1
|
Liu H, Laporte AG, Gónzalez Pinardo D, Fernández I, Hazelard D, Compain P. An Unexpected Lewis Acid-Catalyzed Cascade during the Synthesis of the DEF-Benzoxocin Ring System of Nogalamycin and Menogaril: Mechanistic Elucidation by Intermediate Trapping Experiments and Density Functional Theory Studies. J Org Chem 2024; 89:5634-5649. [PMID: 38554093 DOI: 10.1021/acs.joc.4c00134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2024]
Abstract
An unexpected Lewis acid-catalyzed carbohydrate rearrangement of a 1,5-bis-glycopyranoside to the product of a formal intramolecular C-aryl glycosylation reaction is reported. Mechanistic studies based mainly on intermediate trapping experiments and density functional theory (DFT) calculations reveal a cascade process involving three transient (a)cyclic oxocarbenium cations, the breaking of three single C(sp3)-O bonds, and the formation of three single bonds (i.e., exo-, endo-, and C-glycosidic bonds), leading to the 2,6-epoxybenzoxocine skeleton of bioactive natural glycoconjugates related to serjanione A and mimocaesalpin E. DFT calculations established that the generation of the pyran moiety embedded in the bridged benzoxocin ring system is likely to proceed through an unusual ring-closure of an ortho-quinone methide intermediate in which the attacking nucleophile is a carbonyl oxygen.
Collapse
Affiliation(s)
- Haijuan Liu
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Université de Strasbourg, Université de Haute-Alsace, CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 Rue Becquerel, 67000 Strasbourg, France
| | - Adrien G Laporte
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Université de Strasbourg, Université de Haute-Alsace, CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 Rue Becquerel, 67000 Strasbourg, France
| | - Daniel Gónzalez Pinardo
- Departamento de Química Orgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Israel Fernández
- Departamento de Química Orgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Damien Hazelard
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Université de Strasbourg, Université de Haute-Alsace, CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 Rue Becquerel, 67000 Strasbourg, France
| | - Philippe Compain
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Université de Strasbourg, Université de Haute-Alsace, CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 Rue Becquerel, 67000 Strasbourg, France
| |
Collapse
|
2
|
Radulović NS, Đorđević Zlatković MR, Stojanović NM, Nešić MS, Zlatković DB, Potić Floranović MS, Tričković Vukić DS, Randjelovic PJ. Marrubiin Inhibits Peritoneal Inflammatory Response Induced by Carrageenan Application in C57 Mice. Int J Mol Sci 2024; 25:4496. [PMID: 38674081 PMCID: PMC11050121 DOI: 10.3390/ijms25084496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Marrubiin is a diterpene with a long history of a wide range of biological activities. In this study, the anti-inflammatory effects of marrubiin were investigated using several in vitro and in vivo assays. Marrubiin inhibited carrageenan-induced peritoneal inflammation by preventing inflammatory cell infiltration and peritoneal mast cell degranulation. The anti-inflammatory activity was further demonstrated by monitoring a set of biochemical parameters, showing that the peritoneal fluid of animals treated with marrubiin had lower levels of proteins and lower myeloperoxidase activity compared with the fluid of animals that were not treated. Marrubiin exerted the most pronounced cytotoxic activity towards peripheral mononuclear cells, being the main contributors to peritoneal inflammation. Additionally, a moderate lipoxygenase inhibition activity of marrubiin was observed.
Collapse
Affiliation(s)
- Niko S. Radulović
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, 18000 Niš, Serbia; (M.R.Đ.Z.); (M.S.N.); (D.B.Z.)
| | - Miljana R. Đorđević Zlatković
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, 18000 Niš, Serbia; (M.R.Đ.Z.); (M.S.N.); (D.B.Z.)
| | - Nikola M. Stojanović
- Department of Physiology, Faculty of Medicine, University of Niš, 18000 Niš, Serbia; (N.M.S.); (P.J.R.)
| | - Milan S. Nešić
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, 18000 Niš, Serbia; (M.R.Đ.Z.); (M.S.N.); (D.B.Z.)
| | - Dragan B. Zlatković
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, 18000 Niš, Serbia; (M.R.Đ.Z.); (M.S.N.); (D.B.Z.)
