1
|
Han YZ, Song PF, Zhao HY, Han J, Zhang X. [ 18F]Radiolabeling fluorination of monofluoroalkyl triflates for the synthesis of [ 18F]difluoromethylated alkanes. Chem Commun (Camb) 2025; 61:7113-7116. [PMID: 40241684 DOI: 10.1039/d5cc00869g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
An efficient method for the synthesis of [18F]-difluoromethylated alkanes by the combination of [18F]radio-fluoride with monofluoroalkyl triflates has been developed. This method uses [18F]KF/K2.2.2 as the fluorine source. It features synthetic simplicity without tedious precursor preparation, high RCC and RCY, good functional group tolerance, and is silver salt-free, providing potential for developing new PET agents.
Collapse
Affiliation(s)
- Yuan-Zhan Han
- Green Catalysis Center, and College of Chemistry, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Peng-Fei Song
- Institute of Radiation Medicine, Fudan University, Xietu Road 2094, Shanghai, China.
| | - Hai-Yang Zhao
- State Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.
| | - Junbin Han
- Institute of Radiation Medicine, Fudan University, Xietu Road 2094, Shanghai, China.
| | - Xingang Zhang
- State Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.
| |
Collapse
|
2
|
Sun Z, Zhang XS, Bian SW, Zhang C, Han YP, Liang YM. New synthetic approaches for the construction of difluoromethylated architectures. Org Biomol Chem 2025; 23:3029-3075. [PMID: 40013736 DOI: 10.1039/d4ob02000f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Fluorinated compounds play a vital role in the fields of agrochemicals, pharmaceuticals, and materials science because of their unique lipophilicity, permeability, and metabolic stability. Among all such appealing fluorine-containing functional groups, the difluoromethyl group has attracted considerable attention owing to its outstanding chemical and physical properties. It has been used as a lipophilic hydrogen bond donor and a bioisostere of thiol, hydroxy, or amino groups. The excellent properties of the CF2H group have motivated many chemists to develop effective strategies for the selective incorporation of the CF2H group into target molecules. Over the past decades, a variety of efficient, atom-economical, and facile methods have been discovered for the difluoromethylation of organic substrates. This review summarizes the developments in different types of difluoromethylations, which could be classified into the following categories: radical difluoromethylation, transition metal-catalyzed difluoromethylation, and nucleophilic and electrophilic difluoromethylation.
Collapse
Affiliation(s)
- Zhou Sun
- Bio-Agriculture Institute of Shaanxi, Shaanxi Academy of Sciences, Xi'an, China
| | - Xue-Song Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Shao-Wei Bian
- Tianjin Eco-Environmental Monitoring Center, Tianjin, China
| | - Chun Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Ya-Ping Han
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
3
|
Du Z, Gong W, Yuan S, Ren Y, Huang C, Zeng X. Copper-Catalyzed Difluoromethylation of Alkenyl Thianthrenium Salts. Org Lett 2024; 26:11062-11066. [PMID: 39635920 DOI: 10.1021/acs.orglett.4c04250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
We have developed a novel and straightforward protocol that facilitates the transformation of alkenylsulfonium salts leading to the direct synthesis of E-difluoromethylated alkenes. The success of this method relies on the use of copper catalysis and Vicic-Mikami reagent (DMPU)2Zn(CF2H)2. These mild protocols offer the advantage of selectively synthesizing either aromatic or aliphatic difluoromethylated alkenes. Furthermore, our methodology extends to the perfluoroalkylation of alkenylsulfonium salts. Notably, this approach is conducive to large-scale synthesis and holds promise for diverse applications.
Collapse
Affiliation(s)
- Zhibin Du
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Wenbo Gong
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Shulin Yuan
- School of Pharmacy, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Yifan Ren
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Chenteng Huang
- School of Pharmacy, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Xiaojun Zeng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China
| |
Collapse
|
4
|
Zhao X, Wang C, Yin L, Liu W. Highly Enantioselective Decarboxylative Difluoromethylation. J Am Chem Soc 2024; 146:29297-29304. [PMID: 39404447 PMCID: PMC11975424 DOI: 10.1021/jacs.4c11257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Organofluorine molecules that contain difluoromethyl groups (CF2H) at stereogenic centers have gained importance in pharmaceuticals due to the unique ability of CF2H groups to act as lipophilic hydrogen bond donors. Despite their potential, the enantioselective installation of CF2H groups into readily available starting materials remains a challenging and underdeveloped area. In this study, we report a nickel-catalyzed decarboxylative difluoromethylation reaction that converts alkyl carboxylic acids into difluoromethylated products with exceptional enantioselectivity. This Ni-catalyzed protocol exhibits broad functional group tolerance and is applicable for synthesizing fluorinated bioisosteres of biologically relevant molecules.
Collapse
Affiliation(s)
- Xian Zhao
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Chao Wang
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Lingfeng Yin
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Wei Liu
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| |
Collapse
|
5
|
Liu B, Dong J, Zhu Q, Zhang J, Huang J, Liu S, Zeng X. Copper-catalyzed perfluoroalkylation of propargyl gem-dichlorides. Chem Commun (Camb) 2024; 60:12537-12540. [PMID: 39380557 DOI: 10.1039/d4cc04307c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Herein, we present a highly efficient copper-catalyzed protocol for transforming propargyl gem-dichlorides into the corresponding chloro-substituted fluoroalkylated allenes. This protocol demonstrates a broad substrate scope and excellent tolerance towards various functional groups. Moreover, the strategy of utilizing the chloro-substituted pentafluoroethylation allenes for multiple transformations has shown significant value in synthetic chemistry.
Collapse
Affiliation(s)
- Bosheng Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, China.
| | - Jinxu Dong
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, China.
| | - Qi Zhu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, China.
| | - Jundong Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, China.
| | - Jian Huang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, China.
| | - Shiwen Liu
- College of Textiles and Clothing, Yancheng Institute of Technology, Jiangsu, 224003, China
| | - Xiaojun Zeng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, China.
| |
Collapse
|
6
|
Kim S, Kim H. Cu-Electrocatalysis Enables Vicinal Bis(difluoromethylation) of Alkenes: Unraveling Dichotomous Role of Zn(CF 2H) 2(DMPU) 2 as Both Radical and Anion Source. J Am Chem Soc 2024; 146:22498-22508. [PMID: 39079933 DOI: 10.1021/jacs.4c06207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
The difluoromethyl group (CF2H) serves as an essential bioisostere in drug discovery campaigns according to Lipinski's Rule of 5 due to its advantageous combination of lipophilicity and hydrogen bonding ability, thereby improving the ADME properties. However, despite the high prevalence and importance of vicinal hydrogen bond donors in pharmaceutical agents, a general synthetic method for doubly difluoromethylated compounds in the vicinal position is absent. Here we describe a copper-electrocatalyzed strategy that enables the vicinal bis(difluoromethylation) of alkenes. By leveraging electrochemistry to oxidize Zn(CF2H)2(DMPU)2-a conventionally utilized anionic transmetalating source, we paved a way to utilize it as a CF2H radical source to deliver the CF2H group in the terminal position of alkenes. Mechanistic studies revealed that the interception of the resultant secondary radical by a copper catalyst and subsequent reductive elimination is facilitated by invoking the Cu(III) intermediate, enabling the second installation of the CF2H group in the internal position. The utility of this electrocatalytic 1,2-bis(difluoromethylation) strategy has been highlighted through the late-stage bioisosteric replacement of pharmaceutical agents such as sotalol and dipivefrine.
Collapse
Affiliation(s)
- Seonyoung Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hyunwoo Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
7
|
Chi BK, Gavin SJ, Ahern BN, Peperni N, Monfette S, Weix DJ. Sulfone Electrophiles in Cross-Electrophile Coupling: Nickel-Catalyzed Difluoromethylation of Aryl Bromides. ACS Catal 2024; 14:11087-11100. [PMID: 39391026 PMCID: PMC11463998 DOI: 10.1021/acscatal.4c01999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Fluoroalkyl fragments have played a critical role in the design of pharmaceutical and agrochemical molecules in recent years due to the enhanced biological properties of fluorinated molecules compared to their non-fluorinated analogues. Despite the potential advantages conferred by incorporating a difluoromethyl group in organic compounds, industrial adoption of difluoromethylation methods lags behind fluorination and trifluoromethylation. This is due in part to challenges in applying common difluoromethyl sources towards industrial applications. We report here the nickel-catalyzed cross-electrophile coupling of (hetero)aryl bromides with difluoromethyl 2-pyridyl sulfone, a sustainably sourced, crystalline difluoromethylation reagent. The scope of this reaction is demonstrated with 24 examples (67 ± 16% average yield) including a diverse array of heteroaryl bromides and precursors to difluoromethyl-containing preclinical pharmaceuticals. This reaction can be applied to small-scale parallel synthesis and benchtop scale-up under mild conditions. As sulfone reagents are uncommon electrophiles in cross-electrophile coupling, the mechanism of this process was investigated. Studies confirmed the formation of •CF2H instead of difluorocarbene. A series of modified difluoromethyl sulfones revealed that sulfone reactivity does not correlate exclusively with reduction potential and that coordination of cations or nickel to the pyridyl group is essential to reactivity, setting out parameters for matching the reactivity of sulfones in cross-electrophile coupling.
Collapse
Affiliation(s)
- Benjamin K. Chi
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Samantha J. Gavin
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Benjamin N. Ahern
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Nikita Peperni
- Chemical Research and Development, Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Sebastien Monfette
- Chemical Research and Development, Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Daniel J. Weix
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
8
|
Zhao H, Ravn AK, Haibach MC, Engle KM, Johansson Seechurn CCC. Diversification of Pharmaceutical Manufacturing Processes: Taking the Plunge into the Non-PGM Catalyst Pool. ACS Catal 2024; 14:9708-9733. [PMID: 38988647 PMCID: PMC11232362 DOI: 10.1021/acscatal.4c01809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 07/12/2024]
Abstract
Recent global events have led to the cost of platinum group metals (PGMs) reaching unprecedented heights. Many chemical companies are therefore starting to seriously consider and evaluate if and where they can substitute PGMs for non-PGMs in their catalytic processes. This review covers recent highly relevant applications of non-PGM catalysts in the modern pharmaceutical industry. By highlighting these selected successful examples of non-PGM-catalyzed processes from the literature, we hope to emphasize the enormous potential of non-PGM catalysis and inspire further development within this field to enable this technology to progress toward manufacturing processes. We also present some historical contexts and review the perceived advantages and challenges of implementing non-PGM catalysts in the pharmaceutical manufacturing environment.
Collapse
Affiliation(s)
- Hui Zhao
- Sinocompound
Catalysts, Building C,
Bonded Area Technology Innovation Zone, Zhangjiagang, Jiangsu 215634, China
| | - Anne K. Ravn
- Department
of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Michael C. Haibach
- Process
Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Keary M. Engle
- Department
of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | | |
Collapse
|
9
|
Monteith JJ, Rousseaux SAL. Redox-Active Thiocarbonyl Auxiliaries in Ni-Catalyzed Cross-Couplings of Aliphatic Alcohols. Acc Chem Res 2023; 56:3581-3594. [PMID: 38047525 DOI: 10.1021/acs.accounts.3c00541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
ConspectusThe Barton-McCombie deoxygenation reaction first established the use of O-alkyl thiocarbonyl derivatives as powerful redox-active agents for C(sp3)-O reduction. In recent years, first-row transition metals capable of engaging with alkyl radical intermediates generated from O-alkyl thiocarbonyl derivatives using alternative stoichiometric radical precursors have been developed. Given the ability of select Ni catalysts to both participate in single-electron oxidative addition pathways and intercept alkyl radical intermediates, our group has investigated the use of O-alkyl thiocarbonyl derivatives as electrophiles in novel cross-coupling reactions. After describing related work in this area, this Account will first summarize our entry point into this field. Here, we used the cyclopropane ring as a reporter of leaving group reactivity to aid in the design and optimization of a novel redox-active O-thiocarbamate leaving group for C(sp3)-O arylation. Motivation for this pursuit was driven by the propensity of the cyclopropane ring to undergo ring opening under polar (2e) oxidative addition pathways or to be maintained under single-electron (1e) conditions. Using these guiding principles, we developed a method for the deoxygenative arylation of cyclopropanol derivatives using a Ni catalyst without the need for a stoichiometric external reductant or photocatalyst. We next summarize our evaluation of an alternative redox-active O-thiocarbonyl imidazole auxiliary in a related deoxygenative cross-coupling. This work demonstrated an extension of our initial approach to the deoxygenative arylation of primary and secondary aliphatic alcohol derivatives. A brief mechanistic investigation revealed that this reaction likely proceeds via a distinct mechanism involving direct homolytic C(sp3)-O bond cleavage. We conclude this Account with a summary of work aimed toward a unique approach for thiocarboxylic acid derivative synthesis. This project was inspired by the efficiency of thionoester generation under most of the reaction conditions evaluated in our prior investigations. Using alcohol, amine, or thiol starting materials, which were activated with convenient thiocarbonyl sources in a single step, we optimized for a Ni-catalyzed cross-coupling capable of providing access to a range of thionoester, thioamide, or dithioester products. In summary, our work has revealed the potential of redox-active thiocarbonyl auxiliaries in Ni-catalyzed cross-couplings with C(sp3)-O electrophiles. We anticipate that the continued investigation of aliphatic thiocarbonyl derivatives as radical precursors with alternative single-electron inputs will be an area of continued growth in the years to come.
Collapse
Affiliation(s)
- John J Monteith
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Sophie A L Rousseaux
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
10
|
Purushotam, Bera A, Banerjee D. Recent advances on non-precious metal-catalysed fluorination, difluoromethylation, trifluoromethylation, and perfluoroalkylation of N-heteroarenes. Org Biomol Chem 2023; 21:9298-9315. [PMID: 37855147 DOI: 10.1039/d3ob01132a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
This review highlights the recent advances, from 2015 to 2023, on the introduction of organo-fluorine derivatives at the N-heteroarene core. Notable features considering new technologies based on organofluorine compounds such as: (i) approaches based on non-precious metal catalysis (Fe, Co, Mn, Ni, etc.), (ii) the development of new strategies using non-precious metal-catalysts for the introduction of organo-fluorinine derivatives using N-heterocycles with one or more heteroatoms, (iii) newer reagents for fluorination, difluoromethylation, trifluoromethylation, or perfluoroalkylation of N-heteroarenes using different approaches, (iv) mechanistic studies on various catalytic transformations, as and when required, and (v) the synthetic applications of various bio-active organo-fluorine compounds, including post-synthetic drug derivatization, are discussed.
