1
|
Kumar M, Sharma AK, Ishu K, Singh KN. Sulfur-Mediated Decarboxylative Amidation of Cinnamic Acids via C═C Bond Cleavage. J Org Chem 2024; 89:9888-9895. [PMID: 38920263 DOI: 10.1021/acs.joc.4c00669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
A new strategy for the synthesis of amides has been developed using sulfur-mediated decarboxylative coupling of cinnamic acids with amines via oxidative cleavage of the C═C bond.
Collapse
Affiliation(s)
- Mahesh Kumar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Anup Kumar Sharma
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Km Ishu
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Krishna Nand Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
2
|
Pan B, Huang DM, Sun HT, Song SN, Su XB. Heterocyclic Boron Acid Catalyzed Dehydrative Amidation of Aliphatic/Aromatic Carboxylic Acids with Amines. J Org Chem 2023. [PMID: 36791405 DOI: 10.1021/acs.joc.2c02515] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
A commercially available and versatile dehydrative amidation catalyst, featuring a thianthrene boron acid structure, has been developed. The catalyst shows high catalytic activity to both aliphatic and less reactive aromatic carboxylic acid substrates, including several bioactive or clinical molecules with a carboxylic acid group.
Collapse
Affiliation(s)
- Bin Pan
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang 262700, China
| | - Ding-Min Huang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Hao-Tian Sun
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Sheng-Nan Song
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Xian-Bin Su
- State Key Laboratory of Material-Oriented Chemical Engineering and College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| |
Collapse
|
3
|
Gao H, Guo L, Zhu Y, Yang C, Xia W. Visible-light-induced dehydrogenative amidation of aldehydes enabled by iron salts. Chem Commun (Camb) 2023; 59:2771-2774. [PMID: 36786156 DOI: 10.1039/d2cc06507j] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
A direct dehydrogenative amidation reaction of aldehydes and amines under a visible light mediated ligand-to-metal charge transfer (LMCT) process was described. In this protocol, aldehyde substrates were activated by photoinduced hydrogen atom abstraction (HAA), generating acyl chloride intermediates followed by nucleophilic addition of amines. The synthetic method furnishes good functional group tolerance and broad substrate scope toward both aliphatic and aromatic components.
Collapse
Affiliation(s)
- Han Gao
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
| | - Lin Guo
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
| | - Yining Zhu
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
| | - Chao Yang
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
| | - Wujiong Xia
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China. .,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
4
|
Großmann LM, Beier V, Duttenhofer L, Lennartz L, Opatz T. An Iodide-Mediated Anodic Amide Coupling. Chemistry 2022; 28:e202201768. [PMID: 35835720 PMCID: PMC9804404 DOI: 10.1002/chem.202201768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Indexed: 01/05/2023]
Abstract
The ubiquity of amide bonds, present in natural products and common pharmaceuticals renders this functional group one of the most prevalent in organic chemistry. Despite its importance and a wide variety of existing methods for its formation, the latter still can be a challenge for classical activating reagents such as chloridating agents or carbodiimides. As the spent reagents often cannot be recycled, the development of more sustainable methods is highly desirable. Herein, we report an operationally simple and mild indirect electrochemical protocol to effect the condensation of carboxylic acids with amines, forming a wide variety of carboxamides.
Collapse
Affiliation(s)
- Luca Marius Großmann
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Vera Beier
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Lea Duttenhofer
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Laura Lennartz
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Till Opatz
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| |
Collapse
|
5
|
Zhang M, Zhang W, Fan X, Ma Y, Huang H, Wang X, Liu Y, Lin H, Li Y, Tian H, Shao M, Kang Z. Chiral Carbon Dots Derived from Serine with Well-Defined Structure and Enantioselective Catalytic Activity. NANO LETTERS 2022; 22:7203-7211. [PMID: 36000894 DOI: 10.1021/acs.nanolett.2c02674] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Carbon dots (C-Dots), with unique properties from tunable photoluminescence to biocompatibility, show wide applications in biotechnology, optoelectronic device and catalysis. Chiral C-Dots are expected to have strongly chirality-dependent biological and catalytic properties. For chiral C-Dots, a clear structure and quantitative structure-property relationship need to be clarified. Here, chiral C-Dots were fabricated by electrooxidation polymerization from serine enantiomers. The oxidized serine has a reversed chiral configuration to serine, which leads to the chiral C-Dots possessing inverse handedness compared with their raw materials. Electron circular dichroism spectrum, together with other diverse characterization techniques and theoretical calculations, confirmed that these chiral C-Dots (2-7 nm) have a well-defined primary structure of polycyclic dipeptide and possess a spatial structure with a c-axis of hexagonal symmetry and two cyclic dipeptides as the spatial structural unit. These chiral C-Dots also show enantioselective catalytic activity on DOPA enantiomers oxidation.
Collapse
Affiliation(s)
- Mengling Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa 999078, Macao, China
| | - Wanru Zhang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xing Fan
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Yurong Ma
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Hui Huang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Xiting Wang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Yang Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Haiping Lin
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China
| | - Youyong Li
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa 999078, Macao, China
| | - He Tian
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Mingwang Shao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Zhenhui Kang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa 999078, Macao, China
| |
Collapse
|
6
|
Alam T, Rakshit A, Dhara HN, Palai A, Patel BK. Electrochemical Amidation: Benzoyl Hydrazine/Carbazate and Amine as Coupling Partners. Org Lett 2022; 24:6619-6624. [PMID: 36069423 DOI: 10.1021/acs.orglett.2c02626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
An electrochemical amidation of benzoyl hydrazine/carbazate and primary/secondary amine as coupling partners via concomitant cleavage and formation of C(sp2)-N bonds has been achieved. This methodology proceeds under metal-free and exogenous oxidant-free conditions producing N2 and H2 as byproducts. Mechanistic studies reveal the in situ generations of both acyl and N-centered radicals from benzoyl hydrazines and amines. The utility of this protocol is demonstrated through a large-scale, and synthesis of bezafibrate, a hyperlipidemic drug.
Collapse
Affiliation(s)
- Tipu Alam
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| | - Amitava Rakshit
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| | - Hirendra Nath Dhara
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| | - Angshuman Palai
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| | - Bhisma K Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| |
Collapse
|
7
|
Ravindar L, Hasbullah SA, Hassan NI, Qin HL. Cross‐Coupling of C‐H and N‐H Bonds: a Hydrogen Evolution Strategy for the Construction of C‐N Bonds. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lekkala Ravindar
- Universiti Kebangsaan Malaysia Fakulti Teknologi dan Sains Maklumat Chemical Sciences Faculty of Science & Technology 43600 Bandar Baru Bangi MALAYSIA
| | - Siti Aishah Hasbullah
- Universiti Kebangsaan Malaysia Fakulti Sains dan Teknologi Chemical Sciences Faculty of Science & Technology 43600 Bandar Baru Bangi MALAYSIA
| | - Nurul Izzaty Hassan
- Universiti Kebangsaan Malaysia Fakulti Sains dan Teknologi Chemical Sciences Faculty of Science & Technology 43600 Bandar Baru Bangi MALAYSIA
| | - Hua-Li Qin
- Wuhan University of Technology School of Chemistry 430070 Hubei CHINA
| |
Collapse
|
8
|
Feng J, Wang Q, Duan R, Li H, Zheng K, Wang X, Xie G. A facile electrosynthesis of N-acyl benzotriazoles from aldehydes and benzotriazole. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Pokhrel T, B K B, Giri R, Adhikari A, Ahmed N. C-H Bond Functionalization under Electrochemical Flow Conditions. CHEM REC 2022; 22:e202100338. [PMID: 35315954 DOI: 10.1002/tcr.202100338] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 01/12/2023]
Abstract
Electrochemical C-H functionalization is a rapidly growing area of interest in organic synthesis. To achieve maximum atom economy, the flow electrolysis process is more sustainable. This allows shorter reaction times, safer working environments, and better selectivities. Using this technology, the problem of overoxidation can be reduced and less emergence of side products or no side products are possible. Flow electro-reactors provide high surface-to-volume ratios and contain electrodes that are closely spaced where the diffusion layers overlap to give the desired product, electrochemical processes can now be managed without the need for a deliberately added supporting electrolyte. Considering the importance of flow electrochemical C-H functionalization, a comprehensive review is presented. Herein, we summarize flow electrolysis for the construction of C-C and C-X (X=O, N, S, and I) bonds formation. Also, benzylic oxidation and access to biologically active molecules are discussed.
Collapse
Affiliation(s)
- Tamlal Pokhrel
- Central Department of Chemistry, Tribhuvan University, Kirtipur, 44618, Kathmandu, Nepal
| | - Bijaya B K
- Central Department of Chemistry, Tribhuvan University, Kirtipur, 44618, Kathmandu, Nepal
| | - Ramesh Giri
- Central Department of Chemistry, Tribhuvan University, Kirtipur, 44618, Kathmandu, Nepal
| | - Achyut Adhikari
- Central Department of Chemistry, Tribhuvan University, Kirtipur, 44618, Kathmandu, Nepal
| | - Nisar Ahmed
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, United Kingdom
| |
Collapse
|
10
|
Abstract
Inspired by the role of N-heterocyclic carbenes (NHCs) in natural enzymatic processes, chemists have harnessed the umpolung (polarity reversal) reactivity of these reactive, Lewis basic species over the past few decades to construct key chemical bonds. While NHCs continue to play a role in two-electron transformations, their unique redox properties enable a variety of useful, stabilized radical species to be accessed via single-electron oxidation or reduction. As a result, their utility in synthesis has grown rapidly concurrent with the revival of radical chemistry, highlighted by their extensive use as reactive single-electron species in recent years.
Collapse
|
11
|
Zhang B, Yang G, Guo D, Wang J. Recent developments on NHC-driven dual catalytic approaches. Org Chem Front 2022. [DOI: 10.1039/d2qo00721e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This article takes an in depth look at the early relay combination of NHC and other catalysts, and the latest progress in dual catalysis, analyzing the breakthroughs and limitations.
Collapse
Affiliation(s)
- Bei Zhang
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Gongming Yang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Donghui Guo
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Jian Wang
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
12
|
Brown RCD. The Longer Route can be Better: Electrosynthesis in Extended Path Flow Cells. CHEM REC 2021; 21:2472-2487. [PMID: 34302434 DOI: 10.1002/tcr.202100163] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/02/2021] [Indexed: 01/01/2023]
Abstract
This personal account provides an overview of work conducted in my research group, and through collaborations with other chemists and engineers, to develop flow electrolysis cells and apply these cells in organic electrosynthesis. First, a brief summary of my training and background in organic synthesis is provided, leading in to the start of flow electrosynthesis in my lab in collaboration with Derek Pletcher. Our work on the development of extended path electrolysis flow reactors is described from a synthetic organic chemist's perspective, including laboratory scale-up to give several moles of an anodic methoxylation product in one day. The importance of cell design is emphasised with regards to achieving good performance in laboratory electrosynthesis with productivities from hundreds of mg h-1 to many g h-1 , at high conversion in a selective fashion. A simple design of recycle flow cell that can be readily constructed in a small University workshop is also discussed, including simple modifications to improve cell performance. Some examples of flow electrosyntheses are provided, including Shono-type oxidation, anodic cleavage of protecting groups, Hofer-Moest reaction of cubane carboxylic acids, oxidative esterification and amidation of aldehydes, and reduction of aryl halides.
Collapse
Affiliation(s)
- Richard C D Brown
- School of Chemistry, The University of Southampton, Highfield, Southampton, SO17 1BJ, UK
| |
Collapse
|
13
|
Schotten C, Bourne RA, Kapur N, Nguyen BN, Willans CE. Electrochemical Generation of
N
‐Heterocyclic Carbenes for Use in Synthesis and Catalysis. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
| | - Richard A. Bourne
- School of Chemical and Process Engineering University of Leeds Leeds LS2 9JT UK
| | - Nikil Kapur
- School of Mechanical Engineering University of Leeds Leeds LS2 9JT UK
| | - Bao N. Nguyen
- School of Chemistry University of Leeds Leeds LS2 9JT UK
| | | |
Collapse
|
14
|
Abstract
Abstract
In this work, we present a novel method for the synthesis of ester and amide derivatives containing furan rings (furfural derivatives) under mild synthetic conditions supported by microwave radiation. N-(Furan-2-ylmethyl)furan-2-carboxamide and furan-2-ylmethyl furan-2-carboxylate were produced using 2-furoic acid, furfurylamine, and furfuryl alcohol. The reactions were carried out in a microwave reactor in the presence of effective coupling reagents: DMT/NMM/TsO− or EDC. The reaction time, the solvent, and the amounts of the substrates were optimized. After crystallization or flash chromatography, the final compounds were isolated with good or very good yields. Our method allows for the synthesis of N-blocked amides using N-blocked amino acids (Boc, Cbz, Fmoc) and amine. As well as compounds with a monoamide and ester moiety, products with diamides and diester bonds (N,N-bis(furan-2-ylmethyl)furan-2,5-dicarboxamide, bis(furan-2-ylmethyl) furan-2,5-dicarboxylate, and furan-3,4-diylbis(methylene) bis(furan-2-carboxylate)) were synthesized with moderate yields in the presence of DMT/NMM/TsO– or EDC, using 2,5-furandicarboxylic acid and 3,4-bis(hydroxymethyl)furan as substrates.
Collapse
|
15
|
Dagar N, Sen PP, Roy SR. Electrifying Sustainability on Transition Metal-Free Modes: An Eco-Friendly Approach for the Formation of C-N Bonds. CHEMSUSCHEM 2021; 14:1229-1257. [PMID: 33373494 DOI: 10.1002/cssc.202002567] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/28/2020] [Indexed: 06/12/2023]
Abstract
Embracing sustainable green methodologies and techniques in chemical transformations has always been in the limelight to the synthetic community. Electrosynthesis has emerged as a powerful, sustainable synthetic tool for molecular synthesis exploiting inexpensive electricity in place of sacrificial chemical oxidizing/reducing reagents. Herein, recent advances in the incorporation of transition metal-free redox mediators in electrosynthesis for the construction of C-N bonds are outlined. Furthermore, conjugation of this strategy with flow catalysis allows easy scale up of the synthesis of molecular assembly. This comprehensive Review provides an overview of metal-free mediated electro-construction of C-N bonds, focusing on the reaction mechanisms involved and its synthetic applications.
Collapse
Affiliation(s)
- Neha Dagar
- Department of Chemistry, Indian Institute of Technology Delhi, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Partha Pratim Sen
- Department of Chemistry, Indian Institute of Technology Delhi, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Sudipta Raha Roy
- Department of Chemistry, Indian Institute of Technology Delhi, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| |
Collapse
|
16
|
Ragno D, Brandolese A, Di Carmine G, Buoso S, Belletti G, Leonardi C, Bortolini O, Bertoldo M, Massi A. Exploring Oxidative NHC-Catalysis as Organocatalytic Polymerization Strategy towards Polyamide Oligomers. Chemistry 2021; 27:1839-1848. [PMID: 32986909 DOI: 10.1002/chem.202004296] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Indexed: 01/06/2023]
Abstract
The polycondensation of diamines and dialdehydes promoted by an N-heterocyclic carbene (NHC) catalyst in the presence of a quinone oxidant and hexafluoro-2-propanol (HFIP) is herein presented for the synthesis of oligomeric polyamides (PAs), which are obtained with a number-average molecular weight (Mn ) in the range of 1.7-3.6 kg mol-1 as determined by NMR analysis. In particular, the utilization of furanic dialdehyde monomers (2,5-diformylfuran, DFF; 5,5'-[oxybis(methylene)]bis[2-furaldehyde], OBFA) to access known and previously unreported biobased PAs is illustrated. The synthesis of higher molecular weight PAs (poly(decamethylene terephthalamide, PA10T, Mn = 62.8 kg mol-1 ; poly(decamethylene 2,5-furandicarboxylamide, PA10F, Mn = 6.5 kg mol-1 ) by a two-step polycondensation approach is also described. The thermal properties (TGA and DSC analyses) of the synthesized PAs are reported.
Collapse
Affiliation(s)
- Daniele Ragno
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via L. Borsari, 46, 44121, Ferrara, Italy
| | - Arianna Brandolese
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via L. Borsari, 46, 44121, Ferrara, Italy
| | - Graziano Di Carmine
- School of Chemical Engineering and Analytical Science, The University of Manchester, The Mill, Sackville Street, Manchester, M13 9PL, UK
| | - Sara Buoso
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti, 101-40129, Bologna, Italy
| | - Giada Belletti
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via L. Borsari, 46, 44121, Ferrara, Italy
| | - Costanza Leonardi
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via L. Borsari, 46, 44121, Ferrara, Italy
| | - Olga Bortolini
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via L. Borsari, 46, 44121, Ferrara, Italy
| | - Monica Bertoldo
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via L. Borsari, 46, 44121, Ferrara, Italy
| | - Alessandro Massi
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via L. Borsari, 46, 44121, Ferrara, Italy
| |
Collapse
|
17
|
Neyt NC, Riley DL. Application of reactor engineering concepts in continuous flow chemistry: a review. REACT CHEM ENG 2021. [DOI: 10.1039/d1re00004g] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The adoption of flow technology for the manufacture of chemical entities, and in particular pharmaceuticals, has seen rapid growth over the past two decades with the technology now blurring the lines between chemistry and chemical engineering.
Collapse
Affiliation(s)
- Nicole C. Neyt
- Faculty of Natural and Agricultural Sciences
- Department of Chemistry
- University of Pretoria
- South Africa
| | - Darren L. Riley
- Faculty of Natural and Agricultural Sciences
- Department of Chemistry
- University of Pretoria
- South Africa
| |
Collapse
|
18
|
Singh A, Narula AK. N-Heterocyclic carbene (NHC) catalyzed amidation of aldehydes with amines via the tandem N-hydroxysuccinimide ester formation. NEW J CHEM 2021. [DOI: 10.1039/d1nj00591j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A novel methodology for the construction of a wide variety of mono and di-substituted amides is developed, that utilizes readily available, non-hazardous, and cheaper starting reagents and simple imidazolium-based N-heterocyclic carbenes.
Collapse
Affiliation(s)
- Ashmita Singh
- University School Of Basic and Applied Sciences (USBAS)
- Guru Gobind Singh Indraprastha University
- Sector – 16 Dwarka
- India
| | - A. K. Narula
- University School Of Basic and Applied Sciences (USBAS)
- Guru Gobind Singh Indraprastha University
- Sector – 16 Dwarka
- India
| |
Collapse
|
19
|
Jones AM. Dialling-In New Reactivity into the Shono-Type Anodic Oxidation Reaction. CHEM REC 2020; 21:2120-2129. [PMID: 33146948 DOI: 10.1002/tcr.202000116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 11/08/2022]
Abstract
This Personal Account describes the author's groups' research in the field of electrosynthetic anodic oxidation, beginning with initial trial and error attempts with the Shono oxidation. Early setbacks with complex rotameric amide mixtures, provided the ideal environment for the discovery of the Oxa-Shono reaction-Osp 2 -Csp 3 bond cleavage of esters-providing two useful products in one-step: aldehyde selective oxidation level products and a mild de-esterification method to afford carboxylic acids in the process. The development of the Oxa-Shono reaction provided the impetus for the discovery of other electrically propelled-Nsp 2 -Csp 2 and Nsp 2 -Csp 3 -bond breaking reactions in bioactive amide and sulfonamide systems. Understanding the voltammetric behaviour of the molecule under study, switching between controlled current- or controlled potential- electrolysis, and restricting electron flow (the reagent), affords exquisite control over the reaction outcomes in batch and flow. Importantly, this bio-inspired advance in electrosynthetic dealkylation chemistry mimics the metabolic outcomes observed in nature.
Collapse
Affiliation(s)
- Alan M Jones
- School of Pharmacy, University of Birmingham Edgbaston, Birmingham, B15 2TT, United Kingdom
| |
Collapse
|
20
|
Chen KQ, Sheng H, Liu Q, Shao PL, Chen XY. N-heterocyclic carbene-catalyzed radical reactions. Sci China Chem 2020. [DOI: 10.1007/s11426-020-9851-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
21
|
Liu C, Xiao Z, Wu S, Shen Y, Yuan K, Ding Y. Anodically Triggered Aldehyde Cation Autocatalysis for Alkylation of Heteroarenes. CHEMSUSCHEM 2020; 13:1997-2001. [PMID: 31958207 DOI: 10.1002/cssc.201903397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/19/2020] [Indexed: 06/10/2023]
Abstract
Alkylation of heteroarenes by using aldehydes is a direct approach to increase molecular complexity, which however often involves the use of stochiometric oxidant, strong acid, and high temperature. This study concerns an energy-efficient electrochemical alkylation of heteroarenes by using aldehydes under mild conditions without mediators. Interestingly, the graphite anode can trigger aldehyde cationic species, which act as the effective autocatalysts to react with a range of heteroarenes to produce the corresponding products with excellent regioselectivity and in high yields. Compared to the traditional electro-synthesis approaches, this electro-triggered reaction provides an electricity-saving and eco-friendly route to high-value chemicals.
Collapse
Affiliation(s)
- Caiyan Liu
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, No. 391 Bin Shui Xi Dao Road, Xiqing District, Tianjin, 300384, P.R. China
| | - Zihui Xiao
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, No. 391 Bin Shui Xi Dao Road, Xiqing District, Tianjin, 300384, P.R. China
| | - Shuhua Wu
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, No. 391 Bin Shui Xi Dao Road, Xiqing District, Tianjin, 300384, P.R. China
| | - Yongli Shen
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, No. 391 Bin Shui Xi Dao Road, Xiqing District, Tianjin, 300384, P.R. China
| | - Kedong Yuan
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, No. 391 Bin Shui Xi Dao Road, Xiqing District, Tianjin, 300384, P.R. China
| | - Yi Ding
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, No. 391 Bin Shui Xi Dao Road, Xiqing District, Tianjin, 300384, P.R. China
| |
Collapse
|
22
|
Brandolese A, Ragno D, Leonardi C, Di Carmine G, Bortolini O, De Risi C, Massi A. Enantioselective N
-Acylation of Biginelli Dihydropyrimidines by Oxidative NHC Catalysis. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Arianna Brandolese
- Department of Chemical and Pharmaceutical Sciences; University of Ferrara; Via L. Borsari, 46 44121 Ferrara Italy
| | - Daniele Ragno
- Department of Chemical and Pharmaceutical Sciences; University of Ferrara; Via L. Borsari, 46 44121 Ferrara Italy
| | - Costanza Leonardi
- Department of Chemical and Pharmaceutical Sciences; University of Ferrara; Via L. Borsari, 46 44121 Ferrara Italy
| | - Graziano Di Carmine
- School of Chemical Engineering and Analytical Science; The University of Manchester; M13 9PL Manchester UK
| | - Olga Bortolini
- Department of Chemical and Pharmaceutical Sciences; University of Ferrara; Via L. Borsari, 46 44121 Ferrara Italy
| | - Carmela De Risi
- Department of Chemical and Pharmaceutical Sciences; University of Ferrara; Via L. Borsari, 46 44121 Ferrara Italy
| | - Alessandro Massi
- Department of Chemical and Pharmaceutical Sciences; University of Ferrara; Via L. Borsari, 46 44121 Ferrara Italy
| |
Collapse
|
23
|
Collin DE, Folgueiras‐Amador AA, Pletcher D, Light ME, Linclau B, Brown RCD. Cubane Electrochemistry: Direct Conversion of Cubane Carboxylic Acids to Alkoxy Cubanes Using the Hofer-Moest Reaction under Flow Conditions. Chemistry 2020; 26:374-378. [PMID: 31593312 PMCID: PMC6973092 DOI: 10.1002/chem.201904479] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Indexed: 12/12/2022]
Abstract
The highly strained cubane system is of great interest as a scaffold and rigid linker in both pharmaceutical and materials chemistry. The first electrochemical functionalisation of cubane by oxidative decarboxylative ether formation (Hofer-Moest reaction) was demonstrated. The mild conditions are compatible with the presence of other oxidisable functional groups, and the use of flow electrochemical conditions allows straightforward upscaling.
Collapse
Affiliation(s)
- Diego E. Collin
- School of ChemistryUniversity of SouthamptonHighfield, SouthamptonSO17 1BJUK
| | | | - Derek Pletcher
- School of ChemistryUniversity of SouthamptonHighfield, SouthamptonSO17 1BJUK
| | - Mark E. Light
- School of ChemistryUniversity of SouthamptonHighfield, SouthamptonSO17 1BJUK
| | - Bruno Linclau
- School of ChemistryUniversity of SouthamptonHighfield, SouthamptonSO17 1BJUK
| | - Richard C. D. Brown
- School of ChemistryUniversity of SouthamptonHighfield, SouthamptonSO17 1BJUK
| |
Collapse
|
24
|
Xu J, Yang Z, Hua J, Lin Y, Bian M, Li Y, Liu C, He W, Fang Z, Guo K. The continuous-flow electrosynthesis of 4-(sulfonylmethyl)isoquinoline-1,3(2H,4H)-diones from N-alkyl-N-methacryloyl benzamides under metal-free and oxidant-free conditions. Org Chem Front 2020. [DOI: 10.1039/d0qo00909a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
An efficient and green electrochemical continuous flow approach has been developed for the synthesis of 4-(sulfonylmethyl)isoquinoline-1,3(2H,4H)-diones through sulfonylation of alkenes under metal-free and oxidant-free conditions.
Collapse
Affiliation(s)
- Jia Xu
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Zhao Yang
- College of Engineering
- China Pharmaceutical University
- Nanjing 210003
- China
| | - Jiawei Hua
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Yang Lin
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Mixue Bian
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Yuguang Li
- Institute of Nanjing Advanced Biomaterials &Processing Equipment
- Nanjing 211200
- China
| | - Chengkou Liu
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Wei He
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
- State Key Laboratory of Materials-Oriented Chemical Engineering
| |
Collapse
|
25
|
Kong WJ, Finger LH, Messinis AM, Kuniyil R, Oliveira JCA, Ackermann L. Flow Rhodaelectro-Catalyzed Alkyne Annulations by Versatile C-H Activation: Mechanistic Support for Rhodium(III/IV). J Am Chem Soc 2019; 141:17198-17206. [PMID: 31549815 DOI: 10.1021/jacs.9b07763] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A flow-metallaelectro-catalyzed C-H activation was realized in terms of robust rhodaelectro-catalyzed alkyne annulations. To this end, a modular electro-flow cell with a porous graphite felt anode was designed to ensure efficient turnover. Thereby, a variety of C-H/N-H functionalizations proved amenable for alkyne annulations with high levels of regioselectivity and functional group tolerance, viable in both an inter- or intramolecular manner. The electro-flow C-H activation allowed easy scale up, while in-operando kinetic analysis was accomplished by online flow-NMR spectroscopy. Mechanistic studies suggest an oxidatively induced reductive elimination pathway on rhodium(III) in an electrocatalytic regime.
Collapse
Affiliation(s)
- Wei-Jun Kong
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstrasse 2 , 37077 Göttingen , Germany
| | - Lars H Finger
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstrasse 2 , 37077 Göttingen , Germany
| | - Antonis M Messinis
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstrasse 2 , 37077 Göttingen , Germany
| | - Rositha Kuniyil
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstrasse 2 , 37077 Göttingen , Germany
| | - João C A Oliveira
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstrasse 2 , 37077 Göttingen , Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstrasse 2 , 37077 Göttingen , Germany
| |
Collapse
|
26
|
Direct electrochemical oxidation of alcohols with hydrogen evolution in continuous-flow reactor. Nat Commun 2019; 10:2796. [PMID: 31243290 PMCID: PMC6594969 DOI: 10.1038/s41467-019-10928-0] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 06/06/2019] [Indexed: 01/10/2023] Open
Abstract
Alcohol oxidation reactions are widely used for the preparation of aldehydes and ketones. The electrolysis of alcohols to carbonyl compounds have been underutilized owing to low efficiency. Herein, we report an electrochemical oxidation of various alcohols in a continuous-flow reactor without external oxidants, base or mediators. The robust electrochemical oxidation is performed for a variety of alcohols with good functional group tolerance, high efficiency and atom economy, whereas mechanistic studies support the benzylic radical intermediate formation and hydrogen evolution. The electrochemical oxidation proves viable on diols with excellent levels of selectivity for the benzylic position.
Collapse
|
27
|
Sayyar R, Makarem S, Mirza B. Organic Electrosynthesis as a New Facile and Green Method for One‐pot Synthesis of Nanosized Particles of Octahydro‐imidazo[1,2‐
a
]quinolin‐6‐one Derivatives
via
a Multicomponent Reaction. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3562] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Rana Sayyar
- Department of Chemistry, Karaj BranchIslamic Azad University Karaj Iran
| | - Somayeh Makarem
- Department of Chemistry, Karaj BranchIslamic Azad University Karaj Iran
| | - Behrooz Mirza
- Department of Chemistry, Karaj BranchIslamic Azad University Karaj Iran
| |
Collapse
|
28
|
Wang H, Gao X, Lv Z, Abdelilah T, Lei A. Recent Advances in Oxidative R 1-H/R 2-H Cross-Coupling with Hydrogen Evolution via Photo-/Electrochemistry. Chem Rev 2019; 119:6769-6787. [PMID: 31074264 DOI: 10.1021/acs.chemrev.9b00045] [Citation(s) in RCA: 457] [Impact Index Per Article: 76.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photo-/electrochemical catalyzed oxidative R1-H/R2-H cross-coupling with hydrogen evolution has become an increasingly important issue for molecular synthesis. The dream of construction of C-C/C-X bonds from readily available C-H/X-H with release of H2 can be facilely achieved without external chemical oxidants, providing a greener model for chemical bond formation. Given the great influence of these reactions in organic chemistry, we give a summary of the state of the art in oxidative R1-H/R2-H cross-coupling with hydrogen evolution via photo/electrochemistry, and we hope this review will stimulate the development of a greener synthetic strategy in the near future.
Collapse
Affiliation(s)
- Huamin Wang
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Xinlong Gao
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Zongchao Lv
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Takfaoui Abdelilah
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Aiwen Lei
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China.,National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
29
|
Huang C, Qian XY, Xu HC. Continuous-Flow Electrosynthesis of Benzofused S-Heterocycles by Dehydrogenative C-S Cross-Coupling. Angew Chem Int Ed Engl 2019; 58:6650-6653. [PMID: 30908799 DOI: 10.1002/anie.201901610] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Indexed: 12/20/2022]
Abstract
Reported herein is the synthesis of benzofused six-membered S-heterocycles by intramolecular dehydrogenative C-S coupling using a modular flow electrolysis cell. The continuous-flow electrosynthesis not only ensures efficient product formation, but also obviates the need for transition-metal catalysts, oxidizing reagents, and supporting electrolytes. Reaction scale-up is conveniently achieved through extended electrolysis without changing the reaction conditions and equipment.
