1
|
Xiong X, Zhu X, Yu D, Huang Q, Wu X, Tan G, Sun P. Piperidine polyketide alkaloids of bacterial origin: Occurrence, bioactivity, and biosynthesis. Eur J Med Chem 2025; 289:117498. [PMID: 40088660 DOI: 10.1016/j.ejmech.2025.117498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 03/03/2025] [Accepted: 03/08/2025] [Indexed: 03/17/2025]
Abstract
Alkaloids are typically found in plants and certain animals, but are rare in actinomycetes. Recently, there have been significant advances in the discovery of bacterial alkaloids and the elucidation of their biosynthetic pathways. Based upon biosynthetic insights, a specialized class of secondary metabolites termed piperidine polyketide alkaloids (PPAs) has been identified from actinomycetes. PPAs exhibit very diverse structures with multiple heterocyclic moieties, i.e., piperidine, pyridine, cyclopenta[b]piperidine, indolizidine, and quinolizidine. However, these alkaloids are derived from similar biosynthetic intermediates that share a common structural feature of a piperidine nucleus linked to a polyene chain. PPAs have the skeletons biosynthesized via the polyketide pathway, and the piperidine nucleus formed by a conserved thioester reduction-transamination process. Alkaloids are usually classified in terms of their heterocyclic skeletons. This review highlights new insights into the classification of PPAs from the perspective of integrated biosynthesis and structures. The natural occurrence, structure elucidation, biological activity, and biosynthesis of PPAs are comprehensively summarized.
Collapse
Affiliation(s)
- Xin Xiong
- School of Pharmacy, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330004, China
| | - Xiaofan Zhu
- School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Dunning Yu
- School of Pharmacy, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330004, China
| | - Qianfei Huang
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, 350112, China
| | - Xiaomei Wu
- School of Pharmacy, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330004, China
| | - Gang Tan
- Department of Ophthalmology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Peng Sun
- School of Pharmacy, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330004, China; School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai, 200433, China; School of Pharmacy, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, 350112, China.
| |
Collapse
|
2
|
Krause J. Indolizidines from Actinomycetes: An Overview of Producers, Biosynthesis and Bioactivities. Microorganisms 2024; 12:1445. [PMID: 39065213 PMCID: PMC11278551 DOI: 10.3390/microorganisms12071445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Indolizidines have long been recognized for their valuable bioactivities, their common feature being a bicyclic structure connected via a nitrogen atom. Traditionally, plants have been identified as the primary producers. However, recent discoveries have revealed that certain bacterial strains belonging to the genus of actinomycetes also possess the ability to synthesize various indolizidine-based compounds. Among these strains, Streptomyces sp. HNA39, Saccharopolyspora sp. RL78, and Streptomyces NCIB 11649 have been identified as producers of cyclizidines, characterized by their distinctive cyclopropyl moiety. Additionally, Streptomyces griseus OS-3601 synthesizes a unique class of indolizidine derivatives known as iminimycins, distinguished by their rare imine-cation structure. Protoplast fusion of a Streptomyces griseus strain with Streptomyces tenjimariensis resulted in a new indolizidine named indolizomycin. This review aims to provide an overview of known bacterial indolizidine producers, summarize current knowledge regarding the biosynthesis of cyclizidines and iminimycins, and assess their respective bioactivities.
Collapse
Affiliation(s)
- Janina Krause
- Department of Biomedical Research, Institute of Health Research and Education, School of Human Sciences, University of Osnabrueck, 49076 Osnabrueck, Germany
| |
Collapse
|
3
|
Keeler AM, Petruzziello PE, Boger EG, D'Ambrosio HK, Derbyshire ER. Exploring the Chain Release Mechanism from an Atypical Apicomplexan Polyketide Synthase. Biochemistry 2023; 62:2677-2688. [PMID: 37556730 DOI: 10.1021/acs.biochem.3c00272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Polyketide synthases (PKSs) are megaenzymes that form chemically diverse polyketides and are found within the genomes of nearly all classes of life. We recently discovered the type I PKS from the apicomplexan parasite Toxoplasma gondii, TgPKS2, which contains a unique putative chain release mechanism that includes ketosynthase (KS) and thioester reductase (TR) domains. Our bioinformatic analysis of the thioester reductase of TgPKS2, TgTR, suggests differences compared to other systems and hints at a possibly conserved release mechanism within the apicomplexan subclass Coccidia. To evaluate this release module, we first isolated TgTR and observed that it is capable of 4 electron (4e-) reduction of octanoyl-CoA to the primary alcohol, octanol, utilizing NADH. TgTR was also capable of generating octanol in the presence of octanal and NADH, but no reactions were observed when NADPH was supplied as a cofactor. To biochemically characterize the protein, we measured the catalytic efficiency of TgTR using a fluorescence assay and determined the TgTR binding affinity for cofactor and substrates using isothermal titration calorimetry (ITC). We additionally show that TgTR is capable of reducing an acyl carrier protein (ACP)-tethered substrate by liquid chromatography mass spectrometry and determine that TgTR binds to holo-TgACP4, its predicted cognate ACP, with a KD of 5.75 ± 0.77 μM. Finally, our transcriptional analysis shows that TgPKS2 is upregulated ∼4-fold in the parasite's cyst-forming bradyzoite stage compared to tachyzoites. Our study identifies features that distinguish TgPKS2 from well-characterized systems in bacteria and fungi and suggests it aids the T. gondii cyst stage.
