1
|
Dhayalan V, Dodke VS, Pradeep Kumar M, Korkmaz HS, Hoffmann-Röder A, Amaladass P, Dandela R, Dhanusuraman R, Knochel P. Recent synthetic strategies for the functionalization of fused bicyclic heteroaromatics using organo-Li, -Mg and -Zn reagents. Chem Soc Rev 2024; 53:11045-11099. [PMID: 39311874 DOI: 10.1039/d4cs00369a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2024]
Abstract
This review highlights the use of functionalized organo-Li, -Mg and -Zn reagents for the construction and selective functionalization of 5- and 6-membered fused bicyclic heteroaromatics. Special attention is given to the discussion of advanced syntheses for the preparation of highly functionalized heteroaromatic scaffolds, including quinolines, naphthyridines, indoles, benzofurans, benzothiophenes, benzoxazoles, benzothiazoles, benzopyrimidines, anthranils, thienothiophenes, purine coumarins, chromones, quinolones and phthalazines and their fused heterocyclic derivatives. The organometallic reagents used for the desired functionalizations of these scaffolds are generally prepared in situ using the following methods: (i) through directed selective metalation reactions (DoM), (ii) by means of halogen/metal exchange reactions, (iii) through oxidative metal insertions (Li, Mg, Zn), and (iv) by transmetalation reactions (organo-Li and Mg transmetalations with ZnCl2 or ZnO(Piv)2). The resulting reactive organometallic reagents allow a wide range of C-C, C-N and C-X cross-coupling reactions with different electrophiles, employing in particular Kumada or Negishi protocols among other transition metal (Pd, Ni, Co, Cu, Cr, Fe, etc.)-catalyzed processes. In addition, key developments concerning selective metalation techniques will be presented, which rely on the use of RLi, LDA and TMP metal bases. These methods are now widely employed in organic synthetic chemistry and have proven to be particularly valuable for drug development programs in the pharmaceutical industry. New and improved protocols have resulted in many Li, Mg and Zn organyls now being compatible with functionalized aryl, heteroaryl, alkenyl, alkynyl and alkyl compounds even in the presence of labile functional groups, making these reagents well-suited for C(sp2)-C(sp2), C(sp2)-C(sp) and C(sp2)-C(sp3) cross-coupling reactions with fused heteroaryl halides. In addition, the use of some transition metal-catalyzed processes occasionally allows a reversed role of the reactants in cross-coupling reactions, providing alternative synthetic routes for the preparation of fused heteroaromatic-based bioactive drugs and natural products. In line with this, this article points to novel methods for the functionalization of bicyclic heteroaromatic scaffolds by organometallic reagents that have been published in the period 2010-2023.
Collapse
Affiliation(s)
- Vasudevan Dhayalan
- Department of Chemistry, National Institute of Technology Puducherry, Karaikal-609609, Union Territory Puducherry, India.
| | - Vishal S Dodke
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indian Oil Odisha Campus, IIT, Kharagpur extension Centre, Mouza Samantpuri, Bhubaneswar-751013, Odisha, India
| | - Marappan Pradeep Kumar
- Department of Chemistry, National Institute of Technology Puducherry, Karaikal-609609, Union Territory Puducherry, India.
| | - Hatice Seher Korkmaz
- Department of Chemistry, Ludwig-Maximilians-University München, Butenandtstrasse 5-13, Haus F, 81377 Munich, Germany.
| | - Anja Hoffmann-Röder
- Department of Chemistry, Ludwig-Maximilians-University München, Butenandtstrasse 5-13, Haus F, 81377 Munich, Germany.
| | - Pitchamuthu Amaladass
- Department of Chemistry, Madanapalle Institute of Technology & Science, Madanapalle 517325, Andhra Pradesh, India
| | - Rambabu Dandela
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indian Oil Odisha Campus, IIT, Kharagpur extension Centre, Mouza Samantpuri, Bhubaneswar-751013, Odisha, India
| | - Ragupathy Dhanusuraman
- Central Instrumentation Facility (CIF), School of Physical, Chemical and Applied Sciences, Pondicherry University, Puducherry-605014, India
| | - Paul Knochel
- Department of Chemistry, Ludwig-Maximilians-University München, Butenandtstrasse 5-13, Haus F, 81377 Munich, Germany.
