1
|
Liu S, Zhou J, Yu L, Liu Y, Huang Y, Ouyang Y, Liu GK, Xu XH, Shibata N. Nitrogen-Based Organofluorine Functional Molecules: Synthesis and Applications. Chem Rev 2025. [PMID: 40261821 DOI: 10.1021/acs.chemrev.4c00661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Fluorine and nitrogen form a successful partnership in organic synthesis, medicinal chemistry, and material sciences. Although fluorine-nitrogen chemistry has a long and rich history, this field has received increasing interest and made remarkable progress over the past two decades, driven by recent advancements in transition metal and organocatalysis and photochemistry. This review, emphasizing contributions from 2015 to 2023, aims to update the state of the art of the synthesis and applications of nitrogen-based organofluorine functional molecules in organic synthesis and medicinal chemistry. In dedicated sections, we first focus on fluorine-containing reagents organized according to the type of fluorine-containing groups attached to nitrogen, including N-F, N-RF, N-SRF, and N-ORF. This review also covers nitrogen-linked fluorine-containing building blocks, catalysts, pharmaceuticals, and agrochemicals, underlining these components' broad applicability and growing importance in modern chemistry.
Collapse
Affiliation(s)
- Shuai Liu
- College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
| | - Jun Zhou
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Lu Yu
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Yingle Liu
- School of Chemistry and Environmental Engineering, Sichuan University of Science&Engineering, 180 Xueyuan Street, Huixing Lu, Zigong, Sichuan 643000, China
| | - Yangen Huang
- College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Yao Ouyang
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Guo-Kai Liu
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Xiu-Hua Xu
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
2
|
Atkins AP, Dean AC, Lennox AJJ. Benzylic C(sp 3)-H fluorination. Beilstein J Org Chem 2024; 20:1527-1547. [PMID: 39015617 PMCID: PMC11250007 DOI: 10.3762/bjoc.20.137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/26/2024] [Indexed: 07/18/2024] Open
Abstract
The selective fluorination of C(sp3)-H bonds is an attractive target, particularly for pharmaceutical and agrochemical applications. Consequently, over recent years much attention has been focused on C(sp3)-H fluorination, and several methods that are selective for benzylic C-H bonds have been reported. These protocols operate via several distinct mechanistic pathways and involve a variety of fluorine sources with distinct reactivity profiles. This review aims to give context to these transformations and strategies, highlighting the different tactics to achieve fluorination of benzylic C-H bonds.
Collapse
Affiliation(s)
| | - Alice C Dean
- University of Bristol, School of Chemistry, Bristol, BS8 1TS, U.K.
| | | |
Collapse
|
3
|
Vincent É, Brioche J. Silver-Catalyzed Carbofluorination of Olefins and α-Fluoroolefins with Carbamoyl Radicals. Chemistry 2024; 30:e202401419. [PMID: 38712694 DOI: 10.1002/chem.202401419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/08/2024]
Abstract
The reactivity of carbamoyl radicals, generated in situ from sodium oxamate salts, has been investigated in the context of radical carbofluorination reactions of olefins and α-fluoroolefins, respectively. Both transformations are catalyzed by silver salts and required the presence of potassium persulfate (K2S2O8) and SelectfluorTM as a radicophilic fluorine source. The reported methods provide a direct access to β-fluoroamides and β,β-difluoroamides.
Collapse
Affiliation(s)
- Émilie Vincent
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, F-76000, Rouen, France
| | - Julien Brioche
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, F-76000, Rouen, France
| |
Collapse
|
4
|
Dağalan Z, Çelikoğlu MH, Çelik S, Koçak R, Nişancı B. Selectfluor and alcohol-mediated synthesis of bicyclic oxyfluorination compounds by Wagner-Meerwein rearrangement. Beilstein J Org Chem 2024; 20:1462-1467. [PMID: 38978745 PMCID: PMC11228819 DOI: 10.3762/bjoc.20.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/18/2024] [Indexed: 07/10/2024] Open
Abstract
Herein, we report the first environmentally friendly systematic fluoroalkoxylation reactions in bicyclic systems. New oxyfluorination products were obtained with excellent yields (up to 98%) via Wagner-Meerwein rearrangement using benzonorbornadiene and the chiral natural compound (+)-camphene as bicyclic alkenes, selectfluor as an electrophilic fluorine source, and water and various alcohols as nucleophile sources. The structure of bicyclic oxy- and alkoxyfluorine compounds was determined by NMR and QTOF-MS analyses.
Collapse
Affiliation(s)
- Ziya Dağalan
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum, Turkey
| | | | - Saffet Çelik
- Technology Research and Development Application and Research Center, Trakya University, Edirne, Turkey
| | - Ramazan Koçak
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum, Turkey
- Department of Chemistry, Faculty of Arts and Sciences, Amasya University, Amasya, Turkey
| | - Bilal Nişancı
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum, Turkey
| |
Collapse
|
5
|
Feng Q, Liu CX, Wang Q, Zhu J. Palladium-Based Dyotropic Rearrangement Enables A Triple Functionalization of Gem-Disubstituted Alkenes: An Unusual Fluorolactonization Reaction. Angew Chem Int Ed Engl 2024; 63:e202316393. [PMID: 37986261 DOI: 10.1002/anie.202316393] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
We report in this paper a Pd(II)-catalyzed migratory gem-fluorolactonization of ene-carboxylic acids. Reaction of 4-methylenealkanoic acid derivatives with Selectfluor in the presence of Pd(OAc)2 (1.0 mol %) at room temperature affords fluorolactones in good to excellent yields. 2-(2-Methylenecycloalkanyl)acetic acids are transformed to bridged fluorolactones under identical conditions. One C-C, one C-O and one tertiary C-F bond were generated along the gem-disubstituted carbon-carbon double bond in this operationally simple transformation. Trapping experiments indicates that the reaction is initiated by a 5-exo-trig oxypalladation followed by Pd oxidation, regioselective ring-enlarging 1,2-alkyl/Pd(IV) dyotropic rearrangement and C-F bond forming reductive elimination cascade. Post-transformations of these fluorolactones taking advantage of the electrophilicity of the 1-fluoroalkylcarboxylate function are also documented.
Collapse
Affiliation(s)
- Qiang Feng
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 304 1015, Lausanne, Switzerland
| | - Chen-Xu Liu
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 304 1015, Lausanne, Switzerland
| | - Qian Wang
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 304 1015, Lausanne, Switzerland
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 304 1015, Lausanne, Switzerland
| |
Collapse
|
6
|
Tang J, Lu F, Sun Y, Zhang G, Zhang E, Jiang YY. Late-Stage Diversification of Peptides via Pd-Catalyzed Site-Selective δ-C(sp 2)-H Fluorination and Amination. J Org Chem 2023; 88:14165-14171. [PMID: 37751495 DOI: 10.1021/acs.joc.3c01897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Site-selective C-H fluorination is an attractive strategy for directly transforming inert C-H bonds into C-F bonds, yet it remains a significant challenge. Herein, we have developed an efficient and versatile strategy for site-selective fluorination and amination of phenylalanine-containing peptides via late-stage Pd-catalyzed δ-C(sp2)-H activation, providing a valuable tool for the in situ synthesis of fluorinated indoline scaffolds within peptides.
