1
|
Roy S, Laha J, Reja A, Das D. Allosteric Control of the Catalytic Properties of Dipeptide-Based Supramolecular Assemblies. J Am Chem Soc 2024; 146:22522-22529. [PMID: 39088245 DOI: 10.1021/jacs.4c06447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Allostery, as seen in extant biology, governs the activity regulation of enzymes through the redistribution of conformational equilibria upon binding an effector. Herein, a minimal design is demonstrated where a dipeptide can exploit dynamic imine linkage to condense with simple aldehydes to access spherical aggregates as catalytically active states, which facilitates an orthogonal reaction due to the closer proximity of catalytic residues (imidazoles). The allosteric site (amine) of the minimal catalyst can concomitantly bind to an inhibitor via a dynamic exchange, which leads to the alternation of the energy landscape of the self-assembled state, resulting in downregulation of catalytic activity. Further, temporal control over allosteric regulation is realized via a feedback-controlled autonomous reaction network that utilizes the hydrolytic activity of the (in)active state as a function of time.
Collapse
Affiliation(s)
- Soumili Roy
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| | - Janmejay Laha
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| | - Antara Reja
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| | - Dibyendu Das
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| |
Collapse
|
2
|
Bassan R, Mondal B, Varshney M, Roy S. 1-Naphthylacetic acid appended amino acids-based hydrogels: probing of the supramolecular catalysis of ester hydrolysis reaction. NANOSCALE ADVANCES 2024; 6:3399-3409. [PMID: 38933855 PMCID: PMC11197428 DOI: 10.1039/d4na00268g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/07/2024] [Indexed: 06/28/2024]
Abstract
A 1-naphthaleneacetic acid-appended phenylalanine-derivative (Nap-F) forms a stable hydrogel with a minimum gelation concentration (MGC) of 0.7% w/v (21 mM) in phosphate buffer of pH 7.4. Interestingly, Nap-F produces two-component [Nap-F + H = Nap-FH, Nap-F + K = Nap-FK and Nap-F + R = Nap-FR], three-component [Nap-F + H + K = Nap-FH-K, Nap-F + H + R = Nap-FH-R and Nap-F + K + R = Nap-FK-R] and four-component [Nap-F + H + K + R = Nap-FH-K-R] hydrogels in water with all three natural basic amino acids (H = histidine, K = lysine and R = arginine) at various combinations below its MGC. Nap-F-hydrogel forms a nice entangled nanofibrillar network structure as evidenced by field emission scanning electron microscopy (FE-SEM). Interestingly, lysine-based co-assembled two- (Nap-FK), three- (Nap-FH-K and Nap-FK-R) and four-component (Nap-FH-K-R) xerogels exhibit helical nanofibrillar morphology, which was confirmed by circular dichroism spectroscopy, FE-SEM and TEM imaging. However, histidine and arginine-based two-component (Nap-FH and Nap-FR) and three-component (Nap-FH-R) co-assembled xerogels exhibiting straight nanofibrillar morphology. In their co-assembled states, these two-, three- and four-component supramolecular hydrogels show promising esterase-like activity below their MGCs. The enhanced catalytic activity of helical fibers compared to obtained straight fibers (other than lysine-based assembled systems) suggests that the helical fibrillar nanostructure is involved in ordering the esterase-like although all supramolecular assemblies are chemically different from one another.
Collapse
Affiliation(s)
- Ruchika Bassan
- Department of Chemistry, Birla Institute of Technology and Science-Pilani K K Birla Goa Campus, NH 17B, Zuarinagar Sancoale Goa 403726 India
| | - Biplab Mondal
- School of Biological Sciences, Indian Association for the Cultivation of Science 2A & 2B, Raja S. C. Mullick Road, Jadavpur Kolkata-700034 West Bengal India
| | - Mayank Varshney
- Senior Application Scientist, Characterization Division, Anton Paar India Pvt. Ltd. 582, Phase V, Udyog Vihar Industrial Area Gurgaon 122016 Haryana India
| | - Subhasish Roy
- Department of Chemistry, Birla Institute of Technology and Science-Pilani K K Birla Goa Campus, NH 17B, Zuarinagar Sancoale Goa 403726 India
| |
Collapse
|
3
|
Singh A, Goswami S, Singh P, Das D. Exploitation of Catalytic Dyads by Short Peptide-Based Nanotubes for Enantioselective Covalent Catalysis. Angew Chem Int Ed Engl 2023; 62:e202315716. [PMID: 37922218 DOI: 10.1002/anie.202315716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/05/2023]
Abstract
Extant enzymes with precisely arranged multiple residues in their three-dimensional binding pockets are capable of exhibiting remarkable stereoselectivity towards a racemic mixture of substrates. However, how early protein folds that possibly featured short peptide fragments facilitated enantioselective catalytic transformations important for the emergence of homochirality still remains an intriguing open question. Herein, enantioselective hydrolysis was shown by short peptide-based nanotubes that could exploit multiple solvent-exposed residues to create chiral binding grooves to covalently interact and subsequently hydrolyse one enantiomer preferentially from a racemic pool. Single or double-site chiral mutations led to opposite but diminished and even complete loss of enantioselectivities, suggesting the critical roles of the binding enthalpies from the precise localization of the active site residues, despite the short sequence lengths. This work underpins the enantioselective catalytic prowess of short peptide-based folds and argues their possible role in the emergence of homochiral chemical inventory.
Collapse
Affiliation(s)
- Abhishek Singh
- Department of Chemical Sciences & Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, 741246, India
| | - Surashree Goswami
- Department of Chemical Sciences & Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, 741246, India
| | - Priyanshu Singh
- Department of Chemical Sciences & Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, 741246, India
| | - Dibyendu Das
- Department of Chemical Sciences & Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, 741246, India
| |
Collapse
|
4
|
Arifuzzaman MD, Zhao Y. Selective Hydrolysis of Nonactivated Aryl Esters at pH 7 through Cooperative Catalysis. J Org Chem 2023; 88:3282-3287. [PMID: 36795622 PMCID: PMC10183976 DOI: 10.1021/acs.joc.2c02570] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Most reported artificial esterases only hydrolyze highly activated substrates. We here report synthetic catalysts that hydrolyze nonactivated aryl esters at pH 7, via cooperative action of a thiourea group that mimics the oxyanion hole of a serine protease and a nearby nucleophilic/basic pyridyl group. The molecularly imprinted active site distinguishes subtle structural changes in the substrate, including elongation of the acyl chain by two carbons or shift of a remote methyl group by one carbon.
Collapse
Affiliation(s)
- M D Arifuzzaman
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| | - Yan Zhao
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| |
Collapse
|
5
|
Catalytic Peptides: the Challenge between Simplicity and Functionality. Isr J Chem 2022. [DOI: 10.1002/ijch.202200029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
6
|
Chatterjee A, Reja A, Pal S, Das D. Systems chemistry of peptide-assemblies for biochemical transformations. Chem Soc Rev 2022; 51:3047-3070. [PMID: 35316323 DOI: 10.1039/d1cs01178b] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
During the billions of years of the evolutionary journey, primitive polymers, involved in proto metabolic pathways with low catalytic activity, played critical roles in the emergence of modern enzymes with remarkable substrate specificity. The precise positioning of amino acid residues and the complex orchestrated interplay in the binding pockets of evolved enzymes promote covalent and non-covalent interactions to foster a diverse set of complex catalytic transformations. Recent efforts to emulate the structural and functional information of extant enzymes by minimal peptide based assemblies have attempted to provide a holistic approach that could help in discerning the prebiotic origins of catalytically active binding pockets of advanced proteins. In addition to the impressive sets of advanced biochemical transformations, catalytic promiscuity and cascade catalysis by such small molecule based dynamic systems can foreshadow the ancestral catalytic processes required for the onset of protometabolism. Looking beyond minimal systems that work close to equilibrium, catalytic systems and compartments under non-equilibrium conditions utilizing simple prebiotically relevant precursors have attempted to shed light on how bioenergetics played an essential role in chemical emergence of complex behaviour. Herein, we map out these recent works and progress where diverse sets of complex enzymatic transformations were demonstrated by utilizing minimal peptide based self-assembled systems. Further, we have attempted to cover the examples of peptide assemblies that could feature promiscuous activity and promote complex multistep cascade reaction networks. The review also covers a few recent examples of minimal transient catalytic assemblies under non-equilibrium conditions. This review attempts to provide a broad perspective for potentially programming functionality via rational selection of amino acid sequences leading towards minimal catalytic systems that resemble the traits of contemporary enzymes.
Collapse
Affiliation(s)
- Ayan Chatterjee
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur-741246, India.
| | - Antara Reja
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur-741246, India.
| | - Sumit Pal
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur-741246, India.
| | - Dibyendu Das
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur-741246, India.
| |
Collapse
|
7
|
Mondal T, Mandal B. Proteolytic functional amyloid digests pathogenic amyloid. J Mater Chem B 2022; 10:4216-4225. [DOI: 10.1039/d2tb00640e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although amyloids are a well-known pathological structure, functional amyloids are beneficial. Functional amyloids can be engineered to cultivate desired functionality that can destroy malicious amyloids. However, not much is known...
Collapse
|
8
|
Piast RW, Wieczorek RM, Marzec N, Garstka M, Misicka A. A Phage Display-Identified Short Peptide Capable of Hydrolyzing Calcium Pyrophosphate Crystals-The Etiological Factor of Chondrocalcinosis. Molecules 2021; 26:molecules26195777. [PMID: 34641321 PMCID: PMC8510196 DOI: 10.3390/molecules26195777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/10/2021] [Accepted: 09/20/2021] [Indexed: 11/22/2022] Open
Abstract
Chondrocalcinosis is a metabolic disease caused by the presence of calcium pyrophosphate dihydrate crystals in the synovial fluid. The goal of our endeavor was to find out whether short peptides could be used as a dissolving factor for such crystals. In order to identify peptides able to dissolve crystals of calcium pyrophosphate, we screened through a random library of peptides using a phage display. The first screening was designed to select phages able to bind the acidic part of alendronic acid (pyrophosphate analog). The second was a catalytic assay in the presence of crystals. The best-performing peptides were subsequently chemically synthesized and rechecked for catalytic properties. One peptide, named R25, turned out to possess some hydrolytic activity toward crystals. Its catalysis is Mg2+-dependent and also works against soluble species of pyrophosphate.
Collapse
Affiliation(s)
- Radosław W. Piast
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland;
- Correspondence: (R.W.P.); (A.M.)
| | - Rafał M. Wieczorek
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland;
| | - Nicola Marzec
- Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Stefana Banacha 2C, 02-087 Warsaw, Poland;
| | - Maciej Garstka
- Department of Metabolic Regulation, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland;
| | - Aleksandra Misicka
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland;
- Correspondence: (R.W.P.); (A.M.)
| |
Collapse
|
9
|
Sheehan F, Sementa D, Jain A, Kumar M, Tayarani-Najjaran M, Kroiss D, Ulijn RV. Peptide-Based Supramolecular Systems Chemistry. Chem Rev 2021; 121:13869-13914. [PMID: 34519481 DOI: 10.1021/acs.chemrev.1c00089] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Peptide-based supramolecular systems chemistry seeks to mimic the ability of life forms to use conserved sets of building blocks and chemical reactions to achieve a bewildering array of functions. Building on the design principles for short peptide-based nanomaterials with properties, such as self-assembly, recognition, catalysis, and actuation, are increasingly available. Peptide-based supramolecular systems chemistry is starting to address the far greater challenge of systems-level design to access complex functions that emerge when multiple reactions and interactions are coordinated and integrated. We discuss key features relevant to systems-level design, including regulating supramolecular order and disorder, development of active and adaptive systems by considering kinetic and thermodynamic design aspects and combinatorial dynamic covalent and noncovalent interactions. Finally, we discuss how structural and dynamic design concepts, including preorganization and induced fit, are critical to the ability to develop adaptive materials with adaptive and tunable photonic, electronic, and catalytic properties. Finally, we highlight examples where multiple features are combined, resulting in chemical systems and materials that display adaptive properties that cannot be achieved without this level of integration.
Collapse
Affiliation(s)
- Fahmeed Sheehan
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York 85 St. Nicholas Terrace New York, New York 10031, United States.,Department of Chemistry, Hunter College City University of New York 695 Park Avenue, New York, New York 10065, United States.,Ph.D. Program in Chemistry The Graduate Center of the City University of New York 365 fifth Avenue, New York, New York 10016, United States
| | - Deborah Sementa
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York 85 St. Nicholas Terrace New York, New York 10031, United States
| | - Ankit Jain
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York 85 St. Nicholas Terrace New York, New York 10031, United States
| | - Mohit Kumar
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York 85 St. Nicholas Terrace New York, New York 10031, United States.,Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, Barcelona 08028, Spain
| | - Mona Tayarani-Najjaran
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York 85 St. Nicholas Terrace New York, New York 10031, United States.,Department of Chemistry, Hunter College City University of New York 695 Park Avenue, New York, New York 10065, United States.,Ph.D. Program in Chemistry The Graduate Center of the City University of New York 365 fifth Avenue, New York, New York 10016, United States
| | - Daniela Kroiss
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York 85 St. Nicholas Terrace New York, New York 10031, United States.,Department of Chemistry, Hunter College City University of New York 695 Park Avenue, New York, New York 10065, United States.,Ph.D. Program in Biochemistry The Graduate Center of the City University of New York 365 5th Avenue, New York, New York 10016, United States
| | - Rein V Ulijn
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York 85 St. Nicholas Terrace New York, New York 10031, United States.,Department of Chemistry, Hunter College City University of New York 695 Park Avenue, New York, New York 10065, United States.,Ph.D. Program in Chemistry The Graduate Center of the City University of New York 365 fifth Avenue, New York, New York 10016, United States.,Ph.D. Program in Biochemistry The Graduate Center of the City University of New York 365 5th Avenue, New York, New York 10016, United States
| |
Collapse
|
10
|
Liu X, Waters R, Gilbert HE, Barroso GT, Boyle KM, Witus LS. The role of β-hairpin conformation in ester hydrolysis peptide catalysts based on a TrpZip scaffold. RSC Adv 2021; 11:23714-23718. [PMID: 34354822 PMCID: PMC8285361 DOI: 10.1039/d1ra04288b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/24/2021] [Indexed: 11/21/2022] Open
Abstract
To explore the role of peptide conformation on catalytic activity in the context of ester hydrolysis catalysts, pairs of sequences were designed that contained or lacked β-hairpin character. For the hydrolysis of para-nitrophenylacetate in aqueous media, we found small but consistent trends wherein His-containing sequences based on a TrpZip scaffold showed higher catalytic activity without β-hairpin character.
Collapse
Affiliation(s)
- Xinyu Liu
- Department of Chemistry, University of Wisconsin-Madison Madison Wisconsin 53706 USA
| | - Riley Waters
- Department of Chemistry, Macalester College Saint Paul Minnesota 55105 USA
| | - Hannah E Gilbert
- Department of Chemistry, Macalester College Saint Paul Minnesota 55105 USA
| | - Gage T Barroso
- Department of Chemistry, Macalester College Saint Paul Minnesota 55105 USA
| | - Kelsey M Boyle
- Department of Chemistry, Macalester College Saint Paul Minnesota 55105 USA
| | - Leah S Witus
- Department of Chemistry, Macalester College Saint Paul Minnesota 55105 USA
| |
Collapse
|
11
|
Pal S, Goswami S, Das D. Cross β amyloid assemblies as complex catalytic machinery. Chem Commun (Camb) 2021; 57:7597-7609. [PMID: 34278403 DOI: 10.1039/d1cc02880d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
How modern enzymes evolved as complex catalytic machineries to facilitate diverse chemical transformations is an open question for the emerging field of systems chemistry. Inspired by Nature's ingenuity in creating complex catalytic structures for exotic functions, short peptide-based cross β amyloid sequences have been shown to access intricate binding surfaces demonstrating the traits of extant enzymes and proteins. Based on their catalytic proficiencies reported recently, these amyloid assemblies have been argued as the earliest protein folds. Herein, we map out the recent progress made by our laboratory and other research groups that demonstrate the catalytic diversity of cross β amyloid assemblies. The important role of morphology and specific mutations in peptide sequences has been underpinned in this review. We have divided the feature article into different sections where examples from biology have been covered demonstrating the mechanism of extant biocatalysts and compared with recent works on cross β amyloid folds showing covalent catalysis, aldolase, hydrolase, peroxidase-like activities and complex cascade catalysis. Beyond equilibrium, we have extended our discussion towards transient catalytic amyloid phases mimicking the energy driven cytoskeleton polymerization. Finally, a future outlook has been provided on the way ahead for short peptide-based systems chemistry approaches that can lead to the development of robust catalytic networks with improved enzyme-like proficiencies and higher complexities. The discussed examples along with the rationale behind selecting specific amino acids sequence will benefit readers to design systems for achieving catalytic reactivity similar to natural complex enzymes.
Collapse
Affiliation(s)
- Sumit Pal
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur-741246, India.
| | - Surashree Goswami
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur-741246, India.
| | - Dibyendu Das
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur-741246, India.
| |
Collapse
|
12
|
Baruch-Leshem A, Chevallard C, Gobeaux F, Guenoun P, Daillant J, Fontaine P, Goldmann M, Kushmaro A, Rapaport H. Catalytically active peptides affected by self-assembly and residues order. Colloids Surf B Biointerfaces 2021; 203:111751. [DOI: 10.1016/j.colsurfb.2021.111751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 03/31/2021] [Accepted: 04/04/2021] [Indexed: 12/20/2022]
|
13
|
Pollastrini M, Marafon G, Clayden J, Moretto A. Light-mediated control of activity in a photosensitive foldamer that mimics an esterase. Chem Commun (Camb) 2021; 57:2269-2272. [PMID: 33533349 DOI: 10.1039/d0cc08309g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a catalytic foldamer in which a fumaramide chromophore links a Ser residue to a helical domain that contains within its sequence the residues His and Asp. Photoisomerization of the fumaramide chromophore (with E geometry) to the corresponding maleamide (with Z geometry) brings together a 'catalytic triad' of Ser, His, and Asp, triggering esterase activity that is absent in the fumaramide isomer. The fumaramide/maleamide linker thus acts as a light-sensitive switchable cofactor for activation of catalytic activity in short foldamers.
Collapse
Affiliation(s)
- Matteo Pollastrini
- Department of Chemical Sciences, University of Padova, Padova 35131, Italy.
| | - Giulia Marafon
- Department of Chemical Sciences, University of Padova, Padova 35131, Italy.
| | - Jonathan Clayden
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| | - Alessandro Moretto
- Department of Chemical Sciences, University of Padova, Padova 35131, Italy.
| |
Collapse
|
14
|
Sarkhel B, Chatterjee A, Das D. Covalent Catalysis by Cross β Amyloid Nanotubes. J Am Chem Soc 2020; 142:4098-4103. [PMID: 32083482 DOI: 10.1021/jacs.9b13517] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The binding pockets of extant enzymes feature precise positioning of amino acid residues that facilitate multiple complex transformations exploiting covalent and non-covalent interactions. Reversible covalent anchoring is extensively used as an efficient tool by Nature for activating modern enzymes such as esterases and dehydratases and also for proteins like opsins for the complex process of visual phototransduction. Here we construct paracrystalline amyloid surfaces through the self-propagation of short peptides which offer binding pockets exposed with arrays of imidazoles and lysines. As covalent catalysis is utilized by modern-day enzymes, these homogeneous amyloid nanotubes exploit Schiff imine formation via the exposed lysines to efficiently hydrolyze both activated and inactivated esters. Controls where lysines were mutated with charged residues accessed similar morphologies but did not augment the rate. The designed amyloid microphases thus foreshadow the generation of binding pockets of advanced proteins and have the potential to contribute to the development of functional materials.
Collapse
Affiliation(s)
- Baishakhi Sarkhel
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| | - Ayan Chatterjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| | - Dibyendu Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| |
Collapse
|
15
|
|
16
|
Fast Amide Bond Cleavage Assisted by a Secondary Amino and a Carboxyl Group-A Model for yet Unknown Peptidases? Molecules 2019; 24:molecules24030572. [PMID: 30764512 PMCID: PMC6384577 DOI: 10.3390/molecules24030572] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 12/13/2022] Open
Abstract
Unconstrained amides that undergo fast hydrolysis under mild conditions are valuable sources of information about how amide bonds may be activated in enzymatic transformations. We report a compound possessing an unconstrained amide bond surrounded by an amino and a carboxyl group, each mounted in close proximity on a bicyclic scaffold. Fast amide hydrolysis of this model compound was found to depend on the presence of both the amino and carboxyl functions, and to involve a proton transfer in the rate-limiting step. Possible mechanisms for the hydrolytic cleavage and their relevance to peptide bond cleavage catalyzed by natural enzymes are discussed. Experimental observations suggest that the most probable mechanisms of the model compound hydrolysis might include a twisted amide intermediate and a rate-determining proton transfer.
Collapse
|
17
|
Sakhare PR, Subramanian P, Kaliappan KP. Copper Catalyzed Oxidative C–C Bond Cleavage of 1,2-Diketones: A Divergent Approach to 1,8-Naphthalimides, Biphenyl-2,2′-dicarboxamides, and N-Heterocyclic Amides. J Org Chem 2019; 84:2112-2125. [DOI: 10.1021/acs.joc.8b03114] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Priyanka R. Sakhare
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai - 400076, India
| | | | - Krishna P. Kaliappan
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai - 400076, India
| |
Collapse
|
18
|
Nothling MD, Xiao Z, Bhaskaran A, Blyth MT, Bennett CW, Coote ML, Connal LA. Synthetic Catalysts Inspired by Hydrolytic Enzymes. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03326] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mitchell D. Nothling
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Zeyun Xiao
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China
| | - Ayana Bhaskaran
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Mitchell T. Blyth
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Christopher W. Bennett
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Michelle L. Coote
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Luke A. Connal
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
19
|
Abney KK, Ramos-Hunter SJ, Romaine IM, Goodwin JS, Sulikowski GA, Weaver CD. Selective Activation of N,N'-Diacyl Rhodamine Pro-fluorophores Paired with Releasing Enzyme, Porcine Liver Esterase (PLE). Chemistry 2018; 24:8985-8988. [PMID: 29679472 DOI: 10.1002/chem.201801409] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Indexed: 11/05/2022]
Abstract
This study reports the synthesis and testing of a family of rhodamine pro-fluorophores and an enzyme capable of converting pro-fluorophores to Rhodamine 110. We prepared a library of simple N,N'-diacyl rhodamines and investigated porcine liver esterase (PLE) as an enzyme to activate rhodamine-based pro-fluorophores. A PLE-expressing cell line generated an increase in fluorescence rapidly upon pro-fluorophore addition demonstrating the rhodamine pro-fluorophores are readily taken up and fluorescent upon PLE-mediated release. Rhodamine pro-fluorophore amides trifluoroacetamide (TFAm) and proponamide (PAm) appeared to be the best substrates using a cell-based assay using PLE expressing HEK293. Our pro-fluorophore series showed diffusion into live cells and resisted endogenous hydrolysis. The use of our engineered cell line containing the exogenous enzyme PLE demonstrated the rigorousness of amide masking when compared to cells not containing PLE. This simple and selective pro-fluorophore rhodamine pair with PLE offers the potential to be used in vitro and in vivo fluorescence based assays.
Collapse
Affiliation(s)
- Kristopher K Abney
- School of Graduate Studies and Research, Meharry Medical College, Nashville, Tennessee, 37208, USA
| | - Susan J Ramos-Hunter
- Department of Chemistry, Vanderbilt University, Vanderbilt Institute of Chemical Biology, Nashville, TN 37232, USA
| | - Ian M Romaine
- Department of Chemistry, Vanderbilt University, Vanderbilt Institute of Chemical Biology, Nashville, TN 37232, USA
| | - J Shawn Goodwin
- Department of Neuroscience and Pharmacology, Department of Cancer Biology, Meharry Medical College, Nashville, Tennessee, 37208, USA
| | - Gary A Sulikowski
- Department of Chemistry, Vanderbilt University, Vanderbilt Institute of Chemical Biology, Nashville, TN 37232, USA
| | - C David Weaver
- Departments of Pharmacology and Chemistry, Vanderbilt University, Vanderbilt Institute of Chemical Biology, Nashville, TN, 37232, USA.,Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee, 37208, USA
| |
Collapse
|
20
|
Fabbiani M, Rebba E, Pazzi M, Vincenti M, Fois E, Martra G. Solvent-free synthesis of Ser–His dipeptide from non-activated amino acids and its potential function as organocatalyst. RESEARCH ON CHEMICAL INTERMEDIATES 2017. [DOI: 10.1007/s11164-017-3198-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Jindal G, Warshel A. Misunderstanding the preorganization concept can lead to confusions about the origin of enzyme catalysis. Proteins 2017; 85:2157-2161. [PMID: 28905418 DOI: 10.1002/prot.25381] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/05/2017] [Accepted: 09/10/2017] [Indexed: 11/08/2022]
Abstract
Understanding the origin of the catalytic power of enzymes has both conceptual and practical importance. One of the most important finding from computational studies of enzyme catalysis is that a major part of the catalytic power is due to the preorganization of the enzyme active site. Unfortunately, misunderstanding of the nontrivial preorganization idea lead some to assume that it does not consider the effect of the protein residues. This major confusion reflects a misunderstanding of the statement that the interaction energy of the enzyme group and the transition state (TS) is similar to the corresponding interaction between the water molecules (in the reference system) and the TS, and that the catalysis is due to the reorganization free energy of the water molecules. Obviously, this finding does not mean that we do not consider the enzyme groups. Another problem is the idea that catalysis is due to substrate preorganization. This more traditional idea is based in some cases on inconsistent interpretation of the action of model compounds, which unfortunately, do not reflect the actual situation in the enzyme active site. The present article addresses the above problems, clarifying first the enzyme polar preorganization idea and the current misunderstandings. Next we take a specific model compound that was used to promote the substrate preorganization proposal and establish its irrelevance to enzyme catalysis. Overall, we show that the origin of the catalytic power of enzymes cannot be assessed uniquely without computer simulations, since at present this is the only way of relating structure and energetics.
Collapse
Affiliation(s)
- Garima Jindal
- Department of Chemistry, University of Southern California, 3620 McClintock Avenue, Los Angeles, California, 90089
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, 3620 McClintock Avenue, Los Angeles, California, 90089
| |
Collapse
|
22
|
Wieczorek R, Adamala K, Gasperi T, Polticelli F, Stano P. Small and Random Peptides: An Unexplored Reservoir of Potentially Functional Primitive Organocatalysts. The Case of Seryl-Histidine. Life (Basel) 2017; 7:E19. [PMID: 28397774 PMCID: PMC5492141 DOI: 10.3390/life7020019] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 04/03/2017] [Accepted: 04/05/2017] [Indexed: 12/11/2022] Open
Abstract
Catalysis is an essential feature of living systems biochemistry, and probably, it played a key role in primordial times, helping to produce more complex molecules from simple ones. However, enzymes, the biocatalysts par excellence, were not available in such an ancient context, and so, instead, small molecule catalysis (organocatalysis) may have occurred. The best candidates for the role of primitive organocatalysts are amino acids and short random peptides, which are believed to have been available in an early period on Earth. In this review, we discuss the occurrence of primordial organocatalysts in the form of peptides, in particular commenting on reports about seryl-histidine dipeptide, which have recently been investigated. Starting from this specific case, we also mention a peptide fragment condensation scenario, as well as other potential roles of peptides in primordial times. The review actually aims to stimulate further investigation on an unexplored field of research, namely one that specifically looks at the catalytic activity of small random peptides with respect to reactions relevant to prebiotic chemistry and early chemical evolution.
Collapse
Affiliation(s)
- Rafal Wieczorek
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland.
| | - Katarzyna Adamala
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Tecla Gasperi
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy.
| | - Fabio Polticelli
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy.
- National Institute of Nuclear Physics, Roma Tre Section, Via della Vasca Navale 84, 00146 Rome, Italy.
| | - Pasquale Stano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Campus Ecotekne (S.P. 6 Lecce-Monteroni), 73100 Lecce, Italy.
| |
Collapse
|