1
|
Liu ZQ. How many organic small molecules might be used to treat COVID-19? From natural products to synthetic agents. Eur J Med Chem 2024; 278:116788. [PMID: 39236494 DOI: 10.1016/j.ejmech.2024.116788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/05/2024] [Accepted: 08/19/2024] [Indexed: 09/07/2024]
Abstract
A large scale of pandemic coronavirus disease (COVID-19) in the past five years motivates a great deal of endeavors donating to the exploration on therapeutic drugs against COVID-19 as well as other diseases caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Herein is an overview on the organic small molecules that are potentially employed to treat COVID-19 and other SARS-CoV-2-related diseases. These organic small molecules are accessed from both natural resources and synthetic strategies. Notably, typical natural products presented herein consist of polyphenols, lignans, alkaloids, terpenoids, and peptides, which exert an advantage for the further discovery of novel anti-COVID-19 drugs from plant herbs. On the other hand, synthetic prodrugs are composed of a series of inhibitors towards RNA-dependent RNA polymerase (RdRp), main protease (Mpro), 3-chymotrypsin-like cysteine protease (3CLpro), spike protein, papain-like protease (PLpro) of the SARS-CoV-2 as well as the angiotensin-converting enzyme 2 (ACE2) in the host cells. Synthetic strategies are worth taken into consideration because they are beneficial for designing novel anti-COVID-19 drugs in the coming investigations. Although examples collected herein are just a drop in the bucket, developments of organic small molecules against coronavirus infections are believed to pave a promising way for the discovery of multi-targeted therapeutic drugs against not only COVID-19 but also other virus-mediated diseases.
Collapse
Affiliation(s)
- Zai-Qun Liu
- Department of Organic Chemistry, College of Chemistry, Jilin University, No.2519 Jiefang Road, Changchun, 130021, People's Republic of China.
| |
Collapse
|
2
|
Feys JR, Edwards K, Joyce MA, Saffran HA, Shields JA, Garcia K, Tyrrell DL, Fischer C. Peptide Aldehydes Incorporating Thiazol-4-yl Alanine Are Potent In Vitro Inhibitors of SARS-CoV-2 Main Protease. ACS Med Chem Lett 2024; 15:2046-2052. [PMID: 39563811 PMCID: PMC11571010 DOI: 10.1021/acsmedchemlett.4c00444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/21/2024] Open
Abstract
The main protease of SARS-CoV-2 is an essential enzyme required for polyprotein cleavage during viral replication and thus is an excellent target for development of direct-acting antiviral compounds. Continued research efforts have elucidated several peptidic small molecules like GC376, boceprevir, and nirmatrelvir with potent anticoronaviral activity bearing optimized amino acid side chain residues. To reduce synthetic complexity and cost, we used simple chemical surrogates that were commercially readily available to develop new inhibitors that mimic the potency of these drug compounds. We synthesized and tested several analogue chimeras of GC376 and boceprevir that have surrogate residues at the P1 and/or P2 position in order to further improve target binding. Both P1 variants with either a nonpolar cyclobutyl or polar thiazol-4-yl alanine resulted in low-micromolar to submicromolar Mpro inhibitors with strong antiviral activity in cell assays.
Collapse
Affiliation(s)
- Jenson R Feys
- Department of Chemistry, Barry University, Miami Shores, Florida 33161, United States
| | - Kyle Edwards
- Department of Chemistry, Barry University, Miami Shores, Florida 33161, United States
| | - Michael A Joyce
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Holly A Saffran
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Justin A Shields
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Kassandra Garcia
- Department of Chemistry, Barry University, Miami Shores, Florida 33161, United States
| | - D Lorne Tyrrell
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Conrad Fischer
- Department of Chemistry, Barry University, Miami Shores, Florida 33161, United States
| |
Collapse
|
3
|
Wood WW. Deuterated Drugs: Isotope Distribution and Impurity Profiles. J Med Chem 2024; 67:16991-16999. [PMID: 39356646 DOI: 10.1021/acs.jmedchem.4c01694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
A recent review identified the problem of lower isotopologues in deuterated active pharmaceutical ingredients (APIs) as a critical issue in this area of medicinal chemistry. In this Perspective, the relationship between overall enrichment and isotope distribution for deuterated APIs is discussed. Deuterated APIs are divided into single deuterium, methyl-d3, and polydeuterated compounds. For the latter category, distribution calculations demonstrate that the parent deuterated API contains significant quantities of the lower isotopologues. As an alternative to the use of overall enrichment to describe these compounds, it is suggested that describing these compounds with a distribution profile should be preferred, giving an accurate and defensible description of the API. Using this approach, the lower isotopologues become an integral part of the API and not an impurity.