Collapse
Affiliation(s)
- Purushotam
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | - Atanu Bera
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | - Debasis Banerjee
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| |
Collapse
|
11
|
Jiang X, Song Y, Peng J, Zhong Z, Chen L, Zeng X. Oxidant- and Base-Free, Copper-Catalyzed Difluoromethylation of Haloalkynes. Org Lett 2023; 25:8127-8132. [PMID: 37922337 DOI: 10.1021/acs.orglett.3c03198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
We report herein a highly efficient copper-catalyzed protocol for the transformation of haloalkynes to the corresponding difluoromethylated alkynes. This scalable protocol exhibits a broad substrate scope and excellent functional group tolerance, enabling the late-stage difluoromethylation of bioactive molecules. Additionally, the strategy of utilizing the difluoromethylalkynes in gram-scale reactions and multiple transformations has proven to be highly valuable in synthetic chemistry.
Collapse
Affiliation(s)
- Xujuan Jiang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Yanshan Song
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Junjie Peng
- School of Pharmacy, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Zhiying Zhong
- School of Pharmacy, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Li Chen
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Xiaojun Zeng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China
| |
Collapse
|
12
|
Zhao H, Gu Y, Shen Q. [(SIPr)Ag(CF 2 H)]: A Shelf-Stable, Versatile Difluoromethylation Reagent. CHEM REC 2023; 23:e202300124. [PMID: 37194962 DOI: 10.1002/tcr.202300124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/05/2023] [Indexed: 05/18/2023]
Abstract
Due to its unique physical and electrophilic properties, the difluoromethyl group (-CF2 H) has been playing an irreplaceable role in the field of pharmaceutical and agrochemical industry. Methods that could efficiently incorporate the difluoromethyl group into the target molecules are increasing in the recent years. Developing a stable and efficient difluoromethylating reagent is thus highly attractive. In this review, we describe the development of a nucleophilic difluoromethylation reagent [(SIPr)Ag(CF2 H)], including its elemental reaction, difluoromethylation reaction with different types of electrophiles, and its application in the synthesis of a nucleophilic and an electrophilic difluoromethylthiolating reagent.
Collapse
Affiliation(s)
- Haiwei Zhao
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Yang Gu
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Qilong Shen
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| |
Collapse
|
13
|
Briand M, Anselmi E, Dagousset G, Magnier E. The Revival of Enantioselective Perfluoroalkylation - Update of New Synthetic Approaches from 2015-2022. CHEM REC 2023; 23:e202300114. [PMID: 37219007 DOI: 10.1002/tcr.202300114] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/02/2023] [Indexed: 05/24/2023]
Abstract
Over the last years, methods devoted to the synthesis of asymmetric molecules bearing a perfluoroalkylated chain have been limited in number. Among them, only a few can be used on a large variety of scaffolds. This microreview aims at summarizing these recent advances in enantioselective perfluoroalkylation (-CF3 , -CF2 H, -Cn F2n+1 ) and highlights the need for new enantioselective methods to easily synthesize chiral fluorinated molecules which would be useful for the pharmaceutical and agrochemical industries. Some perspectives are also mentioned.
Collapse
Affiliation(s)
- Marina Briand
- Université Paris-Saclay, UVSQ, CNRS, UMR 8180 Institut Lavoisier de Versailles, 45 Avenue des Etats-Unis, 78035, Versailles Cedex, France
| | - Elsa Anselmi
- Université Paris-Saclay, UVSQ, CNRS, UMR 8180 Institut Lavoisier de Versailles, 45 Avenue des Etats-Unis, 78035, Versailles Cedex, France
- Université de Tours, Faculté des Sciences et Techniques, Parc Grandmont, Avenue Monge, 37200, Tours, France
| | - Guillaume Dagousset
- Université Paris-Saclay, UVSQ, CNRS, UMR 8180 Institut Lavoisier de Versailles, 45 Avenue des Etats-Unis, 78035, Versailles Cedex, France
| | - Emmanuel Magnier
- Université Paris-Saclay, UVSQ, CNRS, UMR 8180 Institut Lavoisier de Versailles, 45 Avenue des Etats-Unis, 78035, Versailles Cedex, France
| |
Collapse
|
14
|
Ispizua-Rodriguez X, Krishnamurti V, Carpio V, Barrett C, Prakash GKS. Copper-Catalyzed Synthesis of Difluoromethyl Alkynes from Terminal and Silyl Acetylenes. J Org Chem 2023; 88:1194-1199. [PMID: 36622772 DOI: 10.1021/acs.joc.2c02799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
An efficient method for the direct C(sp)-H difluoromethylation of terminal alkynes and the desilylation-difluoromethylation of (trimethylsilyl)acetylenes is disclosed. The copper-catalyzed transformation provides access to a wide range of structurally diverse CF2H alkynes in good yields, utilizing a (difluoromethyl)zinc reagent and an organic oxidant. The difluoromethylation of important synthons and API's is showcased. The synthetic utility of these (difluoromethyl)alkynes is demonstrated by selected cycloaddition reactions. Additionally, a slight modification to the reaction conditions allowed the selective preparation of a 2-difluoromethylindole.
Collapse
Affiliation(s)
- Xanath Ispizua-Rodriguez
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089-1661, United States
| | - Vinayak Krishnamurti
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089-1661, United States
| | - Vanessa Carpio
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089-1661, United States
| | - Colby Barrett
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089-1661, United States
| | - G K Surya Prakash
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089-1661, United States
| |
Collapse
|
15
|
Peng P, Yang R, Xu B. Tunable Reduction of Benzyl
α
,
α
‐Difluorotriflones: Synthesis of Difluoroarenes and Sodium Aryldifluoromethyl Sufinates and their Applications. ChemistrySelect 2022. [DOI: 10.1002/slct.202202870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Peng Peng
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Zhejiang University of Technology, Address Hangzhou 310014 China
| | - Ren‐Yin Yang
- College of Chemistry Chemical Engineering and Biotechnology Donghua University, Address Shanghai 201620 China
| | - Bo Xu
- College of Chemistry Chemical Engineering and Biotechnology Donghua University, Address Shanghai 201620 China
| |
Collapse
|
16
|
Zhao H, Leng XB, Zhang W, Shen Q. [Ph
4
P]
+
[Cu(CF
2
H)
2
]
−
: A Powerful Difluoromethylating Reagent Inspired by Mechanistic Investigation. Angew Chem Int Ed Engl 2022; 61:e202210151. [DOI: 10.1002/anie.202210151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Haiwei Zhao
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry 345 Lingling Lu Shanghai 200032 China
| | - Xuebing B. Leng
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry 345 Lingling Lu Shanghai 200032 China
| | - Wei Zhang
- Centre for Green Chemistry and Department of Chemistry University of Massachusetts Boston 100 Morrissey Boulevard Boston Massachusetts 02125 USA
| | - Qilong Shen
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry 345 Lingling Lu Shanghai 200032 China
| |
Collapse
|
17
|
Zhao H, Leng X, Zhang W, Shen Q. [Ph4P]+[Cu(CF2H)2]‐: A Powerful Difluoromethylating Reagent Inspired by Mechanistic Investigation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Haiwei Zhao
- SIOC: Shanghai Institute of Organic Chemistry Key Laboratory of Organofluorine Chemistry 345 Lingling Lu 200032 Shanghai CHINA
| | - Xuebing Leng
- Shanghai Institute of Organic Chemistry Key Laboratory of Organofluorine Chemistry 345 Lingling Lu 200032 Shanghai CHINA
| | - Wei Zhang
- University of Massachusetts Boston Chemistry UNITED STATES
| | - Qilong Shen
- Shanghai Institute of Organic Chemistry Key Laboratory of Organofluorine Chemsitry 345 Lingling Road 200032 Shanghai CHINA
| |
Collapse
|
18
|
Gedde OR, Bonde A, Golbækdal PI, Skrydstrup T. Pd-Catalyzed Difluoromethylations of Aryl Boronic Acids, Halides, and Pseudohalides with ICF 2 H Generated ex Situ. Chemistry 2022; 28:e202200997. [PMID: 35388933 PMCID: PMC9321866 DOI: 10.1002/chem.202200997] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Indexed: 02/02/2023]
Abstract
An expedient ex-situ generation of difluoroiodomethane (DFIM) and its immediate use in a Pd-catalyzed difluoromethylation of aryl boronic acids and ester derivatives in a two-chamber reactor is reported. Heating a solution of bromodifluoroacetic acid with sodium iodide in sulfolane proved to be effective for the generation of near stoichiometric amounts of DFIM for the ensuing catalytic coupling step. A two-step difluoromethylation of aryl (pseudo)halides with tetrahydroxydiboron as a low-cost reducing agent, both promoted by Pd catalysis, proved effective to install this fluorine-containing C1 group onto several pharmaceutically relevant molecules. Finally, the method proved adaptable to deuterium incorporation by simply adding D2 O to the DFIM-generating chamber.
Collapse
Affiliation(s)
- Oliver R. Gedde
- Carbon Dioxide Activation Center (CADIAC)The Interdisciplinary Nanoscience Center (iNANO) andDepartment of ChemistryAarhus UniversityGustav Wieds Vej 148000Aarhus CDenmark
| | - Andreas Bonde
- Carbon Dioxide Activation Center (CADIAC)The Interdisciplinary Nanoscience Center (iNANO) andDepartment of ChemistryAarhus UniversityGustav Wieds Vej 148000Aarhus CDenmark
| | - Peter I. Golbækdal
- Carbon Dioxide Activation Center (CADIAC)The Interdisciplinary Nanoscience Center (iNANO) andDepartment of ChemistryAarhus UniversityGustav Wieds Vej 148000Aarhus CDenmark
| | - Troels Skrydstrup
- Carbon Dioxide Activation Center (CADIAC)The Interdisciplinary Nanoscience Center (iNANO) andDepartment of ChemistryAarhus UniversityGustav Wieds Vej 148000Aarhus CDenmark
| |
Collapse
|
19
|
Li H, Wang F, Zhu S, Chu L. Selective Fluoromethyl Couplings of Alkynes via Nickel Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Huan Li
- State Key Laboratory for Modification of Chemical Fibers Sand Polymer Materials Center for Advanced Low-Dimension Materials College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai 201620 China
| | - Fang Wang
- State Key Laboratory for Modification of Chemical Fibers Sand Polymer Materials Center for Advanced Low-Dimension Materials College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai 201620 China
| | - Shengqing Zhu
- State Key Laboratory for Modification of Chemical Fibers Sand Polymer Materials Center for Advanced Low-Dimension Materials College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai 201620 China
| | - Lingling Chu
- State Key Laboratory for Modification of Chemical Fibers Sand Polymer Materials Center for Advanced Low-Dimension Materials College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai 201620 China
| |
Collapse
|
20
|
Li H, Wang F, Zhu S, Chu L. Selective Fluoromethyl Couplings of Alkynes via Nickel Catalysis*. Angew Chem Int Ed Engl 2021; 61:e202116725. [PMID: 34962343 DOI: 10.1002/anie.202116725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Indexed: 11/09/2022]
Abstract
We describe here a Ni-catalyzed intermolecular carbo-fluoromethylation of alkynes with aliphatic halides and fluoromethyl halides (BrCF 2 H and ICH 2 F) in the presence of zinc, enabling the facile and selective access to a diverse range of biologically valuable CF 2 H/CH 2 F-incorporated alkenes with excellent regio- and stereo-selectivity. Notably, merging intramolecular radical cyclization with fluoromethyl coupling enables the expedient constructions of CF 2 H/CH 2 F-incorporated lactones and lactams with high efficiency and selectivity. Mechanistic studies disclose that this catalytic protocol proceeds via a radical addition to an alkyne followed by selective coupling with the fluoromethyl unit.
Collapse
Affiliation(s)
- Huan Li
- Donghua University - Songjiang Campus: Donghua University, CALM, 2999 NORTH RENMIN ROAD, 201620, Shanghai, CHINA
| | - Fang Wang
- Donghua University - Songjiang Campus: Donghua University, CALM, 2999 NORTH RENMIN ROAD, 201620, Shanghai, CHINA
| | - Shengqing Zhu
- Donghua University - Songjiang Campus: Donghua University, CALM, 2999 NORTH RENMIN ROAD, 201620, Shanghai, CHINA
| | - Lingling Chu
- Donghua University, Center for Advanced Low-Dimension Materials, 2999 Renmin Road, Songjiang District, 201620, Shanghai, CHINA
| |
Collapse
|
21
|
Taillemaud S, Charette AB. Spectroscopic Characterization of Heterohalogenic Dihalomethylzinc Carbenoids: Application to a More Efficient Chlorocyclopropanation Reaction. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sylvain Taillemaud
- Centre in Green Chemistry and Catalysis, Department of Chemistry, Université de Montréal, 1375, av. Thérèse Lavoie-Roux, Montréal, Québec H2V 0B3, Canada
| | - André B. Charette
- Centre in Green Chemistry and Catalysis, Department of Chemistry, Université de Montréal, 1375, av. Thérèse Lavoie-Roux, Montréal, Québec H2V 0B3, Canada
| |
Collapse
|
22
|
Cai A, Yan W, Wang C, Liu W. Copper-Catalyzed Difluoromethylation of Alkyl Iodides Enabled by Aryl Radical Activation of Carbon-Iodine Bonds. Angew Chem Int Ed Engl 2021; 60:27070-27077. [PMID: 34652873 DOI: 10.1002/anie.202111993] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Indexed: 01/07/2023]
Abstract
The engagement of unactivated alkyl halides in copper-catalyzed cross-coupling reactions has been historically challenging, due to their low reduction potential and the slow oxidative addition of copper(I) catalysts. In this work, we report a novel strategy that leverages the halogen abstraction ability of aryl radicals, thereby engaging a diverse range of alkyl iodides in copper-catalyzed Negishi-type cross-coupling reactions at room temperature. Specifically, aryl radicals generated via copper catalysis efficiently initiate the cleavage of the carbon-iodide bonds of alkyl iodides. The alkyl radicals thus generated enter the copper catalytic cycles to couple with a difluoromethyl zinc reagent, thus furnishing the alkyl difluoromethane products. This unprecedented Negishi-type difluoromethylation approach has been applied to the late-stage modification of densely functionalized pharmaceutical agents and natural products.
Collapse
Affiliation(s)
- Aijie Cai
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Wenhao Yan
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Chao Wang
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Wei Liu
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, 45221, USA
| |
Collapse
|
23
|
Cai A, Yan W, Wang C, Liu W. Copper‐Catalyzed Difluoromethylation of Alkyl Iodides Enabled by Aryl Radical Activation of Carbon–Iodine Bonds. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111993] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Aijie Cai
- Department of Chemistry University of Cincinnati Cincinnati OH 45221 USA
| | - Wenhao Yan
- Department of Chemistry University of Cincinnati Cincinnati OH 45221 USA
| | - Chao Wang
- Department of Chemistry University of Cincinnati Cincinnati OH 45221 USA
| | - Wei Liu
- Department of Chemistry University of Cincinnati Cincinnati OH 45221 USA
| |
Collapse
|
24
|
Lalloo N, Malapit CA, Taimoory SM, Brigham CE, Sanford MS. Decarbonylative Fluoroalkylation at Palladium(II): From Fundamental Organometallic Studies to Catalysis. J Am Chem Soc 2021; 143:18617-18625. [PMID: 34709804 DOI: 10.1021/jacs.1c08551] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This Article describes the development of a decarbonylative Pd-catalyzed aryl-fluoroalkyl bond-forming reaction that couples fluoroalkylcarboxylic acid-derived electrophiles [RFC(O)X] with aryl organometallics (Ar-M'). This reaction was optimized by interrogating the individual steps of the catalytic cycle (oxidative addition, carbonyl de-insertion, transmetalation, and reductive elimination) to identify a compatible pair of coupling partners and an appropriate Pd catalyst. These stoichiometric organometallic studies revealed several critical elements for reaction design. First, uncatalyzed background reactions between RFC(O)X and Ar-M' can be avoided by using M' = boronate ester. Second, carbonyl de-insertion and Ar-RF reductive elimination are the two slowest steps of the catalytic cycle when RF = CF3. Both steps are dramatically accelerated upon changing to RF = CHF2. Computational studies reveal that a favorable F2C-H---X interaction contributes to accelerating carbonyl de-insertion in this system. Finally, transmetalation is slow with X = difluoroacetate but fast with X = F. Ultimately, these studies enabled the development of an (SPhos)Pd-catalyzed decarbonylative difluoromethylation of aryl neopentylglycol boronate esters with difluoroacetyl fluoride.
Collapse
Affiliation(s)
- Naish Lalloo
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Christian A Malapit
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - S Maryamdokht Taimoory
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Conor E Brigham
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Melanie S Sanford
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
25
|
Zou Z, Li H, Huang M, Zhang W, Zhi S, Wang Y, Pan Y. Electrochemical-Promoted Nickel-Catalyzed Oxidative Fluoroalkylation of Aryl Iodides. Org Lett 2021; 23:8252-8256. [PMID: 34645266 DOI: 10.1021/acs.orglett.1c02997] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
This work describes a general strategy for metal-catalyzed cross-coupling of fluoroalkyl radicals with aryl halides under electrochemical conditions. The contradiction between anodic oxidation of fluoroalkyl sulfinates and cathodic reduction of low-valent nickel catalysts can be well addressed by paired electrolysis, allowing for direct introduction of fluorinated functionalities into aromatic systems.
Collapse
Affiliation(s)
- Zhenlei Zou
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Heyin Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Mengjun Huang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Weigang Zhang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,Yuxiu Postdoctoral School, Nanjing University, Nanjing 210023, China
| | - Sanjun Zhi
- Jiangsu Key Laboratory for the Chemistry of Low-Dimensional Materials, Huaiyin Normal University, Huaian 223300, China
| | - Yi Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi Pan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
26
|
Ispizua-Rodriguez X, Munoz SB, Krishnamurti V, Mathew T, Prakash GKS. Direct Synthesis of Tri-/Difluoromethyl Ketones from Carboxylic Acids by Cross-Coupling with Acyloxyphosphonium Ions. Chemistry 2021; 27:15908-15913. [PMID: 34469605 DOI: 10.1002/chem.202102854] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Indexed: 11/09/2022]
Abstract
A simple and straightforward approach to the synthesis of trifluoromethyl and difluoromethyl ketones from widely available carboxylic acids is disclosed. The transformation utilizes an acyloxyphosphonium ion as the active electrophile, conveniently generated in situ from the carboxylic acid substrate by using commodity chemicals. The utility of the reaction system is exemplified by its chemoselectivity, with tolerance to a variety of important functional groups. The late-stage functionalization of carboxylic acid active pharmaceutical ingredients and pharmaceutically relevant compounds is also discussed.
Collapse
Affiliation(s)
- Xanath Ispizua-Rodriguez
- Department of Chemistry, Loker Hydrocarbon Research Institute, University of Southern California, 837 Bloom Walk, Los Angeles, CA-90089-1661, USA
| | - Socrates B Munoz
- Department of Chemistry, Kansas State University, 322 CBC Bldg, Manhattan, KS66506-0401, USA
| | - Vinayak Krishnamurti
- Department of Chemistry, Loker Hydrocarbon Research Institute, University of Southern California, 837 Bloom Walk, Los Angeles, CA-90089-1661, USA
| | - Thomas Mathew
- Department of Chemistry, Loker Hydrocarbon Research Institute, University of Southern California, 837 Bloom Walk, Los Angeles, CA-90089-1661, USA
| | - G K S Prakash
- Department of Chemistry, Loker Hydrocarbon Research Institute, University of Southern California, 837 Bloom Walk, Los Angeles, CA-90089-1661, USA
| |
Collapse
|
27
|
Cai A, Yan W, Liu W. Aryl Radical Activation of C-O Bonds: Copper-Catalyzed Deoxygenative Difluoromethylation of Alcohols. J Am Chem Soc 2021; 143:9952-9960. [PMID: 34180233 DOI: 10.1021/jacs.1c04254] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Given their ubiquity in natural products and pharmaceuticals, alcohols represent one of the most attractive starting materials for the construction of C-C bonds. We report herein the first catalytic strategy to harness the reactivity of aryl radicals for the activation of C-O bonds in alcohol-derived xanthate esters, allowing for the discovery of the first catalytic deoxygenative difluoromethylation reaction. Under copper-catalyzed conditions, a wide variety of alkyl xanthate esters, readily synthesized from alcohol feedstocks, were activated by catalytically generated aryl radicals and were converted to the alkyl-difluoromethane products via alkyl radical intermediates. This scalable protocol exhibits a broad substrate scope and functional group tolerance, enabling late-stage modification of complex pharmaceutical agents. A one-pot protocol has been developed that allows for the direct use of free alcohols without purification of the xanthate esters. Mechanistic studies are consistent with the hypothesis of aryl radicals being formed and initiating the cleavage of the C-O bonds of xanthate esters, to generate alkyl radicals as the key intermediates. This aryl radical activation approach represents a new strategy for the activation of alcohols as cross-coupling partners.
Collapse
Affiliation(s)
- Aijie Cai
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Wenhao Yan
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Wei Liu
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| |
Collapse
|
28
|
Cai A, Yan W, Zeng X, Zacate SB, Chao TH, Krause JA, Cheng MJ, Liu W. Copper-catalyzed carbo-difluoromethylation of alkenes via radical relay. Nat Commun 2021; 12:3272. [PMID: 34075051 PMCID: PMC8169770 DOI: 10.1038/s41467-021-23590-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 05/04/2021] [Indexed: 11/08/2022] Open
Abstract
Organic molecules that contain alkyl-difluoromethyl moieties have received increased attention in medicinal chemistry, but their synthesis in a modular and late-stage fashion remains challenging. We report herein an efficient copper-catalyzed radical relay approach for the carbo-difluoromethylation of alkenes. This approach simultaneously introduces CF2H groups along with complex alkyl or aryl groups into alkenes with regioselectivity opposite to traditional CF2H radical addition. We demonstrate a broad substrate scope and a wide functional group compatibility. This scalable protocol is applied to the late-stage functionalization of complex molecules and the synthesis of CF2H analogues of bioactive molecules. Mechanistic studies and density functional theory calculations suggest a unique ligand effect on the reactivity of the Cu-CF2H species.
Collapse
Affiliation(s)
- Aijie Cai
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Wenhao Yan
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Xiaojun Zeng
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Samson B Zacate
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA
| | - Tzu-Hsuan Chao
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
| | - Jeanette A Krause
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Mu-Jeng Cheng
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
| | - Wei Liu
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, 45221, USA.
| |
Collapse
|
29
|
Novel multi-functionalized fluorine-containing organometallics: Preparation and applications of tetrafluoroethylenated zinc reagent. J Fluor Chem 2021. [DOI: 10.1016/j.jfluchem.2021.109781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
30
|
Sap JBI, Meyer CF, Straathof NJW, Iwumene N, am Ende CW, Trabanco AA, Gouverneur V. Late-stage difluoromethylation: concepts, developments and perspective. Chem Soc Rev 2021; 50:8214-8247. [DOI: 10.1039/d1cs00360g] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review describes the conceptual advances that have led to the multiple difluoromethylation processes making use of well-defined CF2H sources.
Collapse
Affiliation(s)
- Jeroen B. I. Sap
- Chemistry Research Laboratory
- Department of Chemistry
- Oxford University
- OX1 3TA Oxford
- UK
| | - Claudio F. Meyer
- Chemistry Research Laboratory
- Department of Chemistry
- Oxford University
- OX1 3TA Oxford
- UK
| | - Natan J. W. Straathof
- Chemistry Research Laboratory
- Department of Chemistry
- Oxford University
- OX1 3TA Oxford
- UK
| | - Ndidi Iwumene
- Chemistry Research Laboratory
- Department of Chemistry
- Oxford University
- OX1 3TA Oxford
- UK
| | - Christopher W. am Ende
- Pfizer Inc
- Medicine Design, Eastern Point Road, Groton, Connecticut 06340, and 1 Portland Street
- Cambridge
- USA
| | | | - Véronique Gouverneur
- Chemistry Research Laboratory
- Department of Chemistry
- Oxford University
- OX1 3TA Oxford
- UK
| |
Collapse
|
31
|
Zeng X, Yan W, Zacate SB, Cai A, Wang Y, Yang D, Yang K, Liu W. Copper-Catalyzed Deaminative Difluoromethylation. Angew Chem Int Ed Engl 2020; 59:16398-16403. [PMID: 32495485 DOI: 10.1002/anie.202006048] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/01/2020] [Indexed: 12/17/2022]
Abstract
The difluoromethyl group (CF2 H) is considered to be a lipophilic and metabolically stable bioisostere of an amino (NH2 ) group. Therefore, methods that can rapidly convert an NH2 group into a CF2 H group would be of great value to medicinal chemistry. We report herein an efficient Cu-catalyzed approach for the conversion of alkyl pyridinium salts, which can be readily synthesized from the corresponding alkyl amines, to their alkyl difluoromethane analogues. This method tolerates a broad range of functional groups and can be applied to the late-stage modification of complex amino-containing pharmaceuticals.
Collapse
Affiliation(s)
- Xiaojun Zeng
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA
| | - Wenhao Yan
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA
| | - Samson B Zacate
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA
| | - Aijie Cai
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA
| | - Yufei Wang
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA
| | - Dongqi Yang
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA
| | - Kundi Yang
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA
| | - Wei Liu
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA
| |
Collapse
|
32
|
Zeng X, Yan W, Zacate SB, Cai A, Wang Y, Yang D, Yang K, Liu W. Copper‐Catalyzed Deaminative Difluoromethylation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xiaojun Zeng
- Department of Chemistry and BiochemistryMiami University Oxford OH 45056 USA
| | - Wenhao Yan
- Department of Chemistry and BiochemistryMiami University Oxford OH 45056 USA
| | - Samson B. Zacate
- Department of Chemistry and BiochemistryMiami University Oxford OH 45056 USA
| | - Aijie Cai
- Department of Chemistry and BiochemistryMiami University Oxford OH 45056 USA
| | - Yufei Wang
- Department of Chemistry and BiochemistryMiami University Oxford OH 45056 USA
| | - Dongqi Yang
- Department of Chemistry and BiochemistryMiami University Oxford OH 45056 USA
| | - Kundi Yang
- Department of Chemistry and BiochemistryMiami University Oxford OH 45056 USA
| | - Wei Liu
- Department of Chemistry and BiochemistryMiami University Oxford OH 45056 USA
| |
Collapse
|
33
|
Monfette S, Fang YQ, Bio MM, Brown AR, Crouch IT, Desrosiers JN, Duan S, Hawkins JM, Hayward CM, Peperni N, Rainville JP. Continuous Process for Preparing the Difluoromethylating Reagent [(DMPU)2Zn(CF2H)2] and Improved Synthesis of the ICHF2 Precursor. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sebastien Monfette
- Process Chemistry, Chemical R&D, Pfizer Worldwide R&D, Eastern Point Rd, Groton, Connecticut 06340, United States
| | - Yuan-Qing Fang
- Snapdragon Chemistry Inc., 300 2nd Ave, Waltham, Massachusetts 02451, United States
| | - Matthew M. Bio
- Snapdragon Chemistry Inc., 300 2nd Ave, Waltham, Massachusetts 02451, United States
| | - Adam R. Brown
- Process Chemistry, Chemical R&D, Pfizer Worldwide R&D, Eastern Point Rd, Groton, Connecticut 06340, United States
| | - Ian T. Crouch
- Snapdragon Chemistry Inc., 300 2nd Ave, Waltham, Massachusetts 02451, United States
| | - Jean-Nicolas Desrosiers
- Process Chemistry, Chemical R&D, Pfizer Worldwide R&D, Eastern Point Rd, Groton, Connecticut 06340, United States
| | - Shengquan Duan
- Process Chemistry, Chemical R&D, Pfizer Worldwide R&D, Eastern Point Rd, Groton, Connecticut 06340, United States
| | - Joel M. Hawkins
- Process Chemistry, Chemical R&D, Pfizer Worldwide R&D, Eastern Point Rd, Groton, Connecticut 06340, United States
| | - Cheryl M. Hayward
- Process Chemistry, Chemical R&D, Pfizer Worldwide R&D, Eastern Point Rd, Groton, Connecticut 06340, United States
| | - Nikita Peperni
- Process Chemistry, Chemical R&D, Pfizer Worldwide R&D, Eastern Point Rd, Groton, Connecticut 06340, United States
| | - Joseph P. Rainville
- Process Chemistry, Chemical R&D, Pfizer Worldwide R&D, Eastern Point Rd, Groton, Connecticut 06340, United States
| |
Collapse
|
34
|
Zhao H, Herbert S, Kinzel T, Zhang W, Shen Q. Two Ligands Transfer from Ag to Pd: En Route to (SIPr)Pd(CF 2H)(X) and Its Application in One-Pot C-H Borylation/Difluoromethylation. J Org Chem 2020; 85:3596-3604. [PMID: 31970986 DOI: 10.1021/acs.joc.9b03296] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A process for the concurrent transfer of both the NHC ligand and the difluoromethyl group from [(SIPr)Ag(CF2H)] to PdX2 (X = Cl, OAc, and OPiv) for the preparation of [(SIPr)Pd(CF2H)X] complexes is described. These complexes were air-stable and easily underwent transmetalation with aryl pinacol boronate/reductive elimination to generate ArCF2H in high yields. Based on this discovery, the first one-pot C-H borylation and difluoromethylation process for the preparation of difluoromethylated (hetero)arenes was developed.
Collapse
Affiliation(s)
- Haiwei Zhao
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Simon Herbert
- Bayer AG, Research & Development, Pharmaceuticals, 178 Müllerstraße, Berlin 13342, Germany
| | - Tom Kinzel
- Open Innovation Center China, Bayer Center, Bayer Pharmaceuticals, Bei Dong San Han 27, Beijing 100020, P. R. China
| | - Wei Zhang
- Centre for Green Chemistry and Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, Massachusetts 02125, United States
| | - Qilong Shen
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| |
Collapse
|
35
|
Trifonov AL, Panferova LI, Levin VV, Kokorekin VA, Dilman AD. Visible-Light-Promoted Iododifluoromethylation of Alkenes via (Phosphonio)difluoromethyl Radical Cation. Org Lett 2020; 22:2409-2413. [DOI: 10.1021/acs.orglett.0c00604] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Alexey L. Trifonov
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation
- D. Mendeleev University of Chemical Technology of Russia, Higher Chemical College, Miusskaya sq. 9, 125047 Moscow, Russian Federation
| | - Liubov I. Panferova
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation
| | - Vitalij V. Levin
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation
| | - Vladimir A. Kokorekin
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation
| | - Alexander D. Dilman
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation
| |
Collapse
|
36
|
Yang Y, Luo G, Li Y, Tong X, He M, Zeng H, Jiang Y, Liu Y, Zheng Y. Nickel-Catalyzed Reductive Coupling for Transforming Unactivated Aryl Electrophiles into β-Fluoroethylarenes. Chem Asian J 2020; 15:156-162. [PMID: 31755237 DOI: 10.1002/asia.201901490] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/21/2019] [Indexed: 01/24/2023]
Abstract
We report herein a facile synthetic method for converting unactivated (hetero)aryl electrophiles into β-fluoroethylated (hetero)arenes via nickel-catalyzed reductive cross-couplings. This coupling reaction features the involvement of FCH2 CH2 radical intermediate rather than β-fluoroethyl manganese species which provides effective solutions to the problematic β-fluoride side eliminations. The practical value of this protocol is further demonstrated by the late-stage modification of several complex ArCl or ArOH-derived bioactive molecules.
Collapse
Affiliation(s)
- Yi Yang
- College of Chemistry and Environmental Engineering, Sichuan University of Science&Engineering, 180 Xueyuan Street, Huixing Lu, Zigong, Sichuan, 643000, China
| | - Gen Luo
- College of Chemistry and Environmental Engineering, Sichuan University of Science&Engineering, 180 Xueyuan Street, Huixing Lu, Zigong, Sichuan, 643000, China
| | - Youlin Li
- College of Chemistry and Environmental Engineering, Sichuan University of Science&Engineering, 180 Xueyuan Street, Huixing Lu, Zigong, Sichuan, 643000, China
| | - Xia Tong
- College of Chemistry and Environmental Engineering, Sichuan University of Science&Engineering, 180 Xueyuan Street, Huixing Lu, Zigong, Sichuan, 643000, China
| | - Mengmeng He
- College of Chemistry and Environmental Engineering, Sichuan University of Science&Engineering, 180 Xueyuan Street, Huixing Lu, Zigong, Sichuan, 643000, China
| | - Hongyao Zeng
- College of Chemistry, Leshan Normal University, 778 Binghe Road, Leshan, Sichuan, 614000, China
| | - Yan Jiang
- College of Chemistry and Environmental Engineering, Sichuan University of Science&Engineering, 180 Xueyuan Street, Huixing Lu, Zigong, Sichuan, 643000, China
| | - Yingle Liu
- College of Chemistry and Environmental Engineering, Sichuan University of Science&Engineering, 180 Xueyuan Street, Huixing Lu, Zigong, Sichuan, 643000, China
| | - Yubin Zheng
- College of Chemistry and Environmental Engineering, Sichuan University of Science&Engineering, 180 Xueyuan Street, Huixing Lu, Zigong, Sichuan, 643000, China
| |
Collapse
|
37
|
Barata-Vallejo S, Postigo A. Photocatalytic Difluoromethylation Reactions of Aromatic Compounds and Aliphatic Multiple C-C Bonds. Molecules 2019; 24:E4483. [PMID: 31817797 PMCID: PMC6943576 DOI: 10.3390/molecules24244483] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/01/2019] [Accepted: 12/05/2019] [Indexed: 02/05/2023] Open
Abstract
Among the realm of visible light photocatalytic transformations, late-stage difluoromethylation reactions (introduction of difluoromethyl groups in the last stages of synthetic protocols) have played relevant roles as the CF2X group substitutions exert positive impacts on the physical properties of organic compounds including solubility, metabolic stability, and lipophilicity, which are tenets of considerable importance in pharmaceutical, agrochemical, and materials science. Visible-light-photocatalyzed difluoromethylation reactions are shown to be accomplished on (hetero)aromatic and carbon-carbon unsaturated aliphatic substrates under mild and environmentally benign conditions.
Collapse
Affiliation(s)
| | - Al Postigo
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Orgánica, Junín 954, Buenos Aires CP1113, Argentina;
| |
Collapse
|
38
|
Zeng X, Yan W, Paeth M, Zacate SB, Hong PH, Wang Y, Yang D, Yang K, Yan T, Song C, Cao Z, Cheng MJ, Liu W. Copper-Catalyzed, Chloroamide-Directed Benzylic C–H Difluoromethylation. J Am Chem Soc 2019; 141:19941-19949. [DOI: 10.1021/jacs.9b11549] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaojun Zeng
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, P. R. China
- National Energy Center for Coal to Liquids, Synfuels China Technology Co., Ltd, Beijing, 101400, P. R. China
| | - Wenhao Yan
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Matthew Paeth
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Samson B. Zacate
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Pei-Hsun Hong
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
| | - Yufei Wang
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Dongqi Yang
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Kundi Yang
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Tao Yan
- National Energy Center for Coal to Liquids, Synfuels China Technology Co., Ltd, Beijing, 101400, P. R. China
| | - Chang Song
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, P. R. China
| | - Zhi Cao
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, P. R. China
- National Energy Center for Coal to Liquids, Synfuels China Technology Co., Ltd, Beijing, 101400, P. R. China
| | - Mu-Jeng Cheng
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
| | - Wei Liu
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| |
Collapse
|
39
|
Krishnamurti V, Barrett C, Ispizua-Rodriguez X, Coe M, Prakash GKS. Aqueous Base Promoted O-Difluoromethylation of Carboxylic Acids with TMSCF2Br: Bench-Top Access to Difluoromethyl Esters. Org Lett 2019; 21:9377-9380. [DOI: 10.1021/acs.orglett.9b03604] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Vinayak Krishnamurti
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089-1661, United States
| | - Colby Barrett
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089-1661, United States
| | - Xanath Ispizua-Rodriguez
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089-1661, United States
| | - Matthew Coe
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089-1661, United States
| | - G. K. Surya Prakash
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089-1661, United States
| |
Collapse
|
40
|
|
41
|
Chiral copper-catalyzed enantioselective Michael difluoromethylation of arylidene meldrum's acids with (difluoromethyl)zinc reagents. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.05.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
42
|
Zeng X, Yan W, Zacate SB, Chao TH, Sun X, Cao Z, Bradford KGE, Paeth M, Tyndall SB, Yang K, Kuo TC, Cheng MJ, Liu W. Copper-Catalyzed Decarboxylative Difluoromethylation. J Am Chem Soc 2019; 141:11398-11403. [DOI: 10.1021/jacs.9b05363] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Xiaojun Zeng
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Wenhao Yan
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Samson B. Zacate
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Tzu-Hsuan Chao
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
| | - Xiaodong Sun
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, P. R. China
- National Energy Center for Coal to Liquids, Synfuels China Technology Co., Ltd., Beijing, 101400, P. R. China
| | - Zhi Cao
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, P. R. China
- National Energy Center for Coal to Liquids, Synfuels China Technology Co., Ltd., Beijing, 101400, P. R. China
| | - Kate G. E. Bradford
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Matthew Paeth
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Sam B. Tyndall
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Kundi Yang
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Tung-Chun Kuo
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
| | - Mu-Jeng Cheng
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
| | - Wei Liu
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| |
Collapse
|
43
|
Fuchibe K, Watanabe S, Takao G, Ichikawa J. Synthesis of (difluoromethyl)naphthalenes using the ring construction strategy: C-C bond formation on the central carbon of 1,1-difluoroallenes via Pd-catalyzed insertion. Org Biomol Chem 2019; 17:5047-5054. [PMID: 31049538 DOI: 10.1039/c9ob00540d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The insertion of 1,1-difluoroallenes was carried out to form a C-C bond exclusively on their central carbon. o-Bromophenyl-bearing 1,1-difluoroallenes underwent intramolecular insertion in the presence of a palladium catalyst. Regioselective C-C bond formation occurred to form a six-membered carbocycle, leading to pharmaceutically and agrochemically promising difluoromethylated naphthalenes.
Collapse
Affiliation(s)
- Kohei Fuchibe
- Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan.
| | - Shumpei Watanabe
- Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan.
| | - Go Takao
- Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan.
| | - Junji Ichikawa
- Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan.
| |
Collapse
|
44
|
Zhang M, Lin J, Xiao J. Photocatalyzed Cyanodifluoromethylation of Alkenes. Angew Chem Int Ed Engl 2019; 58:6079-6083. [DOI: 10.1002/anie.201900466] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/19/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Min Zhang
- Key laboratory of organofluorine chemistryShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Science 345 Lingling Road Shanghai 200032 China
| | - Jin‐Hong Lin
- Key laboratory of organofluorine chemistryShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Science 345 Lingling Road Shanghai 200032 China
| | - Ji‐Chang Xiao
- Key laboratory of organofluorine chemistryShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Science 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
45
|
Affiliation(s)
- Min Zhang
- Key laboratory of organofluorine chemistryShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Science 345 Lingling Road Shanghai 200032 China
| | - Jin‐Hong Lin
- Key laboratory of organofluorine chemistryShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Science 345 Lingling Road Shanghai 200032 China
| | - Ji‐Chang Xiao
- Key laboratory of organofluorine chemistryShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Science 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
46
|
Nitta J, Motohashi H, Aikawa K, Mikami K. Palladium‐Catalyzed Negishi Cross‐Coupling Reaction of Difluoroiodomethane with Arylzinc Reagents. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Junki Nitta
- Department of Chemical Science and EngineeringSchool of Materials and Chemical TechnologyTokyo Institute of Technology O-okayama, Meguro-ku, Tokyo 152-8552 Japan
| | - Hirotaka Motohashi
- Department of Chemical Science and EngineeringSchool of Materials and Chemical TechnologyTokyo Institute of Technology O-okayama, Meguro-ku, Tokyo 152-8552 Japan
| | - Kohsuke Aikawa
- Department of Chemical Science and EngineeringSchool of Materials and Chemical TechnologyTokyo Institute of Technology O-okayama, Meguro-ku, Tokyo 152-8552 Japan
| | - Koichi Mikami
- Department of Chemical Science and EngineeringSchool of Materials and Chemical TechnologyTokyo Institute of Technology O-okayama, Meguro-ku, Tokyo 152-8552 Japan
| |
Collapse
|
47
|
Motohashi H, Kato M, Mikami K. Ligand-Less Iron-Catalyzed Aromatic Cross-Coupling Difluoromethylation of Grignard Reagents with Difluoroiodomethane. J Org Chem 2019; 84:6483-6490. [DOI: 10.1021/acs.joc.9b00585] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Hirotaka Motohashi
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Miki Kato
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Koichi Mikami
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
48
|
Ferguson DM, Malapit CA, Bour JR, Sanford MS. Palladium-Catalyzed Difluoromethylation of Aryl Chlorides and Bromides with TMSCF 2H. J Org Chem 2019; 84:3735-3740. [PMID: 30789266 DOI: 10.1021/acs.joc.9b00324] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A palladium-catalyzed cross-coupling of aryl chlorides/bromides with TMSCF2H is described. Two different catalysts, Pd(dba)2/BrettPhos and Pd(P tBu3)2, are demonstrated and provide a variety of difluoromethylated arenes in good yields.
Collapse
Affiliation(s)
- Devin M Ferguson
- Department of Chemistry , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109 , United States
| | - Christian A Malapit
- Department of Chemistry , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109 , United States
| | - James R Bour
- Department of Chemistry , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109 , United States
| | - Melanie S Sanford
- Department of Chemistry , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109 , United States
| |
Collapse
|
49
|
Melvin PR, Ferguson DM, Schimler SD, Bland DC, Sanford MS. Room Temperature Deoxyfluorination of Benzaldehydes and α-Ketoesters with Sulfuryl Fluoride and Tetramethylammonium Fluoride. Org Lett 2019; 21:1350-1353. [DOI: 10.1021/acs.orglett.9b00054] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Patrick R. Melvin
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Devin M. Ferguson
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Sydonie D. Schimler
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Douglas C. Bland
- CP PD&P Process Chemistry, Corteva Agriscience, Agriculture Division of DowDuPont, 9330 Zionsville Road, Indianapolis, Indiana 46268, United States
| | - Melanie S. Sanford
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
50
|
Pan F, Boursalian GB, Ritter T. Palladium‐Catalyzed Decarbonylative Difluoromethylation of Acid Chlorides at Room Temperature. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201811139] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Fei Pan
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Gregory B. Boursalian
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Tobias Ritter
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| |
Collapse
|