| | - Milena S. Potić Floranović
- Scientific Research Centre for Biomedicine, Faculty of Medicine, University of Niš, 18000 Niš, Serbia; (M.S.P.F.); (D.S.T.V.)
| | - Dragana S. Tričković Vukić
- Scientific Research Centre for Biomedicine, Faculty of Medicine, University of Niš, 18000 Niš, Serbia; (M.S.P.F.); (D.S.T.V.)
| | - Pavle J. Randjelovic
- Department of Physiology, Faculty of Medicine, University of Niš, 18000 Niš, Serbia; (N.M.S.); (P.J.R.)
| |
Collapse
|
3
|
Heravi MM, Mohammadi L. Application of Pauson-Khand reaction in the total synthesis of terpenes. RSC Adv 2021; 11:38325-38373. [PMID: 35493249 PMCID: PMC9044263 DOI: 10.1039/d1ra05673e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 10/28/2021] [Indexed: 12/28/2022] Open
Abstract
The Pauson-Khand reaction (PKR) is a formal [2 + 2 + 1] cycloaddition involving an alkyne, an alkene and carbon monoxide mediated by a hexacarbonyldicobaltalkyne complex to yield cyclopentenones in a single step. This versatile reaction has become a method of choice for the synthesis of cyclopentenone and its derivatives since its discovery in the early seventies. The aim of this review is to point out the applications of PKR in the total synthesis of terpenes.
Collapse
Affiliation(s)
- Majid M Heravi
- Department of Chemistry, School of Physics and Chemistry, Alzahra University Vanak Tehran Iran +98 2188041344 +98 9121329147
| | - Leila Mohammadi
- Department of Chemistry, School of Physics and Chemistry, Alzahra University Vanak Tehran Iran +98 2188041344 +98 9121329147
| |
Collapse
|
4
|
Yamakoshi H. [Studies on the Syntheses of Bioactive Natural Products Having a Fused Ring System Based on Novel Skeletal Construction Methods]. YAKUGAKU ZASSHI 2021; 141:1087-1094. [PMID: 34471010 DOI: 10.1248/yakushi.21-00126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Here, I describe a part of our efforts to develop synthetic strategies to construct bioactive natural products having a fused ring system. We have designed four chiral building blocks bearing contiguous quaternary stereocenters for the syntheses of bioactive C17-oxygenated steroids/triterpenoids and C9-oxygenated labdane diterpenoids. The compounds were stereoselectively synthesized from α-substituted glycolic acid (R)-3-methylcyclohex-2-enyl esters through Ireland-Claisen rearrangement to construct the stereocenters simultaneously. Synthetic utility of a β-type building block is highlighted by total syntheses of marrubiin (11 steps, 22%) and related seven labdane diterpene lactones, cyllenine C (12 steps, 29%), marrulactone (13 steps, 11%), marrulanic acid (14 steps, 10%), marrubasch F (12 steps, 14%), marrulibacetal (14 steps, 4%), marrulibacetal A (14 steps, 2%), and desertine (15 steps, 0.5%). These syntheses feature the construction of the [6.6.5]-tricyclic ring portion via a Pauson-Khand reaction, cleavage of the resultant cyclopentenone ring and an elongation of the C9 side chain by an epoxide opening reaction. The relative stereochemistry of desertine was determined to be 13R, 14S, 15S, 16R by some chemical conversions and NMR analysis. Further efforts toward total syntheses of oxygenated terpenoids using three other chiral building blocks and structure-activity relationship study of synthesized labdane diterpene lactones are currently underway in our laboratory and will be reported in due course.
Collapse
|
5
|
Evolution of Pauson-Khand Reaction: Strategic Applications in Total Syntheses of Architecturally Complex Natural Products (2016–2020). Catalysts 2020. [DOI: 10.3390/catal10101199] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Metal-mediated cyclizations are important transformations in a natural product total synthesis. The Pauson-Khand reaction, particularly powerful for establishing cyclopentenone-containing structures, is distinguished as one of the most attractive annulation processes routinely employed in synthesis campaigns. This review covers Co, Rh, and Pd catalyzed Pauson-Khand reaction and summarizes its strategic applications in total syntheses of structurally complex natural products in the last five years. Additionally, the hetero-Pauson-Khand reaction in the synthesis of heterocycles will also be discussed. Focusing on the panorama of organic synthesis, this review highlights the strategically developed Pauson-Khand reaction in fulfilling total synthetic tasks and its synthetic attractiveness is aimed to be illustrated.