Collapse
Affiliation(s)
- Aaron M Keeler
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Porter E Petruzziello
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Elizabeth G Boger
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Hannah K D'Ambrosio
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Emily R Derbyshire
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, United States
| |
Collapse
|
4
|
Li S, Jiang YJ, Ma Z, Wang N. Complete genome sequence of Streptomyces sp. HNA39, a new cyclizidine producer isolated from a South China Sea sediment. Mar Genomics 2023; 70:101033. [PMID: 37355293 DOI: 10.1016/j.margen.2023.101033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 06/26/2023]
Abstract
Streptomyces sp. HNA39 is a promising candidate for the production of antineoplastic metabolites screened from a collection of 448 actinomycetes derived from coastal sediments. The complete genome sequence of HNA39 comprises a 7,351,753-bp linear chromosome with a GC content of 71.94%. Whole genome analysis reveals the presence of 29 putative biosynthetic gene clusters (BGCs) encoding secondary metabolites. Among them, a type I PKS BGC shows an 82% similarity with the cyclizidine (CLD) BGC identified from Streptomyces NCIB 11649. LC-MS profiles further supported the production of new CLD congeners. Bafilomycins were also found produced in abundance, corresponding to another type I PKS BGC highly homologous to that of bafilomycin B1 from S. lohii. CLDs are indolizidine alkaloids consisting a fused five- and six-membered ring system with an intriguing cyclopropane terminal linked by a trans-dienic chain. The cyclization mechanism of the cylopropyl ring, one of its pharmacophores, is still unknown. Genome sequencing of the new CLD producer and subsequent comparative analysis of their gene clusters would further our understanding of the chemistry behind cyclopropane formation.
Collapse
Affiliation(s)
- Suzhen Li
- Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Yong-Jun Jiang
- Ocean College, Zhejiang University, Zhoushan 316021, China; School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Zhongjun Ma
- Ocean College, Zhejiang University, Zhoushan 316021, China; Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Nan Wang
- Ocean College, Zhejiang University, Zhoushan 316021, China; Hainan Institute of Zhejiang University, Sanya 572025, China.
| |
Collapse
|
5
|
Ye S, Ballin G, Pérez‐Victoria I, Braña AF, Martín J, Reyes F, Salas JA, Méndez C. Combinatorial biosynthesis yields novel hybrid argimycin P alkaloids with diverse scaffolds in Streptomyces argillaceus. Microb Biotechnol 2022; 15:2905-2916. [PMID: 36346129 PMCID: PMC9733639 DOI: 10.1111/1751-7915.14167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/06/2022] [Accepted: 10/19/2022] [Indexed: 11/10/2022] Open
Abstract
Coelimycin P1 and argimycins P are two types of polyketide alkaloids produced by Streptomyces coelicolor and Streptomyces argillaceus, respectively. Their biosynthesis pathways share some early steps that render very similar aminated polyketide chains, diverging the pathways afterwards. By expressing the putative isomerase cpkE and/or the putative epoxidase/dehydrogenase cpkD from the coelimycin P1 gene cluster into S. argillaceus wild type and in argimycin mutant strains, five novel hybrid argimycins were generated. Chemical characterization of those compounds revealed that four of them show unprecedented scaffolds (quinolizidine and pyranopyridine) never found before in the argimycin family of compounds. One of these compounds (argimycin DM104) shows improved antibiotic activity. Noticeable, biosynthesis of these quinolizidine argimycins results from a hybrid pathway created by combining enzymes from two different pathways, which utilizes an aminated polyketide chain as precursor instead of lysine as it occurs for other quinolizidines.
