1
|
McGrory R, Clarke R, Marshall O, Sutherland A. Fluorescent α-amino acids via Heck-Matsuda reactions of phenylalanine-derived arenediazonium salts. Org Biomol Chem 2023; 21:6932-6939. [PMID: 37580965 DOI: 10.1039/d3ob01096a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
The Heck-Matsuda coupling reaction of arenediazonium salts derived from L-phenylalanine with various alkenes has been developed. A two-step process involving the preparation of a tetrafluoroborate diazonium salt from a 4-aminophenylalanine derivative, followed by a palladium(0)-catalysed Heck-Matsuda coupling reaction allowed access to a range of unnatural α-amino acids with cinnamate, vinylsulfone and stilbene side-chains. Analysis of the photophysical properties of these unnatural α-amino acids demonstrated that the (E)-stilbene analogues exhibited fluorescent properties with red-shifted absorption and emission spectra and larger quantum yields than L-phenylalanine.
Collapse
Affiliation(s)
- Rochelle McGrory
- School of Chemistry, University of Glasgow, The Joseph Black Building, Glasgow, G12 8QQ, UK.
| | - Rebecca Clarke
- School of Chemistry, University of Glasgow, The Joseph Black Building, Glasgow, G12 8QQ, UK.
| | - Olivia Marshall
- School of Chemistry, University of Glasgow, The Joseph Black Building, Glasgow, G12 8QQ, UK.
| | - Andrew Sutherland
- School of Chemistry, University of Glasgow, The Joseph Black Building, Glasgow, G12 8QQ, UK.
| |
Collapse
|
2
|
A Novel and Simple Synthesis of Ethers of Hydroxypyridines with Hexafluoropropan-2-ol via Diazotization of Aminopyridines and Aminoquinolines Under Acid-Free Conditions. Chem Heterocycl Compd (N Y) 2023. [DOI: 10.1007/s10593-023-03148-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
3
|
Wei Z, Wen L, Zhu K, Wang Q, Zhao Y, Hu J. Regioselective Aromatic Perfluoro- tert-butylation Using Perfluoro- tert-butyl Phenyl Sulfone and Arynes. J Am Chem Soc 2022; 144:22281-22288. [PMID: 36475403 DOI: 10.1021/jacs.2c10479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The selective introduction of perfluoro-tert-butyl group (PFtB, the bulkier analogue of CF3 group) into arenes has long been sought after but remains a formidable task. We herein report the first general synthetic protocol to realize aromatic perfluoro-tert-butylation. The key to the success is the identification of PFtB phenyl sulfone as a new source of PFtB anion, which reacts with arynes in a highly regioselective manner to afford perfluoro-tert-butylated arenes in high yields. The application of the method is demonstrated by the preparation of sensitive 19F-labeled NMR probes with an extraordinary resolving ability.
Collapse
Affiliation(s)
- Zhiqiang Wei
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China.,School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| | - Lixian Wen
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Kaidi Zhu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China.,School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| | - Qian Wang
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Yanchuan Zhao
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Jinbo Hu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China.,School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| |
Collapse
|
4
|
Meng B, Grage SL, Babii O, Takamiya M, MacKinnon N, Schober T, Hutskalov I, Nassar O, Afonin S, Koniev S, Komarov IV, Korvink JG, Strähle U, Ulrich AS. Highly Fluorinated Peptide Probes with Enhanced In Vivo Stability for 19 F-MRI. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107308. [PMID: 36074982 DOI: 10.1002/smll.202107308] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 07/29/2022] [Indexed: 06/15/2023]
Abstract
A labeling strategy for in vivo 19 F-MRI (magnetic resonance imaging) based on highly fluorinated, short hydrophilic peptide probes, is developed. As dual-purpose probes, they are functionalized further by a fluorophore and an alkyne moiety for bioconjugation. High fluorination is achieved by three perfluoro-tert-butyl groups, introduced into asparagine analogues by chemically stable amide bond linkages. d-amino acids and β-alanine in the sequences endow the peptide probes with low cytotoxicity and high serum stability. This design also yielded unstructured peptides, rendering all 27 19 F substitutions chemically equivalent, giving rise to a single 19 F-NMR resonance with <10 Hz linewidth. The resulting performance in 19 F-MRI is demonstrated for six different peptide probes. Using fluorescence microscopy, these probes are found to exhibit high stability and long circulation times in living zebrafish embryos. Furthermore, the probes can be conjugated to bovine serum albumin with only amoderate increase in 19 F-NMR linewidth to ≈30 Hz. Overall, these peptide probes are hence suitable for in vivo 19 F-MRI applications.