Collapse
|
6
|
Sakagami Y, Kondo N, Sawayama Y, Yamakoshi H, Nakamura S. Total Syntheses of Marrubiin and Related Labdane Diterpene Lactones. MOLECULES (BASEL, SWITZERLAND) 2020; 25:molecules25071610. [PMID: 32244661 PMCID: PMC7180712 DOI: 10.3390/molecules25071610] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 12/20/2022]
Abstract
Total syntheses of the labdane diterpene lactones marrubiin, marrulibacetal, desertine, marrulibacetal A, marrubasch F, cyllenine C, marrulanic acid, and marrulactone are described. The trans-decalin moiety of these molecules was constructed in a stereoselective manner by a Pauson-Khand reaction, and the resultant cyclopentenone was oxidatively cleaved for formation of the lactone ring. Elongation of the side chain at C9 was achieved by an epoxide-opening reaction with a variety of nucleophiles, and the functional group manipulations completed the syntheses of these natural products. Stereochemistries of desertine could be established by the transformations.
Collapse
|
7
|
Karunanithi PS, Dhanota P, Addison JB, Tong S, Fiehn O, Zerbe P. Functional characterization of the cytochrome P450 monooxygenase CYP71AU87 indicates a role in marrubiin biosynthesis in the medicinal plant Marrubium vulgare. BMC PLANT BIOLOGY 2019; 19:114. [PMID: 30909879 PMCID: PMC6434833 DOI: 10.1186/s12870-019-1702-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 03/06/2019] [Indexed: 05/05/2023]
Abstract
BACKGROUND Horehound (Marrubium vulgare) is a medicinal plant whose signature bioactive compounds, marrubiin and related furanoid diterpenoid lactones, have potential applications for the treatment of cardiovascular diseases and type II diabetes. Lack of scalable plant cultivation and the complex metabolite profile of M. vulgare limit access to marrubiin via extraction from plant biomass. Knowledge of the marrubiin-biosynthetic enzymes can enable the development of metabolic engineering platforms for marrubiin production. We previously identified two diterpene synthases, MvCPS1 and MvELS, that act sequentially to form 9,13-epoxy-labd-14-ene. Conversion of 9,13-epoxy-labd-14-ene by cytochrome P450 monooxygenase (P450) enzymes can be hypothesized to facilitate key functional modification reactions in the formation of marrubiin and related compounds. RESULTS Mining a M. vulgare leaf transcriptome database identified 95 full-length P450 candidates. Cloning and functional analysis of select P450 candidates showing high transcript abundance revealed a member of the CYP71 family, CYP71AU87, that catalyzed the hydroxylation of 9,13-epoxy-labd-14-ene to yield two isomeric products, 9,13-epoxy labd-14-ene-18-ol and 9,13-epoxy labd-14-ene-19-ol, as verified by GC-MS and NMR analysis. Additional transient Nicotiana benthamiana co-expression assays of CYP71AU87 with different diterpene synthase pairs suggested that CYP71AU87 is specific to the sequential MvCPS1 and MvELS product 9,13-epoxy-labd-14-ene. Although the P450 products were not detectable in planta, high levels of CYP71AU87 gene expression in marrubiin-accumulating tissues supported a role in the formation of marrubiin and related diterpenoids in M. vulgare. CONCLUSIONS In a sequential reaction with the diterpene synthase pair MvCPS1 and MvELS, CYP71AU87 forms the isomeric products 9,13-epoxy labd-14-ene-18/19-ol as probable intermediates in marrubiin biosynthesis. Although its metabolic relevance in planta will necessitate further genetic studies, identification of the CYP71AU87 catalytic activity expands our knowledge of the functional landscape of plant P450 enzymes involved in specialized diterpenoid metabolism and can provide a resource for the formulation of marrubiin and related bioactive natural products.