Collapse
Affiliation(s)
- Jian Tang
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210096, China
| | - Fengjie Lu
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Yi Sun
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Guodong Zhang
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Ensheng Zhang
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Yuan-Ye Jiang
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| |
Collapse
|
7
|
Jang Y, Deng W, Sprague IS, Lindsay VNG. Divergent Synthesis of β-Fluoroamides via Silver-Catalyzed Oxidative Deconstruction of Cyclopropanone Hemiaminals. Org Lett 2023; 25:5389-5394. [PMID: 37413978 PMCID: PMC10829026 DOI: 10.1021/acs.orglett.3c01992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
An expedient approach for the synthesis of challenging β-fluoroamides from readily accessible cyclopropanone equivalents is reported. Following the addition of pyrazole used here as a transient leaving group, silver-catalyzed regiospecific ring-opening fluorination of the resulting hemiaminal leads to a β-fluorinated N-acylpyrazole intermediate reactive to substitution with amines, ultimately affording β-fluoroamides. The process could also be extended to the synthesis of β-fluoroesters and γ-fluoroalcohols via the addition of alcohols or hydrides as terminal nucleophiles, respectively.
Collapse
Affiliation(s)
- Yujin Jang
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695, United States
| | - Weixia Deng
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695, United States
| | - Ivan S. Sprague
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695, United States
| | - Vincent N. G. Lindsay
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695, United States
| |
Collapse
|
8
|
Wang YC, Rath NP, Mirica LM. Allylic Amination of Pd(II)-Allyl Complexes via High-Valent Pd Intermediates. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yung-Ching Wang
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Nigam P. Rath
- Department of Chemistry and Biochemistry, University of Missouri − St. Louis, One University Boulevard, St. Louis, Missouri 63121-4400, United States
| | - Liviu M. Mirica
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
9
|
Garai S, Ghosh KG, Biswas A, Chowdhury S, Sureshkumar D. Diastereoselective palladium-catalyzed C(sp 3)-H cyanomethylation of amino acid and carboxylic acid derivatives. Chem Commun (Camb) 2022; 58:7793-7796. [PMID: 35735087 DOI: 10.1039/d2cc03106j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this study, we report an efficient protocol for Pd-catalyzed methylene β-C(sp3)-H cyanomethylation of 8-aminoquinoline-directed α-amino acids using inexpensive chloroacetonitrile. Iodoacetonitrile generated in situ from chloroacetonitrile reacts with methylene C(sp3)-H bonds of α-amino acids with excellent diastereoselectivity, enabling access to a wide range of important γ-cyano-α-amino acids. Our protocol works well with different amino acid and carboxylic acid derivatives with good chemical yields and high functional group tolerance.
Collapse
Affiliation(s)
- Sumit Garai
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India.
| | - Krishna Gopal Ghosh
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India.
| | - Ashik Biswas
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India.
| | - Sushobhan Chowdhury
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow-226031, India
| | - Devarajulu Sureshkumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India.
| |
Collapse
|
10
|
Babu SA, Aggarwal Y, Patel P, Tomar R. Diastereoselective palladium-catalyzed functionalization of prochiral C(sp 3)-H bonds of aliphatic and alicyclic compounds. Chem Commun (Camb) 2022; 58:2612-2633. [PMID: 35113087 DOI: 10.1039/d1cc05649b] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We highlight the reported developments of the palladium-catalyzed C-H activation and functionalization of the inactive/unreactive prochiral C(sp3)-H bonds of aliphatic and alicyclic compounds. There exist numerous classical methods for generating contiguous stereogenic centers in a compound with a high degree of stereocontrol. Along similar lines, the Pd(II)-catalyzed, directing group-aided functionalization of inactive prochiral/diastereotopic C(sp3)-H bonds have been exploited to accomplish the stereoselective construction of stereo-arrays in organic compounds. We present a concise discussion on how specific strategies consisting of Pd(II)-catalyzed, directing group-aided C(sp3)-H functionalization have been utilized to generate two or more stereogenic centers in aliphatic and alicyclic compounds.
Collapse
Affiliation(s)
- Srinivasarao Arulananda Babu
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab, 140306, India.
| | - Yashika Aggarwal
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab, 140306, India.
| | - Pooja Patel
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab, 140306, India.
| | - Radha Tomar
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab, 140306, India.
| |
Collapse
|
11
|
Liu B, Romine AM, Rubel CZ, Engle KM, Shi BF. Transition-Metal-Catalyzed, Coordination-Assisted Functionalization of Nonactivated C(sp 3)-H Bonds. Chem Rev 2021; 121:14957-15074. [PMID: 34714620 PMCID: PMC8968411 DOI: 10.1021/acs.chemrev.1c00519] [Citation(s) in RCA: 201] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Transition-metal-catalyzed, coordination-assisted C(sp3)-H functionalization has revolutionized synthetic planning over the past few decades as the use of these directing groups has allowed for increased access to many strategic positions in organic molecules. Nonetheless, several challenges remain preeminent, such as the requirement for high temperatures, the difficulty in removing or converting directing groups, and, although many metals provide some reactivity, the difficulty in employing metals outside of palladium. This review aims to give a comprehensive overview of coordination-assisted, transition-metal-catalyzed, direct functionalization of nonactivated C(sp3)-H bonds by covering the literature since 2004 in order to demonstrate the current state-of-the-art methods as well as the current limitations. For clarity, this review has been divided into nine sections by the transition metal catalyst with subdivisions by the type of bond formation. Synthetic applications and reaction mechanism are discussed where appropriate.
Collapse
Affiliation(s)
- Bin Liu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, 38 Zheda Rd., Hangzhou 310027, China.,College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Andrew M. Romine
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, California 92037, United States
| | - Camille Z. Rubel
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, California 92037, United States
| | - Keary M. Engle
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, California 92037, United States.,Corresponding Author- (K. M. E.); (B.-F. S.)
| | - Bing-Feng Shi
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, 38 Zheda Rd., Hangzhou 310027, China.,College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China,Corresponding Author- (K. M. E.); (B.-F. S.)
| |
Collapse
|
12
|
Anderson JM, Measom ND, Murphy JA, Poole DL. Bridge Functionalisation of Bicyclo[1.1.1]pentane Derivatives. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Joseph M. Anderson
- GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
- Department of Pure and Applied Chemistry WestCHEM University of Strathclyde 295 Cathedral Street Glasgow Scotland G1 1XL UK
| | - Nicholas D. Measom
- GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | - John A. Murphy
- Department of Pure and Applied Chemistry WestCHEM University of Strathclyde 295 Cathedral Street Glasgow Scotland G1 1XL UK
| | - Darren L. Poole
- GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| |
Collapse
|
13
|
Anderson JM, Measom ND, Murphy JA, Poole DL. Bridge Functionalisation of Bicyclo[1.1.1]pentane Derivatives. Angew Chem Int Ed Engl 2021; 60:24754-24769. [PMID: 34151501 PMCID: PMC9291545 DOI: 10.1002/anie.202106352] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Indexed: 12/30/2022]
Abstract
"Escaping from flatland", by increasing the saturation level and three-dimensionality of drug-like compounds, can enhance their potency, selectivity and pharmacokinetic profile. One approach that has attracted considerable recent attention is the bioisosteric replacement of aromatic rings, internal alkynes and tert-butyl groups with bicyclo[1.1.1]pentane (BCP) units. While functionalisation of the tertiary bridgehead positions of BCP derivatives is well-documented, functionalisation of the three concyclic secondary bridge positions remains an emerging field. The unique properties of the BCP core present considerable synthetic challenges to the development of such transformations. However, the bridge positions provide novel vectors for drug discovery and applications in materials science, providing entry to novel chemical and intellectual property space. This Minireview aims to consolidate the major advances in the field, serving as a useful reference to guide further work that is expected in the coming years.
Collapse
Affiliation(s)
- Joseph M. Anderson
- GlaxoSmithKline Medicines Research CentreGunnels Wood RoadStevenageHertfordshireSG1 2NYUK
- Department of Pure and Applied ChemistryWestCHEMUniversity of Strathclyde295 Cathedral StreetGlasgowScotlandG1 1XLUK
| | - Nicholas D. Measom
- GlaxoSmithKline Medicines Research CentreGunnels Wood RoadStevenageHertfordshireSG1 2NYUK
| | - John A. Murphy
- Department of Pure and Applied ChemistryWestCHEMUniversity of Strathclyde295 Cathedral StreetGlasgowScotlandG1 1XLUK
| | - Darren L. Poole
- GlaxoSmithKline Medicines Research CentreGunnels Wood RoadStevenageHertfordshireSG1 2NYUK
| |
Collapse
|
14
|
|
15
|
Wu QZ, Mao YJ, Zhou K, Hao HY, Chen L, Wang S, Xu ZY, Lou SJ, Xu DQ. Regioselective C(sp 3)-H fluorination of ketones: from methyl to the monofluoromethyl group. Chem Commun (Camb) 2021; 57:765-768. [PMID: 33355557 DOI: 10.1039/d0cc07093a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we report a novel strategy to access CH2F-containing ketones through Pd-catalysed β-selective methyl C(sp3)-H fluorination. The reaction features high regioselectivity and a broad substrate scope, constituting a modular method for the late-stage transformation of the native methyl (CH3) into the monofluoromethyl (CH2F) group.
Collapse
Affiliation(s)
- Qiu-Zi Wu
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Yang-Jie Mao
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Kun Zhou
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Hong-Yan Hao
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Lei Chen
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Shuang Wang
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Zhen-Yuan Xu
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Shao-Jie Lou
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Dan-Qian Xu
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| |
Collapse
|
16
|
Barday M, Blieck R, Ruyet L, Besset T. Remote trifluoromethylthiolation of alcohols under visible light. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131153] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
17
|
Gao XT, Zhang Z, Wang X, Tian JS, Xie SL, Zhou F, Zhou J. Direct electrochemical defluorinative carboxylation of α-CF 3 alkenes with carbon dioxide. Chem Sci 2020; 11:10414-10420. [PMID: 34123181 PMCID: PMC8162267 DOI: 10.1039/d0sc04091f] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/08/2020] [Indexed: 12/15/2022] Open
Abstract
An unprecedented γ-carboxylation of α-CF3 alkenes with CO2 is reported. This approach constitutes a rare example of using electrochemical methods to achieve regioselectivity complementary to conventional metal catalysis. Accordingly, using platinum plate as both a working cathode and a nonsacrificial anode in a user-friendly undivided cell under constant current conditions, the γ-carboxylation provides efficient access to vinylacetic acids bearing a gem-difluoroalkene moiety from a broad range of substrates. The synthetic utility is further demonstrated by gram-scale synthesis and elaboration to several value-added products. Cyclic voltammetry and density functional theory calculations were performed to provide mechanistic insights into the reaction.
Collapse
Affiliation(s)
- Xiao-Tong Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University 3663N Zhongshan Road Shanghai 200062 P. R. China
| | - Zheng Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University 3663N Zhongshan Road Shanghai 200062 P. R. China
| | - Xin Wang
- College of Chemistry, Sichuan University Chengdu Sichuan 610064 P. R. China
| | - Jun-Song Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University 3663N Zhongshan Road Shanghai 200062 P. R. China
| | - Shi-Liang Xie
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University 3663N Zhongshan Road Shanghai 200062 P. R. China
| | - Feng Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University 3663N Zhongshan Road Shanghai 200062 P. R. China
| | - Jian Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University 3663N Zhongshan Road Shanghai 200062 P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 P. R. China
| |
Collapse
|
18
|
Pinter EN, Bingham JE, AbuSalim DI, Cook SP. N-Directed fluorination of unactivated Csp 3-H bonds. Chem Sci 2019; 11:1102-1106. [PMID: 34084366 PMCID: PMC8146735 DOI: 10.1039/c9sc04055b] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Site-selective fluorination of aliphatic C-H bonds remains synthetically challenging. While directed C-H fluorination represents the most promising approach, the limited work conducted to date has enabled just a few functional groups as the arbiters of direction. Leveraging insights gained from both computations and experimentation, we enabled the use of the ubiquitous amine functional group as a handle for the directed C-H fluorination of Csp3-H bonds. By converting primary amines to adamantoyl-based fluoroamides, site-selective C-H fluorination proceeds under the influence of a simple iron catalyst in 20 minutes. Computational studies revealed a unique reaction coordinate for the catalytic process and offer an explanation for the high site selectivity.
Collapse
Affiliation(s)
- Emily N Pinter
- Department of Chemistry, Indiana University 800 East Kirkwood Avenue Bloomington IN 47405-7102 USA
| | - Jenna E Bingham
- Department of Chemistry, Indiana University 800 East Kirkwood Avenue Bloomington IN 47405-7102 USA
| | - Deyaa I AbuSalim
- Department of Chemistry, Indiana University 800 East Kirkwood Avenue Bloomington IN 47405-7102 USA
| | - Silas P Cook
- Department of Chemistry, Indiana University 800 East Kirkwood Avenue Bloomington IN 47405-7102 USA
| |
Collapse
|
19
|
Bychek RM, Hutskalova V, Bas YP, Zaporozhets OA, Zozulya S, Levterov VV, Mykhailiuk PK. Difluoro-Substituted Bicyclo[1.1.1]pentanes for Medicinal Chemistry: Design, Synthesis, and Characterization. J Org Chem 2019; 84:15106-15117. [PMID: 31553875 DOI: 10.1021/acs.joc.9b01947] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A practical synthetic approach to the difluoro-substituted bicyclo[1.1.1]pentanes was developed. The key step was an addition of difluorocarbene (:CF2) to electron-rich bicyclo[1.1.0]butanes by the CF3TMS/NaI system. The obtained difluoro-bicyclo[1.1.1]pentanes are suggested to be used as saturated bioisosteres of benzene rings for the purpose of drug discovery projects.
Collapse
Affiliation(s)
- Roman M Bychek
- Enamine Ltd. , Chervonotkatska 78 , Kyiv 02094 , Ukraine
| | - Valeriia Hutskalova
- Enamine Ltd. , Chervonotkatska 78 , Kyiv 02094 , Ukraine.,Taras Shevchenko National University of Kyiv , Chemistry Department , Volodymyrska 64 , Kyiv 01601 , Ukraine
| | - Yuliya P Bas
- Taras Shevchenko National University of Kyiv , Chemistry Department , Volodymyrska 64 , Kyiv 01601 , Ukraine
| | - Olga A Zaporozhets
- Taras Shevchenko National University of Kyiv , Chemistry Department , Volodymyrska 64 , Kyiv 01601 , Ukraine
| | - Sergey Zozulya
- Enamine Ltd. , Chervonotkatska 78 , Kyiv 02094 , Ukraine.,Bienta , Chervonotkatska 78 , Kyiv 02094 , Ukraine
| | | | - Pavel K Mykhailiuk
- Enamine Ltd. , Chervonotkatska 78 , Kyiv 02094 , Ukraine.,Taras Shevchenko National University of Kyiv , Chemistry Department , Volodymyrska 64 , Kyiv 01601 , Ukraine
| |
Collapse
|
20
|
Li X, Shi X, Li X, Shi D. Recent advances in transition-metal-catalyzed incorporation of fluorine-containing groups. Beilstein J Org Chem 2019; 15:2213-2270. [PMID: 31598178 PMCID: PMC6774084 DOI: 10.3762/bjoc.15.218] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 09/03/2019] [Indexed: 01/24/2023] Open
Abstract
Fluorine chemistry plays an increasingly important role in pharmaceutical, agricultural, and materials industries. The incorporation of fluorine-containing groups into organic molecules can improve their chemical and physical properties, which attracts continuous interest in organic synthesis. Among various reported methods, transition-metal-catalyzed fluorination/fluoroalkylation has emerged as a powerful method for the construction of these compounds. This review attempts to describe the major advances in the transition-metal-catalyzed incorporation of fluorine, trifluoromethyl, difluoromethyl, trifluoromethylthio, and trifluoromethoxy groups reported between 2011 and 2019.
Collapse
Affiliation(s)
- Xiaowei Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolin Shi
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangqian Li
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Dayong Shi
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| |
Collapse
|
21
|
Szpera R, Moseley DFJ, Smith LB, Sterling AJ, Gouverneur V. Fluorierung von C‐H‐Bindungen: Entwicklungen und Perspektiven. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201814457] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Robert Szpera
- Chemistry Research Laboratory Oxford University 12 Mansfield Road Oxford OX1 3TA Großbritannien
| | - Daniel F. J. Moseley
- Chemistry Research Laboratory Oxford University 12 Mansfield Road Oxford OX1 3TA Großbritannien
| | - Lewis B. Smith
- Chemistry Research Laboratory Oxford University 12 Mansfield Road Oxford OX1 3TA Großbritannien
| | - Alistair J. Sterling
- Chemistry Research Laboratory Oxford University 12 Mansfield Road Oxford OX1 3TA Großbritannien
| | - Véronique Gouverneur
- Chemistry Research Laboratory Oxford University 12 Mansfield Road Oxford OX1 3TA Großbritannien
| |
Collapse
|
22
|
Szpera R, Moseley DFJ, Smith LB, Sterling AJ, Gouverneur V. The Fluorination of C-H Bonds: Developments and Perspectives. Angew Chem Int Ed Engl 2019; 58:14824-14848. [PMID: 30759327 DOI: 10.1002/anie.201814457] [Citation(s) in RCA: 258] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Indexed: 12/16/2022]
Abstract
This Review summarizes advances in fluorination by C(sp2 )-H and C(sp3 )-H activation. Transition-metal-catalyzed approaches championed by palladium have allowed the installation of a fluorine substituent at C(sp2 ) and C(sp3 ) sites, exploiting the reactivity of high-oxidation-state transition-metal fluoride complexes combined with the use of directing groups (some transient) to control site and stereoselectivity. The large majority of known methods employ electrophilic fluorination reagents, but methods combining a nucleophilic fluoride source with an oxidant have appeared. External ligands have proven to be effective for C(sp3 )-H fluorination directed by weakly coordinating auxiliaries, thereby enabling control over reactivity. Methods relying on the formation of radical intermediates are complementary to transition-metal-catalyzed processes as they allow for undirected C(sp3 )-H fluorination. To date, radical C-H fluorinations mainly employ electrophilic N-F fluorination reagents but a unique MnIII -catalyzed oxidative C-H fluorination using fluoride has been developed. Overall, the field of late-stage nucleophilic C-H fluorination has progressed much more slowly, a state of play explaining why C-H 18 F-fluorination is still in its infancy.
Collapse
Affiliation(s)
- Robert Szpera
- Chemistry Research Laboratory, Oxford University, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Daniel F J Moseley
- Chemistry Research Laboratory, Oxford University, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Lewis B Smith
- Chemistry Research Laboratory, Oxford University, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Alistair J Sterling
- Chemistry Research Laboratory, Oxford University, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Véronique Gouverneur
- Chemistry Research Laboratory, Oxford University, 12 Mansfield Road, Oxford, OX1 3TA, UK
| |
Collapse
|
23
|
Testa C, Roger J, Fleurat-Lessard P, Hierso JC. Palladium-Catalyzed Electrophilic C-H-Bond Fluorination: Mechanistic Overview and Supporting Evidence. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801138] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Christelle Testa
- Institut de Chimie Moléculaire de l'Université de Bourgogne; UMR-CNRS 6302; Université de Bourgogne Franche-Comté; 9, avenue Alain Savary 21078 Dijon France
| | - Julien Roger
- Institut de Chimie Moléculaire de l'Université de Bourgogne; UMR-CNRS 6302; Université de Bourgogne Franche-Comté; 9, avenue Alain Savary 21078 Dijon France
| | - Paul Fleurat-Lessard
- Institut de Chimie Moléculaire de l'Université de Bourgogne; UMR-CNRS 6302; Université de Bourgogne Franche-Comté; 9, avenue Alain Savary 21078 Dijon France
| | - Jean-Cyrille Hierso
- Institut de Chimie Moléculaire de l'Université de Bourgogne; UMR-CNRS 6302; Université de Bourgogne Franche-Comté; 9, avenue Alain Savary 21078 Dijon France
- Institut Universitaire de France (IUF); 103 Boulevard Saint Michel 75005 Paris Cedex France
| |
Collapse
|
24
|
Tong HR, Zheng S, Li X, Deng Z, Wang H, He G, Peng Q, Chen G. Pd(0)-Catalyzed Bidentate Auxiliary Directed Enantioselective Benzylic C–H Arylation of 3-Arylpropanamides Using the BINOL Phosphoramidite Ligand. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03654] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Hua-Rong Tong
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Sujuan Zheng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xinghua Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhiqiang Deng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hao Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Gang He
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Qian Peng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Gong Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
25
|
Mao YJ, Lou SJ, Hao HY, Xu DQ. Selective C(sp 3 )-H and C(sp 2 )-H Fluorination of Alcohols Using Practical Auxiliaries. Angew Chem Int Ed Engl 2018; 57:14085-14089. [PMID: 30161283 DOI: 10.1002/anie.201808021] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/23/2018] [Indexed: 12/30/2022]
Abstract
Selective introduction of fluorine into molecules by the cleavage of inert C-H bonds is of central academic and synthetic interest, yet remains challenging. Given the central role of alcohols in organic chemistry as the most ubiquitous building blocks, a versatile and selective C(sp3 )-H and C(sp2 )-H fluorination of simple alcohols, enabled by novel designed exo-directing groups, is described. C(sp2 )-H bond fluorination was achieved by using a simple acetone oxime as auxiliary, whereas a new, modular and easily accessible bidentate auxiliary was developed for the efficient and site-selective fluorination of various primary methyl, methylene, and benzylic C(sp3 )-H bonds. Fluorinated alcohols can readily be accessed by the removal of auxiliaries, and significantly expands the synthetic prospect of the present procedure.
Collapse
Affiliation(s)
- Yang-Jie Mao
- College of Chemical Engineering Zhejiang University of Technology, Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, 18 Chaowang Road, Hangzhou, China
| | - Shao-Jie Lou
- College of Chemical Engineering Zhejiang University of Technology, Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, 18 Chaowang Road, Hangzhou, China
| | - Hong-Yan Hao
- College of Chemical Engineering Zhejiang University of Technology, Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, 18 Chaowang Road, Hangzhou, China
| | - Dan-Qian Xu
- College of Chemical Engineering Zhejiang University of Technology, Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, 18 Chaowang Road, Hangzhou, China
| |
Collapse
|
26
|
Mao YJ, Lou SJ, Hao HY, Xu DQ. Selective C(sp3
)−H and C(sp2
)−H Fluorination of Alcohols Using Practical Auxiliaries. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201808021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yang-Jie Mao
- College of Chemical Engineering Zhejiang University of Technology, Catalytic Hydrogenation Research Center; State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology; 18 Chaowang Road Hangzhou China
| | - Shao-Jie Lou
- College of Chemical Engineering Zhejiang University of Technology, Catalytic Hydrogenation Research Center; State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology; 18 Chaowang Road Hangzhou China
| | - Hong-Yan Hao
- College of Chemical Engineering Zhejiang University of Technology, Catalytic Hydrogenation Research Center; State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology; 18 Chaowang Road Hangzhou China
| | - Dan-Qian Xu
- College of Chemical Engineering Zhejiang University of Technology, Catalytic Hydrogenation Research Center; State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology; 18 Chaowang Road Hangzhou China
| |
Collapse
|
27
|
Sambiagio C, Schönbauer D, Blieck R, Dao-Huy T, Pototschnig G, Schaaf P, Wiesinger T, Zia MF, Wencel-Delord J, Besset T, Maes BUW, Schnürch M. A comprehensive overview of directing groups applied in metal-catalysed C-H functionalisation chemistry. Chem Soc Rev 2018; 47:6603-6743. [PMID: 30033454 PMCID: PMC6113863 DOI: 10.1039/c8cs00201k] [Citation(s) in RCA: 1142] [Impact Index Per Article: 163.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Indexed: 12/20/2022]
Abstract
The present review is devoted to summarizing the recent advances (2015-2017) in the field of metal-catalysed group-directed C-H functionalisation. In order to clearly showcase the molecular diversity that can now be accessed by means of directed C-H functionalisation, the whole is organized following the directing groups installed on a substrate. Its aim is to be a comprehensive reference work, where a specific directing group can be easily found, together with the transformations which have been carried out with it. Hence, the primary format of this review is schemes accompanied with a concise explanatory text, in which the directing groups are ordered in sections according to their chemical structure. The schemes feature typical substrates used, the products obtained as well as the required reaction conditions. Importantly, each example is commented on with respect to the most important positive features and drawbacks, on aspects such as selectivity, substrate scope, reaction conditions, directing group removal, and greenness. The targeted readership are both experts in the field of C-H functionalisation chemistry (to provide a comprehensive overview of the progress made in the last years) and, even more so, all organic chemists who want to introduce the C-H functionalisation way of thinking for a design of straightforward, efficient and step-economic synthetic routes towards molecules of interest to them. Accordingly, this review should be of particular interest also for scientists from industrial R&D sector. Hence, the overall goal of this review is to promote the application of C-H functionalisation reactions outside the research groups dedicated to method development and establishing it as a valuable reaction archetype in contemporary R&D, comparable to the role cross-coupling reactions play to date.
Collapse
Affiliation(s)
- Carlo Sambiagio
- Organic Synthesis (ORSY)
, Department of Chemistry
, University of Antwerp
,
Groenenborgerlaan 171
, 2020 Antwerp
, Belgium
| | - David Schönbauer
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Remi Blieck
- Normandie Univ
, INSA Rouen
, UNIROUEN
, CNRS
, COBRA (UMR 6014)
,
76000 Rouen
, France
| | - Toan Dao-Huy
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Gerit Pototschnig
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Patricia Schaaf
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Thomas Wiesinger
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Muhammad Farooq Zia
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Joanna Wencel-Delord
- Laboratoire de Chimie Moléculaire (UMR CNRS 7509)
, Université de Strasbourg
,
ECPM 25 Rue Becquerel
, 67087 Strasbourg
, France
| | - Tatiana Besset
- Normandie Univ
, INSA Rouen
, UNIROUEN
, CNRS
, COBRA (UMR 6014)
,
76000 Rouen
, France
| | - Bert U. W. Maes
- Organic Synthesis (ORSY)
, Department of Chemistry
, University of Antwerp
,
Groenenborgerlaan 171
, 2020 Antwerp
, Belgium
| | - Michael Schnürch
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| |
Collapse
|
28
|
Zhao D, Luo H, Chen B, Chen W, Zhang G, Yu Y. Palladium-Catalyzed H/D Exchange Reaction with 8-Aminoquinoline as the Directing Group: Access to ortho-Selective Deuterated Aromatic Acids and β-Selective Deuterated Aliphatic Acids. J Org Chem 2018; 83:7860-7866. [DOI: 10.1021/acs.joc.8b00734] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Donghong Zhao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Haofan Luo
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Binhui Chen
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Wenteng Chen
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Guolin Zhang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yongping Yu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| |
Collapse
|
29
|
Chen XY, Sorensen EJ. Pd-Catalyzed, ortho C-H Methylation and Fluorination of Benzaldehydes Using Orthanilic Acids as Transient Directing Groups. J Am Chem Soc 2018; 140:2789-2792. [PMID: 29412651 DOI: 10.1021/jacs.8b00048] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The direct, Pd-catalyzed ortho C-H methylation and fluorination of benzaldehydes have been accomplished using commercially available orthanilic acids as transient directing groups. In these reactions, the 1-fluoro-2,4,6-trimethylpyridinium salts can be either a bystanding F+ oxidant or an electrophilic fluorinating reagent. An X-ray crystal structure of a benzaldehyde ortho C-H palladation intermediate was obtained using triphenylphosphine as the stabilizing ligand.
Collapse
Affiliation(s)
- Xiao-Yang Chen
- Department of Chemistry, Princeton University , Princeton, New Jersey 08544, United States
| | - Erik J Sorensen
- Department of Chemistry, Princeton University , Princeton, New Jersey 08544, United States
| |
Collapse
|
30
|
|
31
|
Wang ZJ, Lv JJ, Yi RN, Xiao M, Feng JJ, Liang ZW, Wang AJ, Xu X. Nondirecting Group sp
3
C−H Activation for Synthesis of Bibenzyls via
Homo-coupling as Catalyzed by Reduced Graphene Oxide Supported PtPd@Pt Porous Nanospheres. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201701389] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zheng-Jun Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics; College of Chemistry and Chemical Engineering; Hunan University; Changsha 410000 People's Republic of China
| | - Jing-Jing Lv
- College of Geography and Environmental Science; College of Chemistry and Life Science; Zhejiang Normal University; Jinhua 321004 People's Republic of China
| | - Rong-Nan Yi
- State Key Laboratory of Chemo/Biosensing and Chemometrics; College of Chemistry and Chemical Engineering; Hunan University; Changsha 410000 People's Republic of China
| | - Min Xiao
- State Key Laboratory of Chemo/Biosensing and Chemometrics; College of Chemistry and Chemical Engineering; Hunan University; Changsha 410000 People's Republic of China
| | - Jiu-Ju Feng
- College of Geography and Environmental Science; College of Chemistry and Life Science; Zhejiang Normal University; Jinhua 321004 People's Republic of China
| | - Zhi-Wu Liang
- State Key Laboratory of Chemo/Biosensing and Chemometrics; College of Chemistry and Chemical Engineering; Hunan University; Changsha 410000 People's Republic of China
| | - Ai-Jun Wang
- College of Geography and Environmental Science; College of Chemistry and Life Science; Zhejiang Normal University; Jinhua 321004 People's Republic of China
| | - Xinhua Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics; College of Chemistry and Chemical Engineering; Hunan University; Changsha 410000 People's Republic of China
| |
Collapse
|
32
|
Chu JCK, Rovis T. Complementary Strategies for Directed C(sp 3 )-H Functionalization: A Comparison of Transition-Metal-Catalyzed Activation, Hydrogen Atom Transfer, and Carbene/Nitrene Transfer. Angew Chem Int Ed Engl 2018; 57:62-101. [PMID: 29206316 PMCID: PMC5853126 DOI: 10.1002/anie.201703743] [Citation(s) in RCA: 498] [Impact Index Per Article: 71.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Indexed: 01/07/2023]
Abstract
The functionalization of C(sp3 )-H bonds streamlines chemical synthesis by allowing the use of simple molecules and providing novel synthetic disconnections. Intensive recent efforts in the development of new reactions based on C-H functionalization have led to its wider adoption across a range of research areas. This Review discusses the strengths and weaknesses of three main approaches: transition-metal-catalyzed C-H activation, 1,n-hydrogen atom transfer, and transition-metal-catalyzed carbene/nitrene transfer, for the directed functionalization of unactivated C(sp3 )-H bonds. For each strategy, the scope, the reactivity of different C-H bonds, the position of the reacting C-H bonds relative to the directing group, and stereochemical outcomes are illustrated with examples in the literature. The aim of this Review is to provide guidance for the use of C-H functionalization reactions and inspire future research in this area.
Collapse
Affiliation(s)
- John C K Chu
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, USA
| | - Tomislav Rovis
- Department of Chemistry, Columbia University, 3000 Broadway, New York, NY, 10027, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
33
|
Fustero S, Sedgwick DM, Román R, Barrio P. Recent advances in the synthesis of functionalised monofluorinated compounds. Chem Commun (Camb) 2018; 54:9706-9725. [DOI: 10.1039/c8cc05181j] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Over the past few years, we have tackled the synthesis of interesting monofluorinated organic molecules, such as: dihydronaphthalene derivatives, β-fluoro sulfones and related carbonyl compounds, fluorohydrins and allylic alcohols.
Collapse
Affiliation(s)
- Santos Fustero
- Departamento de Química Orgánica
- Universidad de Valencia
- E-46100 Burjassot
- Spain
- Laboratorio de Moléculas Orgánicas
| | - Daniel M. Sedgwick
- Departamento de Química Orgánica
- Universidad de Valencia
- E-46100 Burjassot
- Spain
- Laboratorio de Moléculas Orgánicas
| | - Raquel Román
- Laboratorio de Moléculas Orgánicas
- Centro de Investigación Príncipe Felipe
- E-46012 Valencia
- Spain
| | - Pablo Barrio
- Departamento de Química Orgánica
- Universidad de Valencia
- E-46100 Burjassot
- Spain
- Laboratorio de Moléculas Orgánicas
| |
Collapse
|
34
|
Chu JCK, Rovis T. Komplementäre Strategien für die dirigierte C(sp3)-H-Funktionalisierung: ein Vergleich von übergangsmetallkatalysierter Aktivierung, Wasserstoffatomtransfer und Carben- oder Nitrentransfer. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201703743] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- John C. K. Chu
- Department of Chemistry; Colorado State University; Fort Collins CO 80523 USA
| | - Tomislav Rovis
- Department of Chemistry; Columbia University; 3000 Broadway New York NY 10027 USA
- Department of Chemistry; Colorado State University; Fort Collins CO 80523 USA
| |
Collapse
|
35
|
Insights into chemoselective fluorination reaction of alkynals via N-heterocyclic carbene and Brønsted base cooperative catalysis. Theor Chem Acc 2017. [DOI: 10.1007/s00214-017-2127-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Zhu Y, Chen X, Yuan C, Li G, Zhang J, Zhao Y. Pd-catalysed ligand-enabled carboxylate-directed highly regioselective arylation of aliphatic acids. Nat Commun 2017; 8:14904. [PMID: 28383026 PMCID: PMC5384235 DOI: 10.1038/ncomms14904] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 02/10/2017] [Indexed: 11/09/2022] Open
Abstract
α-amino acids bearing aromatic side chains are important synthetic units in the synthesis of peptides and natural products. Although various β-C-H arylation methodologies for amino acid derivatives involving the assistance of directing groups have been extensively developed, syntheses that directly employ N-protected amino acids as starting materials remain rare. Herein, we report an N-acetylglycine-enabled Pd-catalysed carboxylate-directed β-C(sp3)-H arylation of aliphatic acids. In this way, various non-natural amino acids can be directly prepared from phthaloylalanine in one step in good to excellent yields. Furthermore, a series of aliphatic acids have been shown to be amenable to this transformation, affording β-arylated propionic acid derivatives in moderate to good yields. More importantly, this ligand-enabled direct β-C(sp3)-H arylation could be easily scaled-up to 10 g under reflux conditions, highlighting the potential utility of this synthetic method.
Collapse
Affiliation(s)
- Yan Zhu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xiaolan Chen
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Chunchen Yuan
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Guobao Li
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jingyu Zhang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yingsheng Zhao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
37
|
Zhao R, Lu W. Palladium-Catalyzed β-Mesylation of Simple Amide via Primary sp3 C–H Activation. Org Lett 2017; 19:1768-1771. [DOI: 10.1021/acs.orglett.7b00536] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ren Zhao
- Department of Chemistry, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People’s Republic of China
| | - Wenjun Lu
- Department of Chemistry, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People’s Republic of China
| |
Collapse
|
38
|
Ding J, Zhang Y, Li J. Nickel-catalyzed selective C-5 fluorination of 8-aminoquinolines with NFSI. Org Chem Front 2017. [DOI: 10.1039/c7qo00211d] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The first nickel-catalyzed selective C-5 fluorination of 8-aminoquinoline derivatives was achieved using NFSI as the “F” source.
Collapse
Affiliation(s)
- Junshuai Ding
- Department of Organic Chemistry
- College of Chemistry
- Jilin University
- Changchun
- China
| | - Yingchao Zhang
- Department of Organic Chemistry
- College of Chemistry
- Jilin University
- Changchun
- China
| | - Jizhen Li
- Department of Organic Chemistry
- College of Chemistry
- Jilin University
- Changchun
- China
| |
Collapse
|
39
|
Wang Y, Qiao Y, Wei D, Tang M. Computational study on NHC-catalyzed enantioselective and chemoselective fluorination of aliphatic aldehydes. Org Chem Front 2017. [DOI: 10.1039/c7qo00436b] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A mechanistic study on NHC-catalyzed enantioselective and chemoselective fluorination of aliphatic aldehydes has been performed for the first time.
Collapse
Affiliation(s)
- Yang Wang
- Department of Material and Chemical Engineering
- Zhengzhou University of Light Industry
- Zhengzhou
- P.R. China
| | - Yan Qiao
- Department of Pathophysiology
- School of Basic Medical Sciences
- Zhengzhou University
- Zhengzhou
- P.R. China
| | - Donghui Wei
- College of Chemistry and Molecular Engineering
- Center of Computational Chemistry
- Zhengzhou University
- Zhengzhou
- P.R. China
| | - Mingsheng Tang
- College of Chemistry and Molecular Engineering
- Center of Computational Chemistry
- Zhengzhou University
- Zhengzhou
- P.R. China
| |
Collapse
|
40
|
Chen J, Wang T, Wang T, Lin A, Yao H, Xu J. Copper-catalyzed C5-selective thio/selenocyanation of 8-aminoquinolines. Org Chem Front 2017. [DOI: 10.1039/c6qo00590j] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Copper-catalyzed direct C5-position thio/selenocyanation of quinolines using commercially available, inexpensive KSCN/SeCN as the thio/selenocyanation reagent was developed, which had good tolerance toward various aliphatic or aromatic 8-aminoquinoline derivatives.
Collapse
Affiliation(s)
- Jichao Chen
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- P. R. China
| | - Tianyu Wang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- P. R. China
| | - Tong Wang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- P. R. China
- Beijing National Laboratory for Molecular Sciences
| | - Aijun Lin
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- P. R. China
| | - Hequan Yao
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- P. R. China
| | - Jinyi Xu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- P. R. China
| |
Collapse
|
41
|
Reddy C, Bisht N, Parella R, Babu SA. 4-Amino-2,1,3-benzothiadiazole as a Removable Bidentate Directing Group for the Pd(II)-Catalyzed Arylation/Oxygenation of sp 2/sp 3 β-C-H Bonds of Carboxamides. J Org Chem 2016; 81:12143-12168. [PMID: 27978723 DOI: 10.1021/acs.joc.6b01831] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In this paper, we report 4-amino-2,1,3-benzothiadiazole (ABTD) as a new bidentate directing group for the Pd(II)-catalyzed sp2/sp3 C-H activation/functionalization of various aliphatic/alicyclic/aromatic carboxamide systems. The Pd(II)-catalyzed, ABTD-directed sp3 C-H arylation/acetoxylation of aliphatic- and alicyclic carboxamides afforded the corresponding β-C-H arylated/acetoxylated carboxamides. The Pd(II)-catalyzed, ABTD-directed sp3 C-H arylation of cyclobutanecarboxamide with different aryl iodides afforded the corresponding bis β-C-H arylated cyclobutanecarboxamides having all-cis stereochemistry with a high degree of stereocontrol. The Pd(II)-catalyzed, ABTD-directed arylation/benzylation/acetoxylation/alkoxylation of ortho C(sp2)-H bonds of various benzamides afforded the corresponding ortho C-H arylated/benzylated/oxygenated benzamides. The observed regio- and stereoselectivity in the Pd(II)-catalyzed, ABTD-directed arylation/benzylation of aliphatic/alicyclic carboxamides and benzamides were ascertained from the X-ray structures of representative compounds 5g (bis-β-C(sp3)-H arylated cyclobutanecarboxamide) and 7f (ortho C(sp2)-H arylated benzamide). A brief description on the efficiency, scope, and limitations of bidentate directing group ABTD is reported.
Collapse
Affiliation(s)
- Chennakesava Reddy
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali , Manauli P.O., Sector 81, SAS Nagar, Knowledge City, Mohali, Punjab 140306, India
| | - Narendra Bisht
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali , Manauli P.O., Sector 81, SAS Nagar, Knowledge City, Mohali, Punjab 140306, India
| | - Ramarao Parella
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali , Manauli P.O., Sector 81, SAS Nagar, Knowledge City, Mohali, Punjab 140306, India
| | - Srinivasarao Arulananda Babu
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali , Manauli P.O., Sector 81, SAS Nagar, Knowledge City, Mohali, Punjab 140306, India
| |
Collapse
|
42
|
He J, Wasa M, Chan KSL, Shao Q, Yu JQ. Palladium-Catalyzed Transformations of Alkyl C-H Bonds. Chem Rev 2016; 117:8754-8786. [PMID: 28697604 DOI: 10.1021/acs.chemrev.6b00622] [Citation(s) in RCA: 1506] [Impact Index Per Article: 167.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This Review summarizes the advancements in Pd-catalyzed C(sp3)-H activation via various redox manifolds, including Pd(0)/Pd(II), Pd(II)/Pd(IV), and Pd(II)/Pd(0). While few examples have been reported in the activation of alkane C-H bonds, many C(sp3)-H activation/C-C and C-heteroatom bond forming reactions have been developed by the use of directing group strategies to control regioselectivity and build structural patterns for synthetic chemistry. A number of mono- and bidentate ligands have also proven to be effective for accelerating C(sp3)-H activation directed by weakly coordinating auxiliaries, which provides great opportunities to control reactivity and selectivity (including enantioselectivity) in Pd-catalyzed C-H functionalization reactions.
Collapse
Affiliation(s)
- Jian He
- Department of Chemistry, The Scripps Research Institute , 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Masayuki Wasa
- Department of Chemistry, The Scripps Research Institute , 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Kelvin S L Chan
- Department of Chemistry, The Scripps Research Institute , 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Qian Shao
- Department of Chemistry, The Scripps Research Institute , 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute , 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
43
|
Groendyke BJ, AbuSalim DI, Cook SP. Iron-Catalyzed, Fluoroamide-Directed C-H Fluorination. J Am Chem Soc 2016; 138:12771-12774. [PMID: 27676449 DOI: 10.1021/jacs.6b08171] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
This communication describes a mild, amide-directed fluorination of benzylic, allylic, and unactivated C-H bonds mediated by iron. Upon exposure to a catalytic amount of iron(II) triflate (Fe(OTf)2), N-fluoro-2-methylbenzamides undergo chemoselective fluorine transfer to provide the corresponding fluorides in high yield. The reaction demonstrates broad substrate scope and functional group tolerance without the use of any noble metal additives. Mechanistic and computational experiments suggest that the reaction proceeds through short-lived radical intermediates with F-transfer mediated directly by iron.