| |
Collapse
|
2
|
Sunagatullina AS, Lutter FH, Knochel P. Preparation of Primary and Secondary Dialkylmagnesiums by a Radical I/Mg-Exchange Reaction Using sBu 2 Mg in Toluene. Angew Chem Int Ed Engl 2022; 61:e202116625. [PMID: 35044040 PMCID: PMC9302629 DOI: 10.1002/anie.202116625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Indexed: 12/04/2022]
Abstract
The treatment of primary or secondary alkyl iodides with sBu2 Mg in toluene (25-40 °C, 2-4 h) provided dialkylmagnesiums that underwent various reactions with aldehydes, ketones, acid chlorides or allylic bromides. 3-Substituted secondary cyclohexyl iodides led to all-cis-3-cyclohexylmagnesium reagents under these exchange conditions in a highly stereoconvergent manner. Enantiomerically enriched 3-silyloxy-substituted secondary alkyl iodides gave after an exchange reaction with sBu2 Mg stereodefined dialkylmagnesiums that after quenching with various electrophiles furnished various 1,3-stereodefined products including homo-aldol products (99 % dr and 98 % ee). Mechanistic studies confirmed a radical pathway for these new iodine/magnesium-exchange reactions.
Collapse
Affiliation(s)
- Alisa S. Sunagatullina
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Ferdinand H. Lutter
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Paul Knochel
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| |
Collapse
|
3
|
Sunagatullina AS, Lutter FH, Knochel P. Herstellung von primären und sekundären Dialkylmagnesiumverbindungen durch eine radikalische I/Mg‐Austauschreaktion mit
s
Bu
2
Mg in Toluol. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Alisa S. Sunagatullina
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstrasse 5–13, Haus F 81 377 München Deutschland
| | - Ferdinand H. Lutter
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstrasse 5–13, Haus F 81 377 München Deutschland
| | - Paul Knochel
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstrasse 5–13, Haus F 81 377 München Deutschland
| |
Collapse
|
4
|
Kremsmair A, Hess A, Heinz B, Knochel P. Regioselective Magnesiations and Zincations of Aromatics and Heterocycles Triggered by Lewis Acids. Chemistry 2021; 28:e202103269. [PMID: 34704653 PMCID: PMC9300163 DOI: 10.1002/chem.202103269] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Indexed: 11/11/2022]
Abstract
Mixed TMP‐bases (TMP=2,2,6,6‐tetramethylpiperidyl), such as TMPMgCl ⋅ LiCl, TMP2Mg ⋅ 2LiCl, TMPZnCl ⋅ LiCl and TMP2Zn ⋅ 2LiCl, are outstanding reagents for the metalation of functionalized aromatics and heterocycles. In the presence of Lewis acids, such as BF3 ⋅ OEt2 or MgCl2, the metalation scope of such bases was dramatically increased, and regioselectivity switches were achieved in the presence or absence of these Lewis acids. Furthermore, highly reactive lithium bases, such as TMPLi or Cy2NLi, are also compatible with various Lewis acids, such as MgCl2 ⋅ 2LiCl, ZnCl2 ⋅ 2LiCl or CuCN ⋅ 2LiCl. Performing such metalations in continuous flow using commercial setups permitted practical and convenient reaction conditions.