Collapse
Affiliation(s)
- Chong Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Xiang-Yang Qian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Hai-Chao Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
30
|
Huang C, Qian X, Xu H. Continuous‐Flow Electrosynthesis of Benzofused S‐Heterocycles by Dehydrogenative C−S Cross‐Coupling. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901610] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Chong Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEMCollege of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P. R. China
| | - Xiang‐Yang Qian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEMCollege of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P. R. China
| | - Hai‐Chao Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEMCollege of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P. R. China
| |
Collapse
|
31
|
Bogdan AR, Dombrowski AW. Emerging Trends in Flow Chemistry and Applications to the Pharmaceutical Industry. J Med Chem 2019; 62:6422-6468. [DOI: 10.1021/acs.jmedchem.8b01760] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Andrew R. Bogdan
- Discovery Chemistry and Technology, AbbVie, Inc. 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Amanda W. Dombrowski
- Discovery Chemistry and Technology, AbbVie, Inc. 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| |
Collapse
|
32
|
Affiliation(s)
- Jian Deng
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering; Tsinghua University; Beijing 100084 China
| | - Jisong Zhang
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering; Tsinghua University; Beijing 100084 China
| | - Kai Wang
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering; Tsinghua University; Beijing 100084 China
| | - Guangsheng Luo
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering; Tsinghua University; Beijing 100084 China
| |
Collapse
|
33
|
Abstract
N-heterocyclic carbene organocatalysis under oxidizing conditions provides a vast range of various synthetic procedures via diverse mechanisms. The available catalysts, bases, oxidants, and oxidizing methods afford numerous opportunities for developing this branch of organocatalysis. Furthermore, implementation of tandem reactions and cooperative catalysis in the described methodology significantly expands the possibilities of modern organic chemistry. This approach allows the synthesis of different structurally complex and often enantiomerically enriched substances, which can be interesting in terms of biological activity and natural product synthesis. Many esters, amides, thioesters, lactams, lactones, and other cyclic compounds obtained in oxidative or oxygenative reactions promoted by N-heterocyclic carbenes can be interesting precursors in advanced organic synthesis. Sophistication and broad applicability prove that the described synthetic approaches are exceptionally worthy of further development.
Collapse
|
34
|
Tang S, Zeng L, Lei A. Oxidative R 1-H/R 2-H Cross-Coupling with Hydrogen Evolution. J Am Chem Soc 2018; 140:13128-13135. [PMID: 30260638 DOI: 10.1021/jacs.8b07327] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Oxidative R1-H/R2-H cross-coupling with hydrogen evolution serves as one of the most atom-economical methods for constructing new chemical bonds. This reaction strategy avoids substrate prefunctionalization steps in traditional cross-coupling reactions. Besides, hydrogen gas, which is recognized as a source of green energy, is the only byproduct during the reaction process. The major challenge in this reaction strategy is to achieve selective bond formation and hydrogen evolution at the same time. Over the past few years, novel synthetic techniques especially photochemistry and electrochemistry have provided possibilities for oxidative cross-coupling with H2 liberation. Both C-C and C-X bonds can be constructed without the use of any sacrificial reagents. In this perspective, we will discuss the concept of this reaction strategy and give an overview of its recent development.
Collapse
Affiliation(s)
- Shan Tang
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS) , Wuhan University , Wuhan 430072 , People's Republic of China
| | - Li Zeng
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS) , Wuhan University , Wuhan 430072 , People's Republic of China
| | - Aiwen Lei
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS) , Wuhan University , Wuhan 430072 , People's Republic of China.,National Research Center for Carbohydrate Synthesis , Jiangxi Normal University , Nanchang 330027 , People's Republic of China
| |
Collapse
|
35
|
Ta L, Axelsson A, Sundén H. N-Acylation of Oxazolidinones via Aerobic Oxidative NHC Catalysis. J Org Chem 2018; 83:12261-12268. [DOI: 10.1021/acs.joc.8b01723] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Linda Ta
- Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, 412 96 Göteborg, Sweden
| | - Anton Axelsson
- Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, 412 96 Göteborg, Sweden
| | - Henrik Sundén
- Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, 412 96 Göteborg, Sweden
| |
Collapse
|
36
|
Yu TY, Zheng ZJ, Dang TT, Zhang FX, Wei H. Synthesis of Acyl Azides from 1,3-Diketones via Oxidative Cleavage of Two C–C Bonds. J Org Chem 2018; 83:10589-10594. [DOI: 10.1021/acs.joc.8b01417] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tian-Yang Yu
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P.R. China
| | - Zhao-Jing Zheng
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Tong-Tong Dang
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P.R. China
| | - Fang-Xia Zhang
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P.R. China
| | - Hao Wei
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P.R. China
| |
Collapse
|
37
|
Kärkäs MD. Electrochemical strategies for C-H functionalization and C-N bond formation. Chem Soc Rev 2018; 47:5786-5865. [PMID: 29911724 DOI: 10.1039/c7cs00619e] [Citation(s) in RCA: 627] [Impact Index Per Article: 89.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Conventional methods for carrying out carbon-hydrogen functionalization and carbon-nitrogen bond formation are typically conducted at elevated temperatures, and rely on expensive catalysts as well as the use of stoichiometric, and perhaps toxic, oxidants. In this regard, electrochemical synthesis has recently been recognized as a sustainable and scalable strategy for the construction of challenging carbon-carbon and carbon-heteroatom bonds. Here, electrosynthesis has proven to be an environmentally benign, highly effective and versatile platform for achieving a wide range of nonclassical bond disconnections via generation of radical intermediates under mild reaction conditions. This review provides an overview on the use of anodic electrochemical methods for expediting the development of carbon-hydrogen functionalization and carbon-nitrogen bond formation strategies. Emphasis is placed on methodology development and mechanistic insight and aims to provide inspiration for future synthetic applications in the field of electrosynthesis.