Collapse
Affiliation(s)
- Prema S. Karunanithi
- Department of Plant Biology, University of California Davis, 1 Shields Avenue, Davis, CA USA
| | - Puja Dhanota
- Department of Plant Biology, University of California Davis, 1 Shields Avenue, Davis, CA USA
| | - J. Bennett Addison
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182 USA
| | - Shen Tong
- West Coast Metabolomics Center, University of California-Davis, 1 Shields Avenue, Davis, CA USA
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California-Davis, 1 Shields Avenue, Davis, CA USA
- Biochemistry Department, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Philipp Zerbe
- Department of Plant Biology, University of California Davis, 1 Shields Avenue, Davis, CA USA
| |
Collapse
|
8
|
Ma K, Martin BS, Yin X, Dai M. Natural product syntheses via carbonylative cyclizations. Nat Prod Rep 2019; 36:174-219. [PMID: 29923586 DOI: 10.1039/c8np00033f] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review summarizes the application of various transition metal-catalyzed/mediated carbonylative cyclization reactions in natural product total synthesis.
Collapse
Affiliation(s)
- Kaiqing Ma
- Department of Chemistry
- Center for Cancer Research
- Institute for Drug Discovery
- Purdue University
- West Lafayette
| | - Brandon S. Martin
- Department of Chemistry
- Center for Cancer Research
- Institute for Drug Discovery
- Purdue University
- West Lafayette
| | - Xianglin Yin
- Department of Chemistry
- Center for Cancer Research
- Institute for Drug Discovery
- Purdue University
- West Lafayette
| | - Mingji Dai
- Department of Chemistry
- Center for Cancer Research
- Institute for Drug Discovery
- Purdue University
- West Lafayette
| |
Collapse
|
9
|
Nakamura S, Saito S, Yamakoshi H. Second-Generation Synthesis of a Chiral Building Block for Oxygenated Terpenoids via a Ring-Contractive Coupling with a Secondary Alcohol. HETEROCYCLES 2019. [DOI: 10.3987/com-18-s(f)74] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Menger M, Lentz D, Christmann M. Synthesis of (+)-Vitepyrroloid A and (+)-Vitepyrroloid B by Late-Stage Ni-Catalyzed C(sp2)–C(sp3) Cross-Electrophile Coupling. J Org Chem 2018; 83:6793-6797. [DOI: 10.1021/acs.joc.8b00882] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Martina Menger
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustrasse 3, 14195 Berlin, Germany
| | - Dieter Lentz
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustrasse 3, 14195 Berlin, Germany
| | - Mathias Christmann
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustrasse 3, 14195 Berlin, Germany
| |
Collapse
|
11
|
Karabiyikoglu S, Boon BA, Merlic CA. Cycloaddition Reactions of Cobalt-Complexed Macrocyclic Alkynes: The Transannular Pauson-Khand Reaction. J Org Chem 2017; 82:7732-7744. [PMID: 28719209 DOI: 10.1021/acs.joc.7b01369] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Pauson-Khand reaction is a powerful tool for the synthesis of cyclopentenones through the efficient [2 + 2 + 1] cycloaddition of dicobalt alkyne complexes with alkenes. While intermolecular and intramolecular variants are widely known, transannular versions of this reaction are unknown and the basis of this study. Macrocyclic enyne and dienyne complexes were readily synthesized by palladium(II)-catalyzed oxidative macrocyclizations of bis(vinyl boronate esters) or ring-closing metathesis reactions followed by complexation with dicobalt octacarbonyl. Several reaction modalities of these macrocyclic complexes were uncovered. In addition to the first successful transannular Pauson-Khand reactions, other intermolecular and transannular cycloaddition reactions included intermolecular Pauson-Khand reactions, transannular [4 + 2] cycloaddition reactions, intermolecular [2 + 2 + 2] cycloaddition reactions, and intermolecular [2 + 2 + 1 + 1] cycloaddition reactions. The structural and reaction requirements for each process are presented.