Collapse
Affiliation(s)
- Alexander Kremsmair
- Ludwig-Maximilians-Universität München: Ludwig-Maximilians-Universitat Munchen, Chemie und Pharmazie, GERMANY
| | - Andreas Hess
- Ludwig-Maximilians-Universität München: Ludwig-Maximilians-Universitat Munchen, Chemie und Pharmazie, GERMANY
| | - Benjamin Heinz
- Ludwig-Maximilians-Universität München: Ludwig-Maximilians-Universitat Munchen, Chemie und Pharamzie, GERMANY
| | - Paul Knochel
- Ludwig-Maximilians-Universitat Munchen, Department of Chemistry, Butenandtstr. 5-13, 81377, München, GERMANY
| |
Collapse
|
5
|
Kremsmair A, Harenberg JH, Schwärzer K, Hess A, Knochel P. Preparation and reactions of polyfunctional magnesium and zinc organometallics in organic synthesis. Chem Sci 2021; 12:6011-6019. [PMID: 33995997 PMCID: PMC8098701 DOI: 10.1039/d1sc00685a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/09/2021] [Indexed: 12/24/2022] Open
Abstract
Polyfunctional organometallics of magnesium and zinc are readily prepared from organic halides via a direct metal insertion in the presence of LiCl or a Br/Mg-exchange using iPrMgCl·LiCl (turbo-Grignard) or related reagents. Alternatively, such functionalized organometallics are prepared by metalations with TMP-bases (TMP = 2,2,6,6-tetramethylpiperidyl). The scope of these methods is described as well as applications in new Co- or Fe-catalyzed cross-couplings or aminations. It is shown that the use of a continous flow set-up considerably expands the field of applications of these methods and further allows the preparation of highly reactive organosodium reagents.
Collapse
Affiliation(s)
- Alexander Kremsmair
- Department of Chemistry, Ludwig-Maximilans-Universität München Butenandtstraße 5-13 81377 München Germany
| | - Johannes H Harenberg
- Department of Chemistry, Ludwig-Maximilans-Universität München Butenandtstraße 5-13 81377 München Germany
| | - Kuno Schwärzer
- Department of Chemistry, Ludwig-Maximilans-Universität München Butenandtstraße 5-13 81377 München Germany
| | - Andreas Hess
- Department of Chemistry, Ludwig-Maximilans-Universität München Butenandtstraße 5-13 81377 München Germany
| | - Paul Knochel
- Department of Chemistry, Ludwig-Maximilans-Universität München Butenandtstraße 5-13 81377 München Germany
| |
Collapse
|
6
|
Gong Y, Chen L, Zhang W, Salter R. Transglycosylation in the Modification and Isotope Labeling of Pyrimidine Nucleosides. Org Lett 2020; 22:5577-5581. [PMID: 32628494 DOI: 10.1021/acs.orglett.0c01941] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Transglycosylation of pyrimidine nucleosides is demonstrated in a one-pot synthesis of uridine derivatives under microwave irradiation. Inductive activation of 2',3',5'-tri-O-acetyl uridine with a 5-nitro group produces a more-reactive glycosyl donor. Under optimized Vorbrüggen conditions, the 5-nitrouridine facilitates a reversible nucleobase exchange with a series of 5-substituted uracils. The protocol is also exemplified in a gram-scale reaction under thermal heating. The strategy provides easy access to isotopically labeled uridine.
Collapse
Affiliation(s)
- Yong Gong
- Discovery Sciences, Janssen Research & Development, Johnson & Johnson, Spring House, Pennsylvania 19477, United States
| | - Lu Chen
- Discovery Sciences, Janssen Research & Development, Johnson & Johnson, Spring House, Pennsylvania 19477, United States
| | - Wei Zhang
- Discovery Sciences, Janssen Research & Development, Johnson & Johnson, Spring House, Pennsylvania 19477, United States
| | - Rhys Salter
- Discovery Sciences, Janssen Research & Development, Johnson & Johnson, Spring House, Pennsylvania 19477, United States
| |
Collapse
|
7
|
Robertson SD, Uzelac M, Mulvey RE. Alkali-Metal-Mediated Synergistic Effects in Polar Main Group Organometallic Chemistry. Chem Rev 2019; 119:8332-8405. [DOI: 10.1021/acs.chemrev.9b00047] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Stuart D. Robertson
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, U.K
| | - Marina Uzelac
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, U.K
| | - Robert E. Mulvey