Collapse
Affiliation(s)
- Suhui Ye
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A)Universidad de OviedoOviedoSpain,Instituto de Investigación Sanitaria de Asturias (ISPA)OviedoSpain
| | - Giovanni Ballin
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A)Universidad de OviedoOviedoSpain
| | - Ignacio Pérez‐Victoria
- Fundación MEDINACentro de Excelencia en Investigación de Medicamentos Innovadores en AndalucíaArmilla, GranadaSpain
| | - Alfredo F. Braña
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A)Universidad de OviedoOviedoSpain
| | - Jesús Martín
- Fundación MEDINACentro de Excelencia en Investigación de Medicamentos Innovadores en AndalucíaArmilla, GranadaSpain
| | - Fernando Reyes
- Fundación MEDINACentro de Excelencia en Investigación de Medicamentos Innovadores en AndalucíaArmilla, GranadaSpain
| | - José A. Salas
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A)Universidad de OviedoOviedoSpain,Instituto de Investigación Sanitaria de Asturias (ISPA)OviedoSpain
| | - Carmen Méndez
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A)Universidad de OviedoOviedoSpain,Instituto de Investigación Sanitaria de Asturias (ISPA)OviedoSpain
| |
Collapse
|
6
|
Re-classification of Streptomyces venezuelae strains and mining secondary metabolite biosynthetic gene clusters. iScience 2021; 24:103410. [PMID: 34877485 PMCID: PMC8627960 DOI: 10.1016/j.isci.2021.103410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/05/2021] [Accepted: 11/04/2021] [Indexed: 11/20/2022] Open
Abstract
Streptomyces species have attracted considerable interest as a reservoir of medically important secondary metabolites, which are even diverse and different between strains. Here, we reassess ten Streptomyces venezuelae strains by presenting the highly resolved classification, using 16S rRNA sequencing, MALDI-TOF MS protein profiling, and whole-genome sequencing. The results revealed that seven of the ten strains were misclassified as S. venezuelae species. Secondary metabolite biosynthetic gene cluster (smBGC) mining and targeted LC-MS/MS based metabolite screening of S. venezuelae and misclassified strains identified in total 59 secondary metabolites production. In addition, a comparison of pyrrolamide-type antibiotic BGCs of four misclassified strains, followed by functional genomics, revealed that athv28 is critical in the synthesis of the anthelvencin precursor, 5-amino-3,4-dihydro-2H-pyrrole-2-carboxylate (ADPC). Our findings illustrate the importance of the accurate classification and better utilization of misclassified Streptomyces strains to discover smBGCs and their secondary metabolite products.
Collapse
|
7
|
Ma S, Mandalapu D, Wang S, Zhang Q. Biosynthesis of cyclopropane in natural products. Nat Prod Rep 2021; 39:926-945. [PMID: 34860231 DOI: 10.1039/d1np00065a] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Covering: 2012 to 2021Cyclopropane attracts wide interests in the fields of synthetic and pharmaceutical chemistry, and chemical biology because of its unique structural and chemical properties. This structural motif is widespread in natural products, and is usually essential for biological activities. Nature has evolved diverse strategies to access this structural motif, and increasing knowledge of the enzymes forming cyclopropane (i.e., cyclopropanases) has been revealed over the last two decades. Here, the scientific literature from the last two decades relating to cyclopropane biosynthesis is summarized, and the enzymatic cyclopropanations, according to reaction mechanism, which can be grouped into two major pathways according to whether the reaction involves an exogenous C1 unit from S-adenosylmethionine (SAM) or not, is discussed. The reactions can further be classified based on the key intermediates required prior to cyclopropane formation, which can be carbocations, carbanions, or carbon radicals. Besides the general biosynthetic pathways of the cyclopropane-containing natural products, particular emphasis is placed on the mechanism and engineering of the enzymes required for forming this unique structure motif.
Collapse
Affiliation(s)
- Suze Ma
- Department of Chemistry, Fudan University, Shanghai, 200433, China.
| | | | - Shu Wang
- Department of Chemistry, Fudan University, Shanghai, 200433, China.
| | - Qi Zhang
- Department of Chemistry, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
8
|
Tsutsumi H, Katsuyama Y, Tezuka T, Miyano R, Inahashi Y, Takahashi Y, Nakashima T, Ohnishi Y. Identification and Analysis of the Biosynthetic Gene Cluster for the Indolizidine Alkaloid Iminimycin in Streptomyces griseus. Chembiochem 2021; 23:e202100517. [PMID: 34767291 DOI: 10.1002/cbic.202100517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/27/2021] [Indexed: 11/06/2022]
Abstract
Indolizidine alkaloids, which have versatile bioactivities, are produced by various organisms. Although the biosynthesis of some indolizidine alkaloids has been studied, the enzymatic machinery for their biosynthesis in Streptomyces remains elusive. Here, we report the identification and analysis of the biosynthetic gene cluster for iminimycin, an indolizidine alkaloid with a 6-5-3 tricyclic system containing an iminium cation from Streptomyces griseus. The gene cluster has 22 genes, including four genes encoding polyketide synthases (PKSs), which consist of eight modules in total. In vitro analysis of the first module revealed that its acyltransferase domain selects malonyl-CoA, although predicted to select methylmalonyl-CoA. Inactivation of seven tailoring enzyme-encoding genes and structural elucidation of four compounds accumulated in mutants provided important insights into iminimycin biosynthesis, although some of these compounds appeared to be shunt products. This study expands our knowledge of the biosynthetic machinery of indolizidine alkaloids and the enzymatic chemistry of PKS.
