1
|
Dutta J, Ghosh S, Hassan A, De Sarkar S. Concomitant (3 + 3) Annulation/Fragmentation of Triazinanes with Enamines: Electrosynthesis of Multisubstituted Dihydropyrimidines. Org Lett 2025; 27:2682-2686. [PMID: 40051196 DOI: 10.1021/acs.orglett.5c00418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
An electro-oxidative formal (3 + 3) annulation of 1,3,5-triazinanes with enamines toward multisubstituted 1,2-dihydropyrimidines is reported. This metal-free mild protocol offers wide functional group tolerance, and heterocycles with an unexplored molecular scaffold were constructed in excellent yields. Mechanistically, the electro-oxidation of triazinane and nucleophilic reactivity of enamine result in a concomitant annulation-fragmentation process, leading to the six-membered heterocyclic product.
Collapse
Affiliation(s)
- Jhilik Dutta
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Sayan Ghosh
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Aaliya Hassan
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Suman De Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| |
Collapse
|
2
|
Zhan JL, Zhou SN, Wang Y, Liu R, Wang YT, Tian M, Meng Q, Zhu L, Kong X, Lv Y. Direct β-C-H ketoalkylation of enaminoesters with cyclopropanols under metal-free conditions. Org Biomol Chem 2025; 23:1823-1827. [PMID: 39812013 DOI: 10.1039/d4ob01968g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
A TEMPO-mediated β-ketoalkylation of enaminoesters with cyclopropanols under metal-free conditions is herein described. This reaction provides a straightforward and highly efficient route to β-keto alkyl substituted enaminoesters for the first time, which could be rapidly and efficiently converted into synthetically useful 2-alkoxycarbonyl functionalized 1,5-diketones. Moreover, the practicability of this protocol is successfully demonstrated by scale-up experiments and the late-stage functionalization of natural products and pharmaceutically relevant molecules.
Collapse
Affiliation(s)
- Jun-Long Zhan
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs. College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, P. R. China.
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Sai-Nan Zhou
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs. College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, P. R. China.
| | - Yu Wang
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs. College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, P. R. China.
| | - Rui Liu
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs. College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, P. R. China.
| | - Yu-Tong Wang
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs. College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, P. R. China.
| | - Mengke Tian
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs. College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, P. R. China.
| | - Qiang Meng
- School of Chemistry, Science, Monash University, Wellington Road, Clayton, VIC 3800, Australia.
| | - Lin Zhu
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs. College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, P. R. China.
| | - Xiangtao Kong
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs. College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, P. R. China.
| | - Yunhe Lv
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs. College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, P. R. China.
| |
Collapse
|
3
|
Kim Y, Jang WJ. Recent advances in electrochemical copper catalysis for modern organic synthesis. Beilstein J Org Chem 2025; 21:155-178. [PMID: 39834892 PMCID: PMC11744695 DOI: 10.3762/bjoc.21.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/23/2024] [Indexed: 01/22/2025] Open
Abstract
In recent decades, organic electrosynthesis has emerged as a practical, sustainable, and efficient approach that facilitates valuable transformations in synthetic chemistry. Combining electrochemistry with transition-metal catalysis is a promising and rapidly growing methodology for effectively forming challenging C-C and C-heteroatom bonds in complex molecules in a sustainable manner. In this review, we summarize the recent advances in the combination of electrochemistry and copper catalysis for various organic transformations.
Collapse
Affiliation(s)
- Yemin Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Korea
| | - Won Jun Jang
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Korea
| |
Collapse
|
4
|
Kumar R, Deepak, Jain N. 1O 2 and Base Assisted Oxidative Conversion of β-Enaminoesters to α-Acyloxy-β-ketoesters under Visible Light Irradiation. J Org Chem 2024; 89:14472-14482. [PMID: 39297950 DOI: 10.1021/acs.joc.4c01994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Singlet oxygen (1O2) and base assisted conversion of β-enaminoesters to α-acyloxy-β-ketoesters is demonstrated under visible light irradiation. The reaction involves formation of an imine intermediate via ene-type pathway initiated by 1O2 followed by base promoted dimerization and hydrolysis steps. The method is mild, environmentally friendly, requires air as the oxidant, and gives the products in moderate to high yields.