Collapse
Affiliation(s)
- Beibei Meng
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Stephan L Grage
- Institute of Biological Interfaces (IBG-2), KIT, POB 3640, 76021, Karlsruhe, Germany
| | - Oleg Babii
- Institute of Biological Interfaces (IBG-2), KIT, POB 3640, 76021, Karlsruhe, Germany
| | - Masanari Takamiya
- Institute of Biological and Chemical Systems (IBCS) - Biological Information Processing, KIT, Karlsruhe, Germany
| | - Neil MacKinnon
- Institute of Microstructure Technology (IMT), KIT, Karlsruhe, Germany
- Karlsruhe Nano Micro Facility (KNFMi), KIT, Karlsruhe, Germany
| | - Tim Schober
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
- Enamine, Kyiv, Ukraine
| | - Illia Hutskalov
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Omar Nassar
- Institute of Microstructure Technology (IMT), KIT, Karlsruhe, Germany
| | - Sergii Afonin
- Institute of Biological Interfaces (IBG-2), KIT, POB 3640, 76021, Karlsruhe, Germany
| | - Serhii Koniev
- Institute of Biological Interfaces (IBG-2), KIT, POB 3640, 76021, Karlsruhe, Germany
- Lumobiotics, Karlsruhe, Germany
- Enamine, Kyiv, Ukraine
| | - Igor V Komarov
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
- Enamine, Kyiv, Ukraine
| | - Jan G Korvink
- Institute of Microstructure Technology (IMT), KIT, Karlsruhe, Germany
| | - Uwe Strähle
- Institute of Biological and Chemical Systems (IBCS) - Biological Information Processing, KIT, Karlsruhe, Germany
| | - Anne S Ulrich
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
- Institute of Biological Interfaces (IBG-2), KIT, POB 3640, 76021, Karlsruhe, Germany
| |
Collapse
|
5
|
Li X, Liu J, He J, Qi S, Wu M, Wang H, Jiang G, Huang J, Wu D, Li F, Ma J. Separator-Wetted, Acid- and Water-Scavenged Electrolyte with Optimized Li-Ion Solvation to Form Dual Efficient Electrode Electrolyte Interphases via Hexa-Functional Additive. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201297. [PMID: 35508898 PMCID: PMC9284149 DOI: 10.1002/advs.202201297] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Indexed: 05/22/2023]
Abstract
The performance of lithium metal batteries (LMBs) is determined by many factors from the bulk electrolyte to the electrode-electrolyte interphases, which are crucially affected by electrolyte additives. Herein, the authors develop the heptafluorobutyrylimidazole (HFBMZ) as a hexa-functional additive to inhibit the dendrite growth on the surface of lithium (Li) anode, and then improve the cycling performance and rate capabilities of Li||LiNi0.6 Co0.2 Mn0.2 O2 (NCM622). The HFBMZ can remove the trace H2 O and HF from the electrolyte, reducing the by-products on the surface of solid electrolyte interphase (SEI) and inhibiting the dissolution of metal ions from NCM622. Also, the HFBMZ can enhance the wettability of the separator to promote uniform Li deposition. HFBMZ can make Li+ easy to be desolvated, resulting in the increase of Li+ flux on Li anode surface. Moreover, the HFBMZ can optimize the composition and structure of SEI. Therefore, the Li||Li symmetrical cells with 1 wt% HFBMZ-contained electrolyte can achieve stable cycling for more than 1200 h at 0.5 mA cm-2 . In addition, the capacity retention rate of the Li||NCM622 can reach 92% after 150 cycles at 100 mA g-1 .
Collapse
Affiliation(s)
- Xin Li
- School of Physics and ElectronicsHunan UniversityChangsha410082China
| | - Jiandong Liu
- School of Physics and ElectronicsHunan UniversityChangsha410082China
| | - Jian He
- School of Physics and ElectronicsHunan UniversityChangsha410082China
| | - Shihan Qi
- School of Physics and ElectronicsHunan UniversityChangsha410082China
| | - Mingguang Wu
- School of Physics and ElectronicsHunan UniversityChangsha410082China
| | - Huaping Wang
- School of Physics and ElectronicsHunan UniversityChangsha410082China
| | - Gaoxue Jiang
- School of Physics and ElectronicsHunan UniversityChangsha410082China
| | - Junda Huang
- School of Physics and ElectronicsHunan UniversityChangsha410082China
| | - Daxiong Wu
- School of Physics and ElectronicsHunan UniversityChangsha410082China
| | - Fang Li
- School of Physics and ElectronicsHunan UniversityChangsha410082China
| | - Jianmin Ma
- School of Physics and ElectronicsHunan UniversityChangsha410082China
| |
Collapse
|
6
|
Abstract
The widespread application of nuclear magnetic resonance (NMR) spectroscopy in detection is currently hampered by its inherently low sensitivity and complications resulting from the undesired signal overlap. Here, we report a detection scheme to address these challenges, where analytes are recognized by 19F-labeled probes to induce characteristic shifts of 19F resonances that can be used as "chromatographic" signatures to pin down each low-concentration analyte in complex mixtures. This unique signal transduction mechanism allows detection sensitivity to be enhanced by using massive chemically equivalent 19F atoms, which was achieved through the proper installation of nonafluoro-tert-butoxy groups on probes of high structural symmetry. It is revealed that the binding of an analyte to the probe can be sensed by as many as 72 chemically equivalent 19F atoms, allowing the quantification of analytes at nanomolar concentrations to be routinely performed by NMR. Applications on the detection of trace amounts of prohibited drug molecules and water contaminants were demonstrated. The high sensitivity and robust resolving ability of this approach represent a first step toward extending the application of NMR to scenarios that are now governed by chromatographic and mass spectrometry techniques. The detection scheme also makes possible the highly sensitive non-invasive multi-component analysis that is difficult to achieve by other analytical methods.