Collapse
Affiliation(s)
- Hayama Tsutsumi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yohei Katsuyama
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Takeaki Tezuka
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Rei Miyano
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1, Minato-ku, Tokyo, 108-8641, Japan
| | - Yuki Inahashi
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1, Minato-ku, Tokyo, 108-8641, Japan.,Kitasato Institute for Life Sciences, Present: Ōmura Satoshi Memorial Institute), Kitasato University, 5-9-1, Minato-ku, Tokyo, 108-8641, Japan
| | - Yoko Takahashi
- Kitasato Institute for Life Sciences, Present: Ōmura Satoshi Memorial Institute), Kitasato University, 5-9-1, Minato-ku, Tokyo, 108-8641, Japan
| | - Takuji Nakashima
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1, Minato-ku, Tokyo, 108-8641, Japan.,Kitasato Institute for Life Sciences, Present: Ōmura Satoshi Memorial Institute), Kitasato University, 5-9-1, Minato-ku, Tokyo, 108-8641, Japan
| | - Yasuo Ohnishi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
9
|
Cheng XW, Li JQ, Jiang YJ, Liu HZ, Huo C. A new indolizinium alkaloid from marine-derived Streptomyces sp. HNA39. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2021; 23:913-918. [PMID: 32819162 DOI: 10.1080/10286020.2020.1799987] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/16/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
A new indolizinium alkaloid, named as cyclizidine J (1), was identified from Gause's liquid fermentation of marine-derived Streptomyces sp. HNA39. Its structure was elucidated by extensive NMR spectroscopic methods, HRESIMS data, and ECD calculations. To our best knowledge, compound 1 was a unique cyclizidine-type alkaloid that contain a chlorine atom substituted at position C-8. Unfortunately, biological evaluation of 1 exhibited no active against PC-3 cancer cell line, BRD4, and ROCK2 protein kinase.
Collapse
Affiliation(s)
- Xiang-Wei Cheng
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Experiment Center, Zhejiang Police College, Hangzhou 310053, China
| | - Jia-Qi Li
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Yong-Jun Jiang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Hua-Zhang Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chao Huo
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
10
|
Little RF, Hertweck C. Chain release mechanisms in polyketide and non-ribosomal peptide biosynthesis. Nat Prod Rep 2021; 39:163-205. [PMID: 34622896 DOI: 10.1039/d1np00035g] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Review covering up to mid-2021The structure of polyketide and non-ribosomal peptide natural products is strongly influenced by how they are released from their biosynthetic enzymes. As such, Nature has evolved a diverse range of release mechanisms, leading to the formation of bioactive chemical scaffolds such as lactones, lactams, diketopiperazines, and tetronates. Here, we review the enzymes and mechanisms used for chain release in polyketide and non-ribosomal peptide biosynthesis, how these mechanisms affect natural product structure, and how they could be utilised to introduce structural diversity into the products of engineered biosynthetic pathways.
Collapse
Affiliation(s)
- Rory F Little
- Leibniz Institute for Natural Product Research and Infection Biology, HKI, Germany.
| | - Christian Hertweck
- Leibniz Institute for Natural Product Research and Infection Biology, HKI, Germany.
| |
Collapse
|
11
|
Zhang J, Morris-Natschke SL, Ma D, Shang XF, Yang CJ, Liu YQ, Lee KH. Biologically active indolizidine alkaloids. Med Res Rev 2020; 41:928-960. [PMID: 33128409 DOI: 10.1002/med.21747] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/09/2020] [Accepted: 10/19/2020] [Indexed: 12/23/2022]
Abstract
Indolizidine alkaloids are chemical constituents isolated from various marine and terrestrial plants and animals, including but not limited to trees, fungi, ants, and frogs, with a myriad of important biological activities. In this review, we discuss the biological activity and pharmacological effects of indolizidine alkaloids and offer new avenues toward the discovery of new and better drugs based on these naturally occurring compounds.
Collapse
Affiliation(s)
- Junmin Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Susan L Morris-Natschke
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Di Ma
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | | | - Chen-Jie Yang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
12
|
Pyridoxal-5'-phosphate-dependent bifunctional enzyme catalyzed biosynthesis of indolizidine alkaloids in fungi. Proc Natl Acad Sci U S A 2019; 117:1174-1180. [PMID: 31882449 DOI: 10.1073/pnas.1914777117] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Indolizidine alkaloids such as anticancer drugs vinblastine and vincristine are exceptionally attractive due to their widespread occurrence, prominent bioactivity, complex structure, and sophisticated involvement in the chemical defense for the producing organisms. However, the versatility of the indolizidine alkaloid biosynthesis remains incompletely addressed since the knowledge about such biosynthetic machineries is only limited to several representatives. Herein, we describe the biosynthetic gene cluster (BGC) for the biosynthesis of curvulamine, a skeletally unprecedented antibacterial indolizidine alkaloid from Curvularia sp. IFB-Z10. The molecular architecture of curvulamine results from the functional collaboration of a highly reducing polyketide synthase (CuaA), a pyridoxal-5'-phosphate (PLP)-dependent aminotransferase (CuaB), an NADPH-dependent dehydrogenase (CuaC), and a FAD-dependent monooxygenase (CuaD), with its transportation and abundance regulated by a major facilitator superfamily permease (CuaE) and a Zn(II)Cys6 transcription factor (CuaF), respectively. In contrast to expectations, CuaB is bifunctional and capable of catalyzing the Claisen condensation to form a new C-C bond and the α-hydroxylation of the alanine moiety in exposure to dioxygen. Inspired and guided by the distinct function of CuaB, our genome mining effort discovers bipolamines A-I (bipolamine G is more antibacterial than curvulamine), which represent a collection of previously undescribed polyketide alkaloids from a silent BGC in Bipolaris maydis ATCC48331. The work provides insight into nature's arsenal for the indolizidine-coined skeletal formation and adds evidence in support of the functional versatility of PLP-dependent enzymes in fungi.
Collapse
|
13
|
Li WS, Hu HB, Huang ZH, Yan RJ, Tian LW, Wu J. Phomopsols A and B from the Mangrove Endophytic Fungus Phomopsis sp. xy21: Structures, Neuroprotective Effects, and Biogenetic Relationships. Org Lett 2019; 21:7919-7922. [PMID: 31525876 DOI: 10.1021/acs.orglett.9b02906] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Wan-Shan Li
- School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, P. R. China
| | - Han-Bo Hu
- Marine Drugs Research Center, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, P. R. China
| | - Zhong-Hui Huang
- School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, P. R. China
| | - Ren-Jie Yan
- School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, P. R. China
| | - Li-Wen Tian
- School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, P. R. China
| | - Jun Wu
- School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, P. R. China
| |
Collapse
|
14
|
Du YL, Ryan KS. Pyridoxal phosphate-dependent reactions in the biosynthesis of natural products. Nat Prod Rep 2019; 36:430-457. [DOI: 10.1039/c8np00049b] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We review reactions catalyzed by pyridoxal phosphate-dependent enzymes, highlighting enzymes reported in the recent natural product biosynthetic literature.
Collapse
Affiliation(s)
- Yi-Ling Du
- Institute of Pharmaceutical Biotechnology
- Zhejiang University School of Medicine
- Hangzhou
- China
| | - Katherine S. Ryan
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
| |
Collapse
|
15
|
|
16
|
Castro-Falcón G, Millán-Aguiñaga N, Roullier C, Jensen PR, Hughes CC. Nitrosopyridine Probe To Detect Polyketide Natural Products with Conjugated Alkenes: Discovery of Novodaryamide and Nocarditriene. ACS Chem Biol 2018; 13:3097-3106. [PMID: 30272441 DOI: 10.1021/acschembio.8b00598] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An optimized nitroso-based probe that facilitates the discovery of conjugated alkene-containing natural products in unprocessed extracts was developed. It chemoselectively reacts with conjugated olefins via a nitroso-Diels-Alder cyclization to yield derivatives with a distinct chromophore and an isotopically unique bromine atom that can be rapidly identified using liquid chromatography/mass spectrometry and a bioinformatics tool called MeHaloCoA (Marine Halogenated Compound Analysis). The probe is ideally employed when genome-mining techniques identify strains containing polyketide gene clusters with two or more repeating KS-AT-DH-KR-ACP domain sequences, which are required for the biosynthesis of conjugated alkenes. Comparing the reactivity and spectral properties of five brominated arylnitroso reagents with model compounds spiramycin, bufalin, rapamycin, and rifampicin led to the identification of 5-bromo-2-nitrosopyridine as the most suitable probe structure. The utility of the dienophile probe was then demonstrated in bacterial extracts. Tylactone, novodaryamide and daryamide A, piperazimycin A, and the saccharamonopyrones A and B were cleanly labeled in extracts from their respective bacterial producers, in high regioselectivity but with varying degrees of diastereoselectivity. Further application of the method led to the discovery of a new natural product called nocarditriene, containing an unprecedented epoxy-2,3,4,5-tetrahydropyridine structure, from marine-derived Nocardiopsis strain CNY-503.
Collapse
Affiliation(s)
- Gabriel Castro-Falcón
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| | - Natalie Millán-Aguiñaga
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| | - Catherine Roullier
- Mer Molécules Santé - EA2160, Université de Nantes, 44035 Nantes-cedex 1, France
| | - Paul R. Jensen
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| | - Chambers C. Hughes
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
17
|
Mullowney MW, McClure RA, Robey MT, Kelleher NL, Thomson RJ. Natural products from thioester reductase containing biosynthetic pathways. Nat Prod Rep 2018; 35:847-878. [PMID: 29916519 PMCID: PMC6146020 DOI: 10.1039/c8np00013a] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Covering: up to 2018 Thioester reductase domains catalyze two- and four-electron reductions to release natural products following assembly on nonribosomal peptide synthetases, polyketide synthases, and their hybrid biosynthetic complexes. This reductive off-loading of a natural product yields an aldehyde or alcohol, can initiate the formation of a macrocyclic imine, and contributes to important intermediates in a variety of biosyntheses, including those for polyketide alkaloids and pyrrolobenzodiazepines. Compounds that arise from reductase-terminated biosynthetic gene clusters are often reactive and exhibit biological activity. Biomedically important examples include the cancer therapeutic Yondelis (ecteinascidin 743), peptide aldehydes that inspired the first therapeutic proteasome inhibitor bortezomib, and numerous synthetic derivatives and antibody drug conjugates of the pyrrolobenzodiazepines. Recent advances in microbial genomics, metabolomics, bioinformatics, and reactivity-based labeling have facilitated the detection of these compounds for targeted isolation. Herein, we summarize known natural products arising from this important category, highlighting their occurrence in Nature, biosyntheses, biological activities, and the technologies used for their detection and identification. Additionally, we review publicly available genomic data to highlight the remaining potential for novel reductively tailored compounds and drug leads from microorganisms. This thorough retrospective highlights various molecular families with especially privileged bioactivity while illuminating challenges and prospects toward accelerating the discovery of new, high value natural products.
Collapse
Affiliation(s)
- Michael W Mullowney
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA.
| | - Ryan A McClure
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA.
| | - Matthew T Robey
- Department of Molecular Biosciences, Northwestern University, 2205 Tech Drive, Evanston, IL 60208, USA
| | - Neil L Kelleher
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA. and Department of Molecular Biosciences, Northwestern University, 2205 Tech Drive, Evanston, IL 60208, USA
| | - Regan J Thomson
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA.
| |
Collapse
|
18
|
Pagáč T, Šafář P, Marchalín Š, Ježíková Z, Balónová B, Šupolíková M, Nováková E, Kubíčková J, Šoral M, Sivý J, Olejníková P. Asymmetric synthesis and study of biological activity of (epi-)benzoanalogues of bioactive phenanthroquinolizidine alkaloids. MONATSHEFTE FUR CHEMIE 2018. [DOI: 10.1007/s00706-018-2244-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
19
|
Xiao YS, Zhang B, Zhang M, Guo ZK, Deng XZ, Shi J, Li W, Jiao RH, Tan RX, Ge HM. Rifamorpholines A-E, potential antibiotics from locust-associated actinobacteria Amycolatopsis sp. Hca4. Org Biomol Chem 2018; 15:3909-3916. [PMID: 28422262 DOI: 10.1039/c7ob00614d] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cultivation of locust associated rare actinobacteria, Amycolatopsis sp. HCa4, has provided five unusual macrolactams rifamorpholines A-E. Their structures were determined by interpretation of spectroscopic and crystallographic data. Rifamorpholines A-E possess an unprecedented 5/6/6/6 ring chromophore, representing a new subclass of rifamycin antibiotics. The biosynthetic pathway for compounds 1-5 involves a key 1,6-cyclization for the formation of the morpholine ring. Compounds 2 and 4 showed potent activities against methicillin-resistant Staphylococcus aureus (MRSA) with MICs of 4.0 and 8.0 μM, respectively.
Collapse
Affiliation(s)
- Yong Sheng Xiao
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210046, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Jiang YJ, Li JQ, Zhang HJ, Ding WJ, Ma ZJ. Cyclizidine-Type Alkaloids from Streptomyces sp. HNA39. JOURNAL OF NATURAL PRODUCTS 2018; 81:394-399. [PMID: 29389122 DOI: 10.1021/acs.jnatprod.7b01055] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Eight new cyclizidine-type alkaloids (1-8) and one known alkaloid (9) were identified from the chemical investigations of a marine-derived actinomycete, Streptomyces sp. HNA39. Among these alkaloids, compounds 3, 7, and 8 contain a chlorine atom, and the known alkaloid, (+)-ent-cyclizidine (9), is now first reported as a natural product. Their structures were elucidated by extensive NMR-spectroscopic analysis and HRESIMS data. The absolute configurations of all of the compounds were established by ECD calculations. Cytotoxicity evaluations of all of the compounds showed that compound 2 exhibited significant activity against the PC3 and HCT116 human-cancer-cell lines with IC50 values of 0.52 ± 0.03 and 8.3 ± 0.1 μM, respectively. Interestingly, compounds 2, 5, 7, and 8 exhibited moderate inhibition against the ROCK2 protein kinase with IC50 values from 7.0 ± 0.8 to 42 ± 3 μM.
Collapse
Affiliation(s)
- Yong-Jun Jiang
- Institute of Marine Biology, Ocean College, Zhejiang University , Zhoushan 316021, People's Republic of China
| | - Jia-Qi Li
- Institute of Marine Biology, Ocean College, Zhejiang University , Zhoushan 316021, People's Republic of China
| | - Hao-Jian Zhang
- Institute of Marine Biology, Ocean College, Zhejiang University , Zhoushan 316021, People's Republic of China
| | - Wan-Jing Ding
- Institute of Marine Biology, Ocean College, Zhejiang University , Zhoushan 316021, People's Republic of China
| | - Zhong-Jun Ma
- Institute of Marine Biology, Ocean College, Zhejiang University , Zhoushan 316021, People's Republic of China
| |
Collapse
|
21
|
Ye S, Braña AF, González-Sabín J, Morís F, Olano C, Salas JA, Méndez C. New Insights into the Biosynthesis Pathway of Polyketide Alkaloid Argimycins P in Streptomyces argillaceus. Front Microbiol 2018; 9:252. [PMID: 29503641 PMCID: PMC5820336 DOI: 10.3389/fmicb.2018.00252] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/31/2018] [Indexed: 12/18/2022] Open
Abstract
Argimycins P are a recently identified family of polyketide alkaloids encoded by the cryptic gene cluster arp of Streptomyces argillaceus. These compounds contain either a piperideine ring, or a piperidine ring which may be fused to a five membered ring, and a polyene side chain, which is bound in some cases to an N-acetylcysteine moiety. The arp cluster consists of 11 genes coding for structural proteins, two for regulatory proteins and one for a hypothetical protein. Herein, we have characterized the post-piperideine ring biosynthesis steps of argimycins P through the generation of mutants in arp genes, the identification and characterization of compounds accumulated by those mutants, and cross-feeding experiments between mutants. Based in these results, a biosynthesis pathway is proposed assigning roles to every arp gene product. The regulation of the arp cluster is also addressed by inactivating/overexpressing the positive SARP-like arpRI and the negative TetR-like arpRII transcriptional regulators and determining the effect on argimycins P production, and through gene expression analyses (reverse transcription PCR and quantitative real-time PCR) of arp genes in regulatory mutants in comparison to the wild type strain. These findings will contribute to deepen the knowledge on the biosynthesis of piperidine-containing polyketides and provide tools that can be used to generate new analogs by genetic engineering and/or biocatalysis.