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, U.K
| |
Collapse
|
8
|
Du LH, Shen JH, Dong Z, Zhou NN, Cheng BZ, Ou ZM, Luo XP. Enzymatic synthesis of nucleoside analogues from uridines and vinyl esters in a continuous-flow microreactor. RSC Adv 2018; 8:12614-12618. [PMID: 35541271 PMCID: PMC9079605 DOI: 10.1039/c8ra01030g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/19/2018] [Indexed: 02/05/2023] Open
Abstract
We achieved the effective controllable regioselective acylation of the primary hydroxyl group of uridine derivatives catalyzed by Lipase TL IM from Thermomyces lanuginosus with excellent conversion and regioselectivity. Various reaction parameters were studied. These regioselective acylations performed in continuous flow microreactors are a proof-of-concept opening the use of enzymatic microreactors in uridine derivative biotransformations. We achieved the effective controllable regioselective acylation of the primary hydroxyl group of uridine derivatives catalyzed by Lipase TL IM from Thermomyces lanuginosus with excellent conversion and regioselectivity.![]()
Collapse
Affiliation(s)
- Li-Hua Du
- College of Pharmaceutical Science
- Zhejiang University of Technology
- Hangzhou
- China
| | - Jia-Hong Shen
- College of Pharmaceutical Science
- Zhejiang University of Technology
- Hangzhou
- China
| | - Zhen Dong
- College of Pharmaceutical Science
- Zhejiang University of Technology
- Hangzhou
- China
| | - Na-Ni Zhou
- College of Pharmaceutical Science
- Zhejiang University of Technology
- Hangzhou
- China
| | - Bing-Zhuo Cheng
- College of Pharmaceutical Science
- Zhejiang University of Technology
- Hangzhou
- China
| | - Zhi-Min Ou
- College of Pharmaceutical Science
- Zhejiang University of Technology
- Hangzhou
- China
| | - Xi-Ping Luo
- Department of Environmental Science and Technology
- Zhejiang A&F University
- Hangzhou
- China
| |
Collapse
|
9
|
Rajapaksha SM, Mlsna TE, Pittman CU. A Regioselective Synthesis of 6-Alkyl- and 6-Aryluracils by Cs 2CO 3- or K 3PO 4-Promoted Dimerization of 3-Alkyl- and 3-Aryl-2-Propynamides. J Org Chem 2017; 82:5678-5688. [PMID: 28488857 DOI: 10.1021/acs.joc.7b00508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A regioselective synthesis of 6-alkyl- and 6-aryluracils was developed by the dimerization of 3-alkyl- and 3-aryl-2-propynamides promoted by either Cs2CO3 or K3PO4. A range of 3-aryl-2-propynamides, with both electron-deficient and electron-rich 3-aryl substituents, were successfully reacted in high yields. Cs+ acts as a soft Lewis acid to polarize the carbon-carbon triple bond, and solid K3PO4 interacts with carbonyl oxygen, promoting intermolecular nucleophilic attack by the only weakly nucleophilic amide nitrogen. Experiments were conducted to support the proposed mechanism.
Collapse
Affiliation(s)
- Suranga M Rajapaksha
- Department of Chemistry, Mississippi State University , Mississippi State, Mississippi 39762, United States
| | - Todd E Mlsna
- Department of Chemistry, Mississippi State University , Mississippi State, Mississippi 39762, United States
| | - Charles U Pittman
- Department of Chemistry, Mississippi State University , Mississippi State, Mississippi 39762, United States
| |
Collapse
|
10
|
Abstract
Azines, which are six-membered aromatic compounds containing one or more nitrogen atoms, serve as ubiquitous structural cores of aromatic species with important applications in biological and materials sciences. Among a variety of synthetic approaches toward azines, C-H functionalization represents the most rapid and atom-economical transformation, and it is advantageous for the late-stage functionalization of azine-containing functional molecules. Since azines have several C-H bonds with different reactivities, the development of new reactions that allow for the functionalization of azines in a regioselective fashion has comprised a central issue. This review describes recent advances in the C-H functionalization of azines categorized as follows: (1) SNAr reactions, (2) radical reactions, (3) deprotonation/functionalization, and (4) metal-catalyzed reactions.