Collapse
Affiliation(s)
- Brian J Groendyke
- Department of Chemistry, Indiana University , 800 East Kirkwood Avenue, Bloomington, Indiana 47405-7102, United States
| | - Deyaa I AbuSalim
- Department of Chemistry, Indiana University , 800 East Kirkwood Avenue, Bloomington, Indiana 47405-7102, United States
| | - Silas P Cook
- Department of Chemistry, Indiana University , 800 East Kirkwood Avenue, Bloomington, Indiana 47405-7102, United States
| |
Collapse
|
44
|
Ji D, He X, Xu Y, Xu Z, Bian Y, Liu W, Zhu Q, Xu Y. Metal-Free Remote C–H Bond Amidation of 8-Amidoquinolines on the C5 Position under Mild Conditions. Org Lett 2016; 18:4478-81. [DOI: 10.1021/acs.orglett.6b01980] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Dezhong Ji
- State
Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Jiangsu
Key Laboratory of Drug Design and Optimization, Department of Medicinal
Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Xin He
- State
Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Changzhou Vocational
Institute of Engineering, Changzhou 213164, China
| | | | | | | | | | - Qihua Zhu
- State
Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Jiangsu
Key Laboratory of Drug Design and Optimization, Department of Medicinal
Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Yungen Xu
- State
Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Jiangsu
Key Laboratory of Drug Design and Optimization, Department of Medicinal
Chemistry, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
45
|
Abstract
Fluorination reactions of medicinal and biologically-active compounds will be discussed. Late stage fluorination strategies of medicinal targets have recently attracted considerable attention on account of the influence that a fluorine atom can impart to targets of medicinal importance, such as modulation of lipophilicity, electronegativity, basicity and bioavailability, the latter as a consequence of membrane permeability. Therefore, the recourse to late-stage fluorine substitution on compounds with already known and relevant biological activity can provide the pharmaceutical industry with new leads with improved medicinal properties. The fluorination strategies will take into account different fluorinating reagents, either of nucleophilic or electrophilic, and of radical nature. Diverse families of organic compounds such as (hetero)aromatic rings, and aliphatic substrates (sp(3), sp(2), and sp carbon atoms) will be studied in late-stage fluorination reaction strategies.
Collapse
Affiliation(s)
- Damian E Yerien
- Departamento de Química Orgánica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires-CONICET, Junín 954 CP, 1113-Buenos Aires, Argentina.
| | | | | |
Collapse
|
46
|
Xiong HY, Cahard D, Pannecoucke X, Besset T. Pd-Catalyzed Directed Chlorination of Unactivated C(sp3
)-H Bonds at Room Temperature. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600600] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Heng-Ying Xiong
- Normandie Université; COBRA; UMR 6014 et FR 3038; Université de Rouen; INSA Rouen; CNRS; 1 rue Tesnière 76821 Mont Saint-Aignan Cedex France
| | - Dominique Cahard
- Normandie Université; COBRA; UMR 6014 et FR 3038; Université de Rouen; INSA Rouen; CNRS; 1 rue Tesnière 76821 Mont Saint-Aignan Cedex France
| | - Xavier Pannecoucke
- Normandie Université; COBRA; UMR 6014 et FR 3038; Université de Rouen; INSA Rouen; CNRS; 1 rue Tesnière 76821 Mont Saint-Aignan Cedex France
| | - Tatiana Besset
- Normandie Université; COBRA; UMR 6014 et FR 3038; Université de Rouen; INSA Rouen; CNRS; 1 rue Tesnière 76821 Mont Saint-Aignan Cedex France
| |
Collapse
|
47
|
Petrone DA, Ye J, Lautens M. Modern Transition-Metal-Catalyzed Carbon–Halogen Bond Formation. Chem Rev 2016; 116:8003-104. [DOI: 10.1021/acs.chemrev.6b00089] [Citation(s) in RCA: 394] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- David A. Petrone
- Department of Chemistry, University of Toronto Davenport Research Laboratories, 80 St. George St. Toronto, Ontario M5S 3H6, Canada
| | - Juntao Ye
- Department of Chemistry, University of Toronto Davenport Research Laboratories, 80 St. George St. Toronto, Ontario M5S 3H6, Canada
| | - Mark Lautens
- Department of Chemistry, University of Toronto Davenport Research Laboratories, 80 St. George St. Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
48
|
Miró J, del Pozo C, Toste FD, Fustero S. Enantioselective Palladium-Catalyzed Oxidative β,β-Fluoroarylation of α,β-Unsaturated Carbonyl Derivatives. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201603046] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Javier Miró
- Departamento de Química Orgánica; Universidad de Valencia; 46100 Burjassot Spain
| | - Carlos del Pozo
- Departamento de Química Orgánica; Universidad de Valencia; 46100 Burjassot Spain
| | - F. Dean Toste
- Department of Chemistry; University of California; Berkeley CA 94720 USA
| | - Santos Fustero
- Departamento de Química Orgánica; Universidad de Valencia; 46100 Burjassot Spain
- Laboratorio de Moléculas Orgánicas; Centro de Investigación Príncipe Felipe; 46012 Valencia Spain
| |
Collapse
|
49
|
Miró J, Del Pozo C, Toste FD, Fustero S. Enantioselective Palladium-Catalyzed Oxidative β,β-Fluoroarylation of α,β-Unsaturated Carbonyl Derivatives. Angew Chem Int Ed Engl 2016; 55:9045-9. [PMID: 27272390 DOI: 10.1002/anie.201603046] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 04/30/2016] [Indexed: 12/21/2022]
Abstract
The site-selective palladium-catalyzed three-component coupling of deactivated alkenes, arylboronic acids, and N-fluorobenzenesulfonimide is disclosed herein. The developed methodology establishes a general, modular, and step-economical approach to the stereoselective β-fluorination of α,β-unsaturated systems.
Collapse
Affiliation(s)
- Javier Miró
- Departamento de Química Orgánica, Universidad de Valencia, 46100, Burjassot, Spain
| | - Carlos Del Pozo
- Departamento de Química Orgánica, Universidad de Valencia, 46100, Burjassot, Spain.
| | - F Dean Toste
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA.
| | - Santos Fustero
- Departamento de Química Orgánica, Universidad de Valencia, 46100, Burjassot, Spain. .,Laboratorio de Moléculas Orgánicas, Centro de Investigación Príncipe Felipe, 46012, Valencia, Spain.
| |
Collapse
|
50
|
Larrosa M, Heiles S, Becker J, Spengler B, Hrdina R. CH Bond Arylation of Diamondoids Catalyzed by Palladium(II) Acetate. Adv Synth Catal 2016. [DOI: 10.1002/adsc.201600156] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|