Collapse
Affiliation(s)
- Markus D Kärkäs
- Department of Chemistry, Organic Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| |
Collapse
|
38
|
Möhle S, Zirbes M, Rodrigo E, Gieshoff T, Wiebe A, Waldvogel SR. Modern Electrochemical Aspects for the Synthesis of Value-Added Organic Products. Angew Chem Int Ed Engl 2018; 57:6018-6041. [PMID: 29359378 PMCID: PMC6001547 DOI: 10.1002/anie.201712732] [Citation(s) in RCA: 636] [Impact Index Per Article: 90.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Indexed: 11/11/2022]
Abstract
The use of electricity instead of stoichiometric amounts of oxidizers or reducing agents in synthesis is very appealing for economic and ecological reasons, and represents a major driving force for research efforts in this area. To use electron transfer at the electrode for a successful transformation in organic synthesis, the intermediate radical (cation/anion) has to be stabilized. Its combination with other approaches in organic chemistry or concepts of contemporary synthesis allows the establishment of powerful synthetic methods. The aim in the 21st Century will be to use as little fossil carbon as possible and, for this reason, the use of renewable sources is becoming increasingly important. The direct conversion of renewables, which have previously mainly been incinerated, is of increasing interest. This Review surveys many of the recent seminal important developments which will determine the future of this dynamic emerging field.
Collapse
Affiliation(s)
- Sabine Möhle
- Institut für Organische ChemieJohannes Gutenberg-Universität MainzDuesbergweg 10–1455128MainzGermany
| | - Michael Zirbes
- Institut für Organische ChemieJohannes Gutenberg-Universität MainzDuesbergweg 10–1455128MainzGermany
| | - Eduardo Rodrigo
- Institut für Organische ChemieJohannes Gutenberg-Universität MainzDuesbergweg 10–1455128MainzGermany
| | - Tile Gieshoff
- Institut für Organische ChemieJohannes Gutenberg-Universität MainzDuesbergweg 10–1455128MainzGermany
- Graduate School Materials Science in MainzStaudingerweg 955128MainzGermany
| | - Anton Wiebe
- Institut für Organische ChemieJohannes Gutenberg-Universität MainzDuesbergweg 10–1455128MainzGermany
- Max Planck Graduate CenterStaudingerweg 955128MainzGermany
| | - Siegfried R. Waldvogel
- Institut für Organische ChemieJohannes Gutenberg-Universität MainzDuesbergweg 10–1455128MainzGermany
- Graduate School Materials Science in MainzStaudingerweg 955128MainzGermany
- Max Planck Graduate CenterStaudingerweg 955128MainzGermany
| |
Collapse
|
39
|
Möhle S, Zirbes M, Rodrigo E, Gieshoff T, Wiebe A, Waldvogel SR. Moderne Aspekte der Elektrochemie zur Synthese hochwertiger organischer Produkte. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201712732] [Citation(s) in RCA: 204] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Sabine Möhle
- Institut für Organische Chemie Johannes-Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Deutschland
| | - Michael Zirbes
- Institut für Organische Chemie Johannes-Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Deutschland
| | - Eduardo Rodrigo
- Institut für Organische Chemie Johannes-Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Deutschland
| | - Tile Gieshoff
- Institut für Organische Chemie Johannes-Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Deutschland
- Graduate School Materials Science in Mainz Staudingerweg 9 55128 Mainz Deutschland
| | - Anton Wiebe
- Institut für Organische Chemie Johannes-Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Deutschland
- Max Planck Graduate Center Staudingerweg 9 55128 Mainz Deutschland
| | - Siegfried R. Waldvogel
- Institut für Organische Chemie Johannes-Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Deutschland
- Graduate School Materials Science in Mainz Staudingerweg 9 55128 Mainz Deutschland
- Max Planck Graduate Center Staudingerweg 9 55128 Mainz Deutschland
| |
Collapse
|
40
|
Abstract
Transient temperature and flowrates in continuous flow reaction systems allows for the rapid generation of kinetic data.
Collapse
Affiliation(s)
- Kosi C. Aroh
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
| | - Klavs F. Jensen
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
| |
Collapse
|
41
|
Electrochemical Oxidative Cross-coupling with Hydrogen Evolution: A Green and Sustainable Way for Bond Formation. Chem 2018. [DOI: 10.1016/j.chempr.2017.10.001] [Citation(s) in RCA: 535] [Impact Index Per Article: 76.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Ghosh S, Jana CK. Metal-Free Thermal Activation of Molecular Oxygen Enabled Direct α-CH 2-Oxygenation of Free Amines. J Org Chem 2017; 83:260-266. [PMID: 29182340 DOI: 10.1021/acs.joc.7b02630] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Direct oxidation of α-CH2 group of free amines is hard to achieve due to the higher reactivity of amine moiety. Therefore, oxidation of amines involves the use of sophisticated metallic reagents/catalyst in the presence or absence of hazardous oxidants under sensitive reaction conditions. A novel method for direct C-H oxygenation of aliphatic amines through a metal-free activation of molecular oxygen has been developed. Both activated and unactivated free amines were oxygenated efficiently to provide a wide variety of amides (primary, secondary) and lactams under operationally simple conditions without the aid of metallic reagents and toxic oxidants. The method has been applied to the synthesis of highly functionalized amide-containing medicinal drugs, such as O-Me-alibendol and -buclosamide.
Collapse
Affiliation(s)
- Santanu Ghosh
- Department of Chemistry, Indian Institute of Technology Guwahati , Guwahati, India 781039
| | - Chandan K Jana
- Department of Chemistry, Indian Institute of Technology Guwahati , Guwahati, India 781039
| |
Collapse
|
43
|
Okada Y, Chiba K. Redox-Tag Processes: Intramolecular Electron Transfer and Its Broad Relationship to Redox Reactions in General. Chem Rev 2017; 118:4592-4630. [PMID: 29218989 DOI: 10.1021/acs.chemrev.7b00400] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Explosive growth in the use of open shell reactivity, including neutral radicals and radical ions, in the field of synthetic organic chemistry has been observed in the past decade, particularly since the advent of ruthenium complexes in 2008. These complexes generally induce single-electron transfer (SET) processes via visible-light absorption. Additionally, recent significant advancements in organic electrochemistry involving SET processes to provide open shell reactivity offer a complementary method to traditional polarity-driven reactions described by two-electron transfer processes. In this Review, we highlight the importance of intramolecular SET processes in the field of synthetic organic chemistry, which seem to be more elusive than the intermolecular versions, since they are net redox-neutral and thus cannot simply be regarded as oxidations or reductions. Such intramolecular SET processes can rationally be understood in combination with concomitant bond formations and/or cleavages, and are regulated by a structural motif that we call a "redox tag." In order to describe modern radical-driven reactions involving SET processes, we focus on a classical formalism in which electrons are treated as particles rather than waves, which offers a practical yet powerful approach to explain and/or predict synthetic outcomes.
Collapse
Affiliation(s)
- Yohei Okada
- Department of Chemical Engineering , Tokyo University of Agriculture and Technology , 2-24-16 Naka-cho , Koganei, Tokyo 184-8588 , Japan
| | - Kazuhiro Chiba
- Department of Applied Biological Science , Tokyo University of Agriculture and Technology , 3-5-8 Saiwai-cho , Fuchu, Tokyo 183-8509 , Japan
| |
Collapse
|
44
|
Mane RS, Bhanage BM. Ligand-Assisted Pd-Catalyzed N-Dealkylative Carbonylation of Tertiary Amines with (Hetero)Aryl Halides to Tertiary Amides. ASIAN J ORG CHEM 2017. [DOI: 10.1002/ajoc.201700574] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Rajendra S. Mane
- Department of Chemistry; Institute of Chemical Technology; Mumbai 400019 India
| | | |
Collapse
|
45
|
Folgueiras‐Amador AA, Philipps K, Guilbaud S, Poelakker J, Wirth T. An Easy-to-Machine Electrochemical Flow Microreactor: Efficient Synthesis of Isoindolinone and Flow Functionalization. Angew Chem Int Ed Engl 2017; 56:15446-15450. [PMID: 29045019 PMCID: PMC5708274 DOI: 10.1002/anie.201709717] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Indexed: 01/23/2023]
Abstract
Flow electrochemistry is an efficient methodology to generate radical intermediates. An electrochemical flow microreactor has been designed and manufactured to improve the efficiency of electrochemical flow reactions. With this device only little or no supporting electrolytes are needed, making processes less costly and enabling easier purification. This is demonstrated by the facile synthesis of amidyl radicals used in intramolecular hydroaminations to produce isoindolinones. The combination with inline mass spectrometry facilitates a much easier combination of chemical steps in a single flow process.
Collapse
Affiliation(s)
| | - Kai Philipps
- School of ChemistryCardiff UniversityPark Place, Main BuildingCardiffCF10 3ATUK
| | - Sébastien Guilbaud
- School of ChemistryCardiff UniversityPark Place, Main BuildingCardiffCF10 3ATUK
| | - Jarno Poelakker
- School of ChemistryCardiff UniversityPark Place, Main BuildingCardiffCF10 3ATUK
| | - Thomas Wirth
- School of ChemistryCardiff UniversityPark Place, Main BuildingCardiffCF10 3ATUK
| |
Collapse
|
46
|
Yan M, Kawamata Y, Baran PS. Synthetic Organic Electrochemical Methods Since 2000: On the Verge of a Renaissance. Chem Rev 2017; 117:13230-13319. [PMID: 28991454 PMCID: PMC5786875 DOI: 10.1021/acs.chemrev.7b00397] [Citation(s) in RCA: 2098] [Impact Index Per Article: 262.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Electrochemistry represents one of the most intimate ways of interacting with molecules. This review discusses advances in synthetic organic electrochemistry since 2000. Enabling methods and synthetic applications are analyzed alongside innate advantages as well as future challenges of electroorganic chemistry.
Collapse
Affiliation(s)
| | | | - Phil S. Baran
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
47
|
Folgueiras-Amador AA, Philipps K, Guilbaud S, Poelakker J, Wirth T. Ein einfach herzustellender elektrochemischer Flussmikroreaktor: effiziente Isoindolinon-Synthese und Funktionalisierung im Fluss. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201709717] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ana A. Folgueiras-Amador
- School of Chemistry; Cardiff University; Park Place, Main Building Cardiff CF10 3AT Großbritannien
| | - Kai Philipps
- School of Chemistry; Cardiff University; Park Place, Main Building Cardiff CF10 3AT Großbritannien
| | - Sébastien Guilbaud
- School of Chemistry; Cardiff University; Park Place, Main Building Cardiff CF10 3AT Großbritannien
| | - Jarno Poelakker
- School of Chemistry; Cardiff University; Park Place, Main Building Cardiff CF10 3AT Großbritannien
| | - Thomas Wirth
- School of Chemistry; Cardiff University; Park Place, Main Building Cardiff CF10 3AT Großbritannien
| |
Collapse
|
48
|
Hashemzadeh A, Amini MM, Khavasi HR, Ng SW. Ligand preferences in ytterbium ions complexation with carboxylate-based metal-organic frameworks. J COORD CHEM 2017. [DOI: 10.1080/00958972.2017.1375098] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Mostafa M. Amini
- Department of Chemistry, Shahid Beheshti University, G.C., Tehran, Iran
| | | | - Seik Weng Ng
- University of Nottingham, Malaysia Campus, Semenyih, Malaysia
| |
Collapse
|
49
|
Pletcher D, Green RA, Brown RCD. Flow Electrolysis Cells for the Synthetic Organic Chemistry Laboratory. Chem Rev 2017; 118:4573-4591. [DOI: 10.1021/acs.chemrev.7b00360] [Citation(s) in RCA: 269] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Derek Pletcher
- Chemistry, University of Southampton, Southampton SO17 1BJ, U.K
| | - Robert A. Green
- Chemistry, University of Southampton, Southampton SO17 1BJ, U.K
| | | |
Collapse
|
50
|
Kumar V, Connon SJ. Direct, efficient NHC-catalysed aldehyde oxidative amidation: in situ formed benzils as unconventional acylating agents. Chem Commun (Camb) 2017; 53:10212-10215. [PMID: 28861574 DOI: 10.1039/c7cc05561g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new N-heterocyclic carbene-catalysed oxidative amidation of aldehydes has been developed which converts the aldehyde to a benzil acylating agent in situ. The process uses an air-recyclable oxidant and a nucleophilic co-catalyst and does not require the use of a large excess of either one coupling partner or catalyst.
Collapse
Affiliation(s)
- Vikas Kumar
- School of Chemistry Trinity Biomedical Sciences Institute, Trinity College Dublin 152-160 Pearse Street, Dublin 2, Ireland.
| | | |
Collapse
|