Collapse
Affiliation(s)
- William W Wood
- Wakefield Chemistry Consulting LLC, Bel Air, Maryland 21015, United States
| |
Collapse
|
4
|
Chen P, Van Oers TJ, Arutyunova E, Fischer C, Wang C, Lamer T, van Belkum MJ, Young HS, Vederas JC, Lemieux MJ. A Structural Comparison of Oral SARS-CoV-2 Drug Candidate Ibuzatrelvir Complexed with the Main Protease (M pro) of SARS-CoV-2 and MERS-CoV. JACS AU 2024; 4:3217-3227. [PMID: 39211604 PMCID: PMC11350714 DOI: 10.1021/jacsau.4c00508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024]
Abstract
Ibuzatrelvir (1) was recently disclosed and patented by Pfizer for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It has received fast-track status from the USA Food and Drug Administration (FDA) and has entered phase III clinical trials as a possible replacement for Paxlovid. Like nirmatrelvir (2) in Paxlovid, this orally active drug candidate is designed to target viral main proteases (Mpro) through reversible covalent interaction of its nitrile warhead with the active site thiol of the chymotrypsin-like cysteine protease (3CL protease). Inhibition of Mpro hinders the processing of the proteins essential for viral replication in vivo. However, ibuzatrelvir apparently does not require ritonavir (3), which is coadministered in Paxlovid to block human oxidative metabolism of nirmatrelvir. Here, we report the crystal structure of the complex of ibuzatrelvir with the active site of SARS-CoV-2 Mpro at 2.0 Å resolution. In addition, we show that ibuzatrelvir also potently inhibits the Mpro of Middle East respiratory syndrome-related coronavirus (MERS-CoV), which is fortunately not widespread but can be dangerously lethal (∼36% mortality). Co-crystal structures show that the binding mode of the drug to both active sites is similar and that the trifluoromethyl group of the inhibitor fits precisely into a critical S2 substrate binding pocket of the main proteases. However, our results also provide a rationale for the differences in potency of ibuzatrelvir for these two proteases due to minor differences in the substrate preferences leading to a weaker H-bond network in MERS-CoV Mpro. In addition, we examined the reversibility of compound binding to both proteases, which is an important parameter in reducing off-target effects as well as the potential immunogenicity. The crystal structures of the ibuzatrelvir complexes with Mpro of SARS-CoV-2 and of MERS-CoV will further assist drug design for coronaviral infections in humans and animals.
Collapse
Affiliation(s)
- Pu Chen
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
- Li Ka
Shing Institute of Virology, University
of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Tayla J. Van Oers
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Elena Arutyunova
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
- Li Ka
Shing Institute of Virology, University
of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Conrad Fischer
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Chaoxiang Wang
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Tess Lamer
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Marco J. van Belkum
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Howard S. Young
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - John C. Vederas
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - M. Joanne Lemieux
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
- Li Ka
Shing Institute of Virology, University
of Alberta, Edmonton, Alberta T6G 2E1, Canada
| |
Collapse
|
5
|
Li H, Peng M, Wang L, Jiang T, Li X, Fu Y, Hu Z, An J. Single Electron Transfer Reductive Deuteration of Acyl Chlorides for the Synthesis of Deuterated Alcohols with a High Deuterium Atom Economy. Org Lett 2024; 26:719-723. [PMID: 38236082 DOI: 10.1021/acs.orglett.3c04155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
We present a highly deuterium atom economical approach for the synthesis of deuterated alcohols via the single electron transfer (SET) reductive deuteration of acyl chlorides. Cost-effective sodium dispersion and EtOD-d1 were used as the single electron donor and deuterium donor, respectively. Our approach achieved up to 49% deuterium atom economy, which represents the highest deuterium atom economy yet achieved in SET reductive deuteration reactions. With all 20 tested substrates, excellent regioselectivity and >92% deuterium incorporations were obtained. Furthermore, we demonstrated the potential of this methodology by synthesizing four deuterated analogues of pesticides.
Collapse
Affiliation(s)
- Hengzhao Li
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
- Key Laboratory for Botanical Pesticide R&D of Shaanxi Province, Yangling, Shaanxi 712100, People's Republic of China
| | - Mengqi Peng
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, People's Republic of China
| | - Lijun Wang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, People's Republic of China
| | - Tingting Jiang
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
- Key Laboratory for Botanical Pesticide R&D of Shaanxi Province, Yangling, Shaanxi 712100, People's Republic of China
| | - Xinxin Li
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
- Key Laboratory for Botanical Pesticide R&D of Shaanxi Province, Yangling, Shaanxi 712100, People's Republic of China
| | - Yijing Fu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
- Key Laboratory for Botanical Pesticide R&D of Shaanxi Province, Yangling, Shaanxi 712100, People's Republic of China
| | - Zhaonong Hu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
- Key Laboratory for Botanical Pesticide R&D of Shaanxi Province, Yangling, Shaanxi 712100, People's Republic of China
| | - Jie An
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, People's Republic of China
| |
Collapse
|