Collapse
Affiliation(s)
- Kei Murakami
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Graduate School of Science, and ‡JST-ERATO, Itami Molecular Nanocarbon Project, Nagoya University , Chikusa, Nagoya 464-8602, Japan
| | - Shuya Yamada
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Graduate School of Science, and ‡JST-ERATO, Itami Molecular Nanocarbon Project, Nagoya University , Chikusa, Nagoya 464-8602, Japan
| | - Takeshi Kaneda
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Graduate School of Science, and ‡JST-ERATO, Itami Molecular Nanocarbon Project, Nagoya University , Chikusa, Nagoya 464-8602, Japan
| | - Kenichiro Itami
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Graduate School of Science, and ‡JST-ERATO, Itami Molecular Nanocarbon Project, Nagoya University , Chikusa, Nagoya 464-8602, Japan
| |
Collapse
|
11
|
Balkenhohl M, François C, Sustac Roman D, Quinio P, Knochel P. Transition-Metal-Free Amination of Pyridine-2-sulfonyl Chloride and Related N-Heterocycles Using Magnesium Amides. Org Lett 2017; 19:536-539. [DOI: 10.1021/acs.orglett.6b03703] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Moritz Balkenhohl
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, Haus F, 81377 Munich, Germany
| | - Cyril François
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, Haus F, 81377 Munich, Germany
| | - Daniela Sustac Roman
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, Haus F, 81377 Munich, Germany
| | - Pauline Quinio
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, Haus F, 81377 Munich, Germany
| | - Paul Knochel
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, Haus F, 81377 Munich, Germany
| |
Collapse
|
12
|
Boga SB, Christensen M, Perrotto N, Krska SW, Dreher S, Tudge MT, Ashley ER, Poirier M, Reibarkh M, Liu Y, Streckfuss E, Campeau LC, Ruck RT, Davies IW, Vachal P. Selective functionalization of complex heterocycles via an automated strong base screening platform. REACT CHEM ENG 2017. [DOI: 10.1039/c7re00057j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
An automated high throughput screening approach to optimizing strong base-mediated metalations.
Collapse
Affiliation(s)
| | | | - Nicholas Perrotto
- Department of Process Research & Development
- MRL
- Merck & Co., Inc
- Rahway
- USA
| | - Shane W. Krska
- Department of Discovery Chemistry
- MRL
- Merck & Co., Inc
- Rahway
- USA
| | - Spencer Dreher
- Department of Discovery Chemistry
- MRL
- Merck & Co., Inc
- Rahway
- USA
| | - Matthew T. Tudge
- Department of Process Research & Development
- MRL
- Merck & Co., Inc
- Rahway
- USA
| | - Eric R. Ashley
- Department of Process Research & Development
- MRL
- Merck & Co., Inc
- Rahway
- USA
| | - Marc Poirier
- Department of Process Research & Development
- MRL
- Merck & Co., Inc
- Rahway
- USA
| | - Mikhail Reibarkh
- Department of Process Research & Development
- MRL
- Merck & Co., Inc
- Rahway
- USA
| | - Yong Liu
- Department of Process Research & Development
- MRL
- Merck & Co., Inc
- Rahway
- USA
| | - Eric Streckfuss
- Department of Discovery Chemistry
- MRL
- Merck & Co., Inc
- Rahway
- USA
| | | | - Rebecca T. Ruck
- Department of Process Research & Development
- MRL
- Merck & Co., Inc
- Rahway
- USA
| | - Ian W. Davies
- Department of Process Research & Development
- MRL
- Merck & Co., Inc
- Rahway
- USA
| | - Petr Vachal
- Department of Discovery Chemistry
- MRL
- Merck & Co., Inc
- Rahway
- USA
| |
Collapse
|
13
|
Castelló-Micó A, Nafe J, Higashida K, Karaghiosoff K, Gingras M, Knochel P. Selective Metalations of 1,4-Dithiins and Condensed Analogues Using TMP-Magnesium and -Zinc Bases. Org Lett 2016; 19:360-363. [DOI: 10.1021/acs.orglett.6b03539] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Alicia Castelló-Micó
- Department
Chemie, Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, 81377 München, Germany
| | - Julia Nafe
- Department
Chemie, Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, 81377 München, Germany
| | - Kosuke Higashida
- Department
Chemie, Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, 81377 München, Germany
| | - Konstantin Karaghiosoff
- Department
Chemie, Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, 81377 München, Germany
| | - Marc Gingras
- CNRS, Aix-Marseille Université, CINAM UMR 7325, 163 Avenue de Luminy, 13288 Marseille, France
| | - Paul Knochel
- Department
Chemie, Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, 81377 München, Germany
| |
Collapse
|