complex natural products.
Collapse
Affiliation(s)
- Yan-Fang Zhan
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Chang-zhou University, Changzhou, 213164, China.
| | - Jia-Ming Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Chang-zhou University, Changzhou, 213164, China.
| | - Xia-Xin Sheng
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Chang-zhou University, Changzhou, 213164, China.
| | - Chao-Ying Qiu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Chang-zhou University, Changzhou, 213164, China.
| | - Yan Jiang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Chang-zhou University, Changzhou, 213164, China.
| | - Sen Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Chang-zhou University, Changzhou, 213164, China.
| | - Ming Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Chang-zhou University, Changzhou, 213164, China.
| |
Collapse
|
11
|
Yang J, Li CR, Guo X, Chen Z, Hu K, Li LX. Photoinduced Palladium-Catalyzed 1,2-Aminoalkylation of Aromatic Alkenes with Hydroxyl as the Directing Group. Org Lett 2024; 26:5110-5114. [PMID: 38848135 DOI: 10.1021/acs.orglett.4c01389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
The hybrid nature of Pd(I)-alkyl radical species has enabled a wide array of radical-based transformations. However, in this transformation, the secondary Pd(I)-alkyl radical species are prone to recombining into Pd(II)-alkyl species to give Heck-type products via β-H loss. Herein, we report a visible-light-induced, three-component Pd-catalyzed 1,2-aminoalkylation of alkenes with readily available alkyl halides and amines to construct C-C and C-N bonds simultaneously. Mechanistic investigation shows that the intermediate of o-quinone methide produced is the key factor in the transformation.
Collapse
Affiliation(s)
- Jing Yang
- Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Chen-Rui Li
- Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Xu Guo
- Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Zhuo Chen
- Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Kai Hu
- Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Li-Xin Li
- Henan University of Chinese Medicine, Zhengzhou 450046, China
| |
Collapse
|
12
|
Zhan X, Nie Z, Li N, Zhou A, Lv H, Liang M, Wu K, Cheng GJ, Yin Q. Catalytic Asymmetric Cascade Dearomatization of Indoles via a Photoinduced Pd-Catalyzed 1,2-Bisfunctionalization of Butadienes. Angew Chem Int Ed Engl 2024; 63:e202404388. [PMID: 38641988 DOI: 10.1002/anie.202404388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 04/21/2024]
Abstract
Photoinduced Pd-catalyzed bisfunctionalization of butadienes with a readily available organic halide and a nucleophile represents an emerging and attractive method to assemble versatile alkenes bearing various functional groups at the allylic position. However, enantiocontrol and/or diastereocontrol in the C-C or C-X bond-formation step have not been solved due to the open-shell process. Herein, we present a cascade asymmetric dearomatization reaction of indoles via photoexcited Pd-catalyzed 1,2-biscarbonfunctionalization of 1,3-butadienes, wherein asymmetric control on both the nucleophile and electrophile part is achieved for the first time in photoinduced bisfunctionalization of butadienes. This method delivers structurally novel chiral spiroindolenines bearing two contiguous stereogenic centers with high diastereomeric ratios (up to >20 : 1 dr) and good to excellent enantiomeric ratios (up to 97 : 3 er). Experimental and computational studies of the mechanism have confirmed a radical pathway involving excited-state palladium catalysis. The alignment and non-covalent interactions between the substrate and the catalyst were found to be essential for stereocontrol.
Collapse
Affiliation(s)
- Xiaohang Zhan
- Shenzhen University of Advanced Technology, and Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, P. R. China
| | - Zhiwen Nie
- Shenzhen University of Advanced Technology, and Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, P. R. China
| | - Na Li
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, P. R. China
| | - Ao Zhou
- Shenzhen University of Advanced Technology, and Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, P. R. China
| | - Haotian Lv
- Shenzhen University of Advanced Technology, and Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, P. R. China
| | - Mingrong Liang
- Shenzhen University of Advanced Technology, and Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, P. R. China
| | - Keqin Wu
- Shenzhen University of Advanced Technology, and Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, P. R. China
| | - Gui-Juan Cheng
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, P. R. China
| | - Qin Yin
- Shenzhen University of Advanced Technology, and Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, P. R. China
| |
Collapse
|
13
|
Yang S, Cai SS, Li JH, Chen M. Photoinduced Palladium-Catalyzed Radical Heck-Type Coupling of Cyclobutanone Oxime Esters with Vinyl Arenes. J Org Chem 2024; 89:7243-7254. [PMID: 38696261 DOI: 10.1021/acs.joc.4c00703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
A palladium-catalyzed radical Heck-type coupling reaction of cyclobutanone oxime esters with olefins under visible-light irradiation has been developed. The cyanoalkyl/Pd(I) hybrid species generated by selected ring-opening C-C bond cleavage of imino/Pd(I) species reacted smoothly with vinyl arenes, delivering the cyanoalkylation olefins under mild conditions. This elegant strategy has a broad scope and functional group tolerance. Subsequently, late-stage functionalization of bioactive molecules and synthetic transformations of the product further confirm the practicality.
Collapse
Affiliation(s)
- Sen Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 21 Gehu Road, Changzhou 213164, China
| | - Sha-Sha Cai
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 21 Gehu Road, Changzhou 213164, China
| | - Jun-Hua Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 21 Gehu Road, Changzhou 213164, China
| | - Ming Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 21 Gehu Road, Changzhou 213164, China
| |
Collapse
|
14
|
Du YJ, Sheng XX, Tang LN, Chen JM, Liu GY, Hu H, Yang S, Zhu L, Chen M. Accessing Benzoazepine Derivatives via Photoinduced Radical Relay Formal [5 + 2] Reaction of Amide/Alkyne Enabled by Palladium Catalysis. Org Lett 2024; 26:2662-2667. [PMID: 38530133 DOI: 10.1021/acs.orglett.4c00979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
A novel class of alkyne-tethered amides facilitates an unprecedented photoinduced palladium-catalyzed radical relay formal [5 + 2] reaction. This innovative strategy allows for the rapid construction of diverse fused benzoazepine structures, yielding structurally novel and compelling compounds. With a broad substrate scope and excellent functional group tolerance, the methodology synthesizes biologically active compounds. Notably, the resulting tricyclic benzo[b]azepines offer diversification opportunities through simple transformations. DFT calculations elucidate a seven-membered ring closure mechanism involving the alkenyl radical and Pd(I) rebound alongside a concerted metalation-deprotonation (CMD) process.
Collapse
Affiliation(s)
- Yu-Jia Du
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 21 Gehu Road, Changzhou 213164, China
| | - Xia-Xin Sheng
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 21 Gehu Road, Changzhou 213164, China
| | - Lu-Ning Tang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 21 Gehu Road, Changzhou 213164, China
| | - Jia-Ming Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 21 Gehu Road, Changzhou 213164, China
| | - Guo-Ying Liu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 21 Gehu Road, Changzhou 213164, China
| | - Hao Hu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 21 Gehu Road, Changzhou 213164, China
| | - Sen Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 21 Gehu Road, Changzhou 213164, China
| | - Lei Zhu
- College of Pharmacy, Army Medical University, No. 30 Gaotanyan Street, Chongqing 400038, China
| | - Ming Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 21 Gehu Road, Changzhou 213164, China
| |
Collapse
|
15
|
Sarkar S, Cheung KPS, Gevorgyan V. Recent Advances in Visible Light Induced Palladium Catalysis. Angew Chem Int Ed Engl 2024; 63:e202311972. [PMID: 37957126 PMCID: PMC10922525 DOI: 10.1002/anie.202311972] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/15/2023]
Abstract
Visible light-induced Pd catalysis has emerged as a promising subfield of photocatalysis. The hybrid nature of Pd radical species has enabled a wide array of radical-based transformations otherwise challenging or unknown via conventional Pd chemistry. In parallel to the ongoing pursuit of alternative, readily available radical precursors, notable discoveries have demonstrated that photoexcitation can alter not only oxidative addition but also other elementary steps. This Minireview highlights the recent progress in this area.
Collapse
Affiliation(s)
- Sumon Sarkar
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080 (USA)
| | - Kelvin Pak Shing Cheung
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080 (USA)
| | - Vladimir Gevorgyan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080 (USA)
| |
Collapse
|
16
|
Li PS, Teng QQ, Chen M. Photoinduced radical cascade domino Heck coupling of N-aryl acrylamide with vinyl arenes enabled by palladium catalysis. Chem Commun (Camb) 2023; 59:10620-10623. [PMID: 37578259 DOI: 10.1039/d3cc03506a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Here, a redox-neutral palladium-catalyzed photo-induced radical cascade domino Heck reaction of N-aryl acrylamide with vinyl arenes is described. A diverse range of bioactive oxindoles, featuring an all-carbon quaternary center, were synthesized. The reaction is proposed to proceed via an open-shell intermediate and occurs under mild reaction conditions, exhibiting excellent functional group tolerance. Importantly, the synthesized products can be readily transformed into biologically active molecules, including (±)-physostigmine and (±)-physovenine.
Collapse
Affiliation(s)
- Pei-Shang Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Chang-zhou University, Changzhou, 213164, China.
| | - Qiao-Qiao Teng
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Chang-zhou University, Changzhou, 213164, China.
| | - Ming Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Chang-zhou University, Changzhou, 213164, China.
| |
Collapse
|