Collapse
Affiliation(s)
- Suhui Ye
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Alfredo F Braña
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | | | | | - Carlos Olano
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - José A Salas
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Carmen Méndez
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| |
Collapse
|
22
|
Pait IGU, Kitani S, Roslan FW, Ulanova D, Arai M, Ikeda H, Nihira T. Discovery of a new diol-containing polyketide by heterologous expression of a silent biosynthetic gene cluster from Streptomyces lavendulae FRI-5. J Ind Microbiol Biotechnol 2017; 45:77-87. [PMID: 29255990 DOI: 10.1007/s10295-017-1997-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 12/09/2017] [Indexed: 11/29/2022]
Abstract
The genome of streptomycetes has the ability to produce many novel and potentially useful bioactive compounds, but most of which are not produced under standard laboratory cultivation conditions and are referred to as silent/cryptic secondary metabolites. Streptomyces lavendulae FRI-5 produces several types of bioactive compounds. However, this strain may also have the potential to biosynthesize more useful secondary metabolites. Here, we activated a silent biosynthetic gene cluster of an uncharacterized compound from S. lavendulae FRI-5 using heterologous expression. The engineered strain carrying the silent gene cluster produced compound 5, which was undetectable in the culture broth of S. lavendulae FRI-5. Using various spectroscopic analyses, we elucidated the chemical structure of compound 5 (named lavendiol) as a new diol-containing polyketide. The proposed assembly line of lavendiol shows a unique biosynthetic mechanism for polyketide compounds. The results of this study suggest the possibility of discovering more silent useful compounds from streptomycetes by genome mining and heterologous expression.
Collapse
Affiliation(s)
- Ivy Grace Umadhay Pait
- International Center for Biotechnology, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shigeru Kitani
- International Center for Biotechnology, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Farah Wahidah Roslan
- International Center for Biotechnology, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Dana Ulanova
- International Center for Biotechnology, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Department of Marine Resource Science, Faculty of Agriculture and Marine Science, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi, 783-8502, Japan
| | - Masayoshi Arai
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Haruo Ikeda
- Kitasato Institute for Life Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara, Kanagawa, 252-0373, Japan
| | - Takuya Nihira
- International Center for Biotechnology, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan. .,MU-OU Collaborative Research Center for Bioscience and Biotechnology, Faculty of Science, Mahidol University, Rama VI Rd, Bangkok, 10400, Thailand.
| |
Collapse
|
23
|
Biosynthesis of isonitrile lipopeptides by conserved nonribosomal peptide synthetase gene clusters in Actinobacteria. Proc Natl Acad Sci U S A 2017. [PMID: 28634299 DOI: 10.1073/pnas.1705016114] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
A putative lipopeptide biosynthetic gene cluster is conserved in many species of Actinobacteria, including Mycobacterium tuberculosis and M. marinum, but the specific function of the encoding proteins has been elusive. Using both in vivo heterologous reconstitution and in vitro biochemical analyses, we have revealed that the five encoding biosynthetic enzymes are capable of synthesizing a family of isonitrile lipopeptides (INLPs) through a thio-template mechanism. The biosynthesis features the generation of isonitrile from a single precursor Gly promoted by a thioesterase and a nonheme iron(II)-dependent oxidase homolog and the acylation of both amino groups of Lys by the same isonitrile acyl chain facilitated by a single condensation domain of a nonribosomal peptide synthetase. In addition, the deletion of INLP biosynthetic genes in M. marinum has decreased the intracellular metal concentration, suggesting the role of this biosynthetic gene cluster in metal transport.