Collapse
Affiliation(s)
- Rohit Kumar
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Deepak
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Nidhi Jain
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
5
|
Baidya M, De Sarkar S. Electrosynthesis of 1,2,3-Benzotriazines through an Iodide-Catalyzed Skeletal Editing of 3-Aminoindazoles. Chemistry 2024; 30:e202401900. [PMID: 38932565 DOI: 10.1002/chem.202401900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
This report describes an environmentally benign synthesis of 1,2,3-benzotriazines through an iodide-catalyzed electro-oxidative N-centered [1,2]-rearrangement of 3-aminoindazoles. The developed method demonstrates the activation of heteroatoms via electrochemically generated reactive iodide species without using any metal catalysts and peroxides. The protocol features practical and mild reaction conditions and displays a wide substrate scope. Various mechanistic experiments and cyclic voltammetric studies have been instrumental in elucidating the reaction mechanism, operating via a skeletal rearrangement of 3-aminoindazoles.
Collapse
Affiliation(s)
- Mrinmay Baidya
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, 741246, Mohanpur, India
| | - Suman De Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, 741246, Mohanpur, India
| |
Collapse
|
6
|
Phulwale V, Shet H, Gunturu KC, Rout SR, Dandela R, Adhav S, Kapdi AR. Cu(II)/PTABS-Promoted, Chemoselective Amination of HaloPyrimidines. J Org Chem 2024; 89:9243-9254. [PMID: 38878304 DOI: 10.1021/acs.joc.4c00171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Chemoselective amination is a highly desired synthetic methodology, given its importance as a possible strategy to synthesize various drug molecules and agrochemicals. We, herein, disclose a highly chemoselective Cu(II)-PTABS-promoted amination of pyrimidine structural feature containing different halogen atoms.
Collapse
Affiliation(s)
- Vikram Phulwale
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Road, Matunga, Mumbai 400019, India
| | - Harshita Shet
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Road, Matunga, Mumbai 400019, India
| | | | - Smruti Rekha Rout
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology-Indian Oil Odisha Campus , Samantpuri, Bhubaneswar, Odisha 751013, India
| | - Rambabu Dandela
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology-Indian Oil Odisha Campus , Samantpuri, Bhubaneswar, Odisha 751013, India
| | - Suyog Adhav
- BASF Chemicals India Pvt. Ltd., Plot No 12, Thane Belapur Road, Navi Mumbai 400705, India
| | - Anant R Kapdi
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Road, Matunga, Mumbai 400019, India
| |
Collapse
|
7
|
Mallick S, Mandal T, Kumari N, Roy L, De Sarkar S. Divergent Electrochemical Synthesis of Indoles through pK a Regulation of Amides: Synthetic and Mechanistic Insights. Chemistry 2024; 30:e202304002. [PMID: 38290995 DOI: 10.1002/chem.202304002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/15/2024] [Accepted: 01/30/2024] [Indexed: 02/01/2024]
Abstract
A divergent synthetic approach to access highly substituted indole scaffolds is illustrated. By virtue of a tunable electrochemical strategy, distinct control over the C-3 substitution pattern was achieved by employing two analogous 2-styrylaniline precursors. The chemoselectivity is governed by the fine-tuning of the acidity of the amide proton, relying on the appropriate selection of N-protecting groups, and assisted by the reactivity of the electrogenerated intermediates. Detailed mechanistic investigations based on cyclic voltametric experiments and computational studies revealed the crucial role of water additive, which assists the proton-coupled electron transfer event for highly acidic amide precursors, followed by an energetically favorable intramolecular C-N coupling, causing exclusive fabrication of the C-3 unsubstituted indoles. Alternatively, the implementation of an electrogenerated cationic olefin activator delivers the C-3 substituted indoles through the preferential nucleophilic nature of the N-acyl amides. This electrochemical approach of judicious selection of N-protecting groups to regulate pKa/E° provides an expansion in the domain of switchable generation of heterocyclic derivatives in a sustainable fashion, with high regio- and chemoselectivity.