Collapse
Affiliation(s)
- Sedef Karabiyikoglu
- Department of Chemistry and Biochemistry, University of California , Los Angeles, California 90095-1569, United States
| | - Byron A Boon
- Department of Chemistry and Biochemistry, University of California , Los Angeles, California 90095-1569, United States
| | - Craig A Merlic
- Department of Chemistry and Biochemistry, University of California , Los Angeles, California 90095-1569, United States
| |
Collapse
|
12
|
Deng H, Cao W, Liu R, Zhang Y, Liu B. Asymmetric Total Synthesis of Hispidanin A. Angew Chem Int Ed Engl 2017; 56:5849-5852. [DOI: 10.1002/anie.201700958] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Heping Deng
- Key Laboratory of Green Chemistry & Technology of the Ministry of Education; College of Chemistry; Sichuan University; 29 Wangjiang Rd., Chengdu Sichuan 610064 China
| | - Wei Cao
- Key Laboratory of Green Chemistry & Technology of the Ministry of Education; College of Chemistry; Sichuan University; 29 Wangjiang Rd., Chengdu Sichuan 610064 China
| | - Rong Liu
- Key Laboratory of Green Chemistry & Technology of the Ministry of Education; College of Chemistry; Sichuan University; 29 Wangjiang Rd., Chengdu Sichuan 610064 China
| | - Yanhui Zhang
- Key Laboratory of Green Chemistry & Technology of the Ministry of Education; College of Chemistry; Sichuan University; 29 Wangjiang Rd., Chengdu Sichuan 610064 China
| | - Bo Liu
- Key Laboratory of Green Chemistry & Technology of the Ministry of Education; College of Chemistry; Sichuan University; 29 Wangjiang Rd., Chengdu Sichuan 610064 China
- State Key Laboratory of Natural Medicines; China Pharmaceutical University; 24 Tong Jia Xiang Nanjing 210009 China
| |
Collapse
|
13
|
Deng H, Cao W, Liu R, Zhang Y, Liu B. Asymmetric Total Synthesis of Hispidanin A. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201700958] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Heping Deng
- Key Laboratory of Green Chemistry & Technology of the Ministry of Education; College of Chemistry; Sichuan University; 29 Wangjiang Rd., Chengdu Sichuan 610064 China
| | - Wei Cao
- Key Laboratory of Green Chemistry & Technology of the Ministry of Education; College of Chemistry; Sichuan University; 29 Wangjiang Rd., Chengdu Sichuan 610064 China
| | - Rong Liu
- Key Laboratory of Green Chemistry & Technology of the Ministry of Education; College of Chemistry; Sichuan University; 29 Wangjiang Rd., Chengdu Sichuan 610064 China
| | - Yanhui Zhang
- Key Laboratory of Green Chemistry & Technology of the Ministry of Education; College of Chemistry; Sichuan University; 29 Wangjiang Rd., Chengdu Sichuan 610064 China
| | - Bo Liu
- Key Laboratory of Green Chemistry & Technology of the Ministry of Education; College of Chemistry; Sichuan University; 29 Wangjiang Rd., Chengdu Sichuan 610064 China
- State Key Laboratory of Natural Medicines; China Pharmaceutical University; 24 Tong Jia Xiang Nanjing 210009 China
| |
Collapse
|
14
|
Abstract
This review covers the isolation and chemistry of diterpenoids from terrestrial as opposed to marine sources and includes labdanes, clerodanes, abietanes, pimaranes, kauranes, cembranes and their cyclization products. The literature from January to December, 2016 is reviewed.
Collapse
|
15
|
Wu XD, Luo D, Tu WC, Deng ZT, Chen XJ, Su J, Ji X, Zhao QS. Hypophyllins A–D, Labdane-Type Diterpenoids with Vasorelaxant Activity from Hypoestes phyllostachya “Rosea”. Org Lett 2016; 18:6484-6487. [PMID: 27978671 DOI: 10.1021/acs.orglett.6b03388] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Xing-De Wu
- State
Key Laboratory of Phytochemistry and Plant Resources in West China,
Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People’s Republic of China
| | - Dan Luo
- State
Key Laboratory of Phytochemistry and Plant Resources in West China,
Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People’s Republic of China
| | - Wen-Chao Tu
- State
Key Laboratory of Phytochemistry and Plant Resources in West China,
Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People’s Republic of China
| | - Zhen-Tao Deng
- State
Key Laboratory of Phytochemistry and Plant Resources in West China,
Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People’s Republic of China
| | - Xue-Jiao Chen
- State
Key Laboratory of Phytochemistry and Plant Resources in West China,
Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People’s Republic of China
| | - Jia Su
- State
Key Laboratory of Phytochemistry and Plant Resources in West China,
Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People’s Republic of China
| | - Xu Ji
- State
Key Laboratory of Phytochemistry and Plant Resources in West China,
Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People’s Republic of China
| | - Qin-Shi Zhao
- State
Key Laboratory of Phytochemistry and Plant Resources in West China,
Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People’s Republic of China
| |
Collapse
|