Collapse
|
24
|
Abstract
The enzymology of 135 assembly lines containing primarily cis-acyltransferase modules is comprehensively analyzed, with greater attention paid to less common phenomena. Diverse online transformations, in which the substrate and/or product of the reaction is an acyl chain bound to an acyl carrier protein, are classified so that unusual reactions can be compared and underlying assembly-line logic can emerge. As a complement to the chemistry surrounding the loading, extension, and offloading of assembly lines that construct primarily polyketide products, structural aspects of the assembly-line machinery itself are considered. This review of assembly-line phenomena, covering the literature up to 2017, should thus be informative to the modular polyketide synthase novice and expert alike.
Collapse
Affiliation(s)
- Adrian T Keatinge-Clay
- Department of Molecular Biosciences, The University of Texas at Austin , Austin, Texas 78712, United States
| |
Collapse
|
25
|
Peng H, Wei E, Wang J, Zhang Y, Cheng L, Ma H, Deng Z, Qu X. Deciphering Piperidine Formation in Polyketide-Derived Indolizidines Reveals a Thioester Reduction, Transamination, and Unusual Imine Reduction Process. ACS Chem Biol 2016; 11:3278-3283. [PMID: 27791349 DOI: 10.1021/acschembio.6b00875] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Piperidine and indolizidine are two basic units of alkaloids that are frequently observed in natural and synthetic compounds. Their biosynthesis in natural products is highly conserved and mostly derived from the incorporation of lysine cyclization products. Through in vitro reconstitution, we herein identified a novel pathway involving a group of polyketide-derived indolizidines, which comprises the processes of tandem two-electron thioester reduction, transamination, and imine reduction to convert acyl carrier protein (ACP)-tethered polyketide chains into the piperidine moieties of their indolizidine scaffolds. The enzymes that catalyze the imine reduction are distinct from previous known imine reductases, which have a fold of acyl-CoA dehydrogenase but do not require flavin for reduction. Our results not only provide a new way for the biosynthesis of the basic units of alkaloids but also show a novel class of imine reductases that may benefit the fields of biocatalysis and biomanufacturing.
Collapse
Affiliation(s)
- Haidong Peng
- Key
Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry
of Education, School of Pharmaceutical Sciences, Wuhan University, 185
Donghu Road, Wuhan 430071, China
| | - Erman Wei
- Key
Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry
of Education, School of Pharmaceutical Sciences, Wuhan University, 185
Donghu Road, Wuhan 430071, China
| | - Jiali Wang
- Key
Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry
of Education, School of Pharmaceutical Sciences, Wuhan University, 185
Donghu Road, Wuhan 430071, China
| | - Yanan Zhang
- Key
Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry
of Education, School of Pharmaceutical Sciences, Wuhan University, 185
Donghu Road, Wuhan 430071, China
| | - Lin Cheng
- Key
Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry
of Education, School of Pharmaceutical Sciences, Wuhan University, 185
Donghu Road, Wuhan 430071, China
| | - Hongmin Ma
- Key
Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry
of Education, School of Pharmaceutical Sciences, Wuhan University, 185
Donghu Road, Wuhan 430071, China
| | - Zixin Deng
- Key
Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry
of Education, School of Pharmaceutical Sciences, Wuhan University, 185
Donghu Road, Wuhan 430071, China
| | - Xudong Qu
- Key
Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry
of Education, School of Pharmaceutical Sciences, Wuhan University, 185
Donghu Road, Wuhan 430071, China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), 200 North Zhongshan Road, Nanjing 210009, China
| |
Collapse
|
26
|
Awodi UR, Ronan JL, Masschelein J, de Los Santos ELC, Challis GL. Thioester reduction and aldehyde transamination are universal steps in actinobacterial polyketide alkaloid biosynthesis. Chem Sci 2016; 8:411-415. [PMID: 28451186 PMCID: PMC5365063 DOI: 10.1039/c6sc02803a] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 08/21/2016] [Indexed: 11/21/2022] Open
Abstract
Actinobacteria produce a variety of polyketide alkaloids with unusual structures. Recently, it was shown that a type I modular polyketide synthase (PKS) is involved in the assembly of coelimycin P1, a polyketide alkaloid produced by Streptomyces coelicolor M145. However, the mechanisms for converting the product of the PKS to coelimycin P1 remain to be elucidated. Here we show that the C-terminal thioester reductase (TR) domain of the PKS and an ω-transaminase are responsible for release of the polyketide chain as an aldehyde and its subsequent reductive amination. Bioinformatics analyses identified numerous gene clusters in actinobacterial genomes that encode modular PKSs with a C-terminal TR domain and a homolog of the ω-transaminase. These are predicted to direct the biosynthesis of both known and novel polyketide alkaloids, suggesting that reductive chain release and transamination constitutes a conserved mechanism for the biosynthesis of such metabolites.
Collapse
Affiliation(s)
- U R Awodi
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry , CV4 7AL , UK .
| | - J L Ronan
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry , CV4 7AL , UK .
| | - J Masschelein
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry , CV4 7AL , UK .
| | - E L C de Los Santos
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry , CV4 7AL , UK .
| | - G L Challis
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry , CV4 7AL , UK .
| |
Collapse
|
27
|
Abstract
A personal selection of 33 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as pseudellone A from Pseudallescheria ellipsoidea.
Collapse
|