Collapse
Affiliation(s)
- Samrat Mallick
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Tanumoy Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Nidhi Kumari
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Lisa Roy
- Institute of Chemical Technology Mumbai-IOC Odisha Campus, Bhubaneswar, Bhubaneswar, 751013, India
| | - Suman De Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| |
Collapse
|
8
|
Wang E, Luo J, Zhang L, Zhang J, Jiang Y. Copper-Catalyzed Oxidative [3 + 2] Cycloaddition of Enamines and Pyridotriazoles toward Indolizines. Org Lett 2024; 26:1249-1254. [PMID: 38305700 DOI: 10.1021/acs.orglett.4c00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
An efficient copper catalytic system has been established for the synthesis of highly functional indolizines through oxidative [3 + 2] cycloaddition of enamines and pyridotriazoles. This modular platform is compatible with a broad range of functional groups, including natural and complex skeletons, allowing for late-stage modifications. It features a step-economical, highly regioselective, and easy-handling procedure and has been applied in constructing small molecules of potent activity toward inhibiting the VEGF-NRP1 interaction through a one-pot reaction of pyridotriazoles, amines, and aldehydes.
Collapse
Affiliation(s)
- Enfu Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Jiangbin Luo
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Luoman Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Jian Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Yaojia Jiang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
9
|
Pal S, Nandi R, Manna AS, Aich S, Maiti DK. Cu I-Catalyzed Radical Reaction of Benzimidates to Form Valuable 4,5-Dihydrooxazoles through Regioselective Aerobic Oxidative Cross-Coupling. J Org Chem 2024; 89:2703-2717. [PMID: 38295826 DOI: 10.1021/acs.joc.3c02773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
A straightforward Cu(I)-catalyzed oxidative cross-coupled organic transformation has been developed under mild conditions for the construction of functionalized 4,5-dihydrooxazoles through a four-bond-forming regiocontrolled C-C/C-N/C-O coupling strategy emerging benzimidates, paraformaldehyde, and 1,3-diketo analogues using eco-friendly O2 as the sole oxidant. The fundamental features of these designed approaches involve operational simplicity, selectivity, generality, and a broad substrate scope with high yields under the same reaction conditions.
Collapse
Affiliation(s)
- Subhasis Pal
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Rajesh Nandi
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Anindya S Manna
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Shobhon Aich
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Dilip K Maiti
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| |
Collapse
|
10
|
Pal B, Sahoo S, Mal P. Atom Transfer Radical Addition Reactions of Quinoxalin-2(1 H)-ones with CBr 4 and Styrenes Using Mes-Acr-MeClO 4 Photocatalyst. J Org Chem 2024; 89:1784-1796. [PMID: 38214146 DOI: 10.1021/acs.joc.3c02469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
The atom transfer radical addition (ATRA) reaction is defined as a method for introducing halogenated compounds into alkenes via a radical mechanism. In this study, we present an ATRA approach for achieving regioselective functionalization of quinoxalin-2(1H)-ones by activating C-Br bonds of CBr4 and subsequent trihaloalkyl-carbofunctionalization of styrenes employing the 9-mesityl-10-methylacridinium perchlorate (Fukuzumi) photocatalyst under 3W blue LED (450-470 nm) irradiation. This three-component radical cascade process demonstrates remarkable efficiency in the synthesis of 1-methyl-3-(3,3,3-tribromo-1-(4-chlorophenyl)propyl)quinoxalin-2(1H)-one derivatives.
Collapse
Affiliation(s)
- Buddhadeb Pal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| | - Sathi Sahoo
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| | - Prasenjit Mal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| |
Collapse
|