Collapse
Affiliation(s)
- Lixian Wen
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Huan Meng
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Siyi Gu
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Jian Wu
- Instrumental Analysis Center, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, P. R. China
| | - Yanchuan Zhao
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China.,Key Laboratory of Energy Regulation Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| |
Collapse
|
7
|
Wang Q, Tao Q, Dong H, Ni C, Xie X, Hu J. Fluorination Triggers Fluoroalkylation: Nucleophilic Perfluoro‐
tert
‐butylation with 1,1‐Dibromo‐2,2‐bis(trifluoromethyl)ethylene (DBBF) and CsF. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202113727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Qian Wang
- Key Laboratory of Organofluorine Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Quan Tao
- State Key Laboratory of Functional Materials of Informatics Shanghai Institute of Microsystem and Information Technology (SIMIT) Chinese Academy of Sciences (CAS) Shanghai 200050 China
- CAS Center for ExcelleNce in Superconducting Electronics (CENSE) Chinese Academy of Sciences (CAS) Shanghai 200050 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences (UCAS) Beijing 100049 China
| | - Hui Dong
- State Key Laboratory of Functional Materials of Informatics Shanghai Institute of Microsystem and Information Technology (SIMIT) Chinese Academy of Sciences (CAS) Shanghai 200050 China
- CAS Center for ExcelleNce in Superconducting Electronics (CENSE) Chinese Academy of Sciences (CAS) Shanghai 200050 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences (UCAS) Beijing 100049 China
| | - Chuanfa Ni
- Key Laboratory of Organofluorine Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Xiaoming Xie
- State Key Laboratory of Functional Materials of Informatics Shanghai Institute of Microsystem and Information Technology (SIMIT) Chinese Academy of Sciences (CAS) Shanghai 200050 China
- CAS Center for ExcelleNce in Superconducting Electronics (CENSE) Chinese Academy of Sciences (CAS) Shanghai 200050 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences (UCAS) Beijing 100049 China
| | - Jinbo Hu
- Key Laboratory of Organofluorine Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| |
Collapse
|
8
|
Devillers E, Chelain E, Dalvit C, Brigaud T, Pytkowicz J. (R)-α-Trifluoromethylalanine as a 19 F NMR Probe for the Monitoring of Protease Digestion of Peptides. Chembiochem 2021; 23:e202100470. [PMID: 34738292 DOI: 10.1002/cbic.202100470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/03/2021] [Indexed: 11/07/2022]
Abstract
Fluorinated non-natural amino acids are useful tools for improving the bioavailability of peptides but can also serve as fluorinated probes in 19 F NMR-based enzymatic assays. We report herein that the use of the non-natural α-quaternarized (R)-α-trifluoromethylalanine ((R)-α-TfmAla) provides convenient and accurate monitoring of trypsin proteolytic activity and increases resistance towards pepsin degradation.
Collapse
Affiliation(s)
- Emmanuelle Devillers
- CY Cergy Paris Université, CNRS, BIOCIS, 5 mail Gay Lussac, Neuville sur Oise, 95031, Cergy Pontoise, France.,Université Paris-Saclay, CNRS, BIOCIS, 92290, Châtenay-Malabry, France
| | - Evelyne Chelain
- CY Cergy Paris Université, CNRS, BIOCIS, 5 mail Gay Lussac, Neuville sur Oise, 95031, Cergy Pontoise, France.,Université Paris-Saclay, CNRS, BIOCIS, 92290, Châtenay-Malabry, France
| | - Claudio Dalvit
- Faculty of Science, University of Neuchatel, Avenue de Bellevaux 51, 2000, Neuchatel, Switzerland.,Present address: Lavis, Trento, Italy
| | - Thierry Brigaud
- CY Cergy Paris Université, CNRS, BIOCIS, 5 mail Gay Lussac, Neuville sur Oise, 95031, Cergy Pontoise, France.,Université Paris-Saclay, CNRS, BIOCIS, 92290, Châtenay-Malabry, France
| | - Julien Pytkowicz
- CY Cergy Paris Université, CNRS, BIOCIS, 5 mail Gay Lussac, Neuville sur Oise, 95031, Cergy Pontoise, France.,Université Paris-Saclay, CNRS, BIOCIS, 92290, Châtenay-Malabry, France
| |
Collapse
|
9
|
Wang Q, Tao Q, Dong H, Ni C, Xie X, Hu J. Fluorination Triggers Fluoroalkylation: Nucleophilic Perfluoro-tert-butylation with 1,1-Dibromo-2,2-bis(trifluoromethyl)ethylene (DBBF) and CsF. Angew Chem Int Ed Engl 2021; 60:27318-27323. [PMID: 34714973 DOI: 10.1002/anie.202113727] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 10/27/2021] [Indexed: 12/23/2022]
Abstract
Perfluoro-tert-butylation reaction has long remained a challenging task. We now report the use of 1,1-dibromo-2,2-bis(trifluoromethyl)ethylene (DBBF) as a practical reagent for perfluoro-tert-butylation reactions for the first time. Through a consecutive triple-fluorination process with DBBF and CsF, the (CF3 )3 C- species can be liberated and observed, which is able to serve as a robust nucleophilic perfluoro-tert-butylating agent for various electrophiles. The power of this synthetic protocol is evidenced by the efficient synthesis of structurally diverse perfluoro-tert-butylated molecules. Multiple applications demonstrate the practicability of this method, as well as the superiority of perfluoro-tert-butylated compounds as sensitive probes. The perfluoro-tert-butylated product was successfully applied in 1 H- and 19 F-magnetic resonance imaging (MRI) experiment with an ultra-low field (ULF) MRI system.
Collapse
Affiliation(s)
- Qian Wang
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| | - Quan Tao
- State Key Laboratory of Functional Materials of Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai, 200050, China.,CAS Center for ExcelleNce in Superconducting Electronics (CENSE), Chinese Academy of Sciences (CAS), Shanghai, 200050, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Hui Dong
- State Key Laboratory of Functional Materials of Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai, 200050, China.,CAS Center for ExcelleNce in Superconducting Electronics (CENSE), Chinese Academy of Sciences (CAS), Shanghai, 200050, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Chuanfa Ni
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| | - Xiaoming Xie
- State Key Laboratory of Functional Materials of Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai, 200050, China.,CAS Center for ExcelleNce in Superconducting Electronics (CENSE), Chinese Academy of Sciences (CAS), Shanghai, 200050, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Jinbo Hu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| |
Collapse
|
10
|
Buchholz CR, Pomerantz WCK. 19F NMR viewed through two different lenses: ligand-observed and protein-observed 19F NMR applications for fragment-based drug discovery. RSC Chem Biol 2021; 2:1312-1330. [PMID: 34704040 PMCID: PMC8496043 DOI: 10.1039/d1cb00085c] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/07/2021] [Indexed: 12/28/2022] Open
Abstract
19F NMR has emerged as a powerful tool in drug discovery, particularly in fragment-based screens. The favorable magnetic resonance properties of the fluorine-19 nucleus, the general absence of fluorine in biological settings, and its ready incorporation into both small molecules and biopolymers, has enabled multiple applications of 19F NMR using labeled small molecules and proteins in biophysical, biochemical, and cellular experiments. This review will cover developments in ligand-observed and protein-observed 19F NMR experiments tailored towards drug discovery with a focus on fragment screening. We also cover the key advances that have furthered the field in recent years, including quantitative, structural, and in-cell methodologies. Several case studies are described for each application to highlight areas for innovation and to further catalyze new NMR developments for using this versatile nucleus.
Collapse
Affiliation(s)
- Caroline R Buchholz
- Department of Medicinal Chemistry, University of Minnesota 308 Harvard Street SE Minneapolis Minnesota 55455 USA
| | - William C K Pomerantz
- Department of Medicinal Chemistry, University of Minnesota 308 Harvard Street SE Minneapolis Minnesota 55455 USA
- Department of Chemistry, University of Minnesota 207 Pleasant St. SE Minneapolis Minnesota 55455 USA
| |
Collapse
|
11
|
Gimenez D, Phelan A, Murphy CD, Cobb SL. 19F NMR as a tool in chemical biology. Beilstein J Org Chem 2021; 17:293-318. [PMID: 33564338 PMCID: PMC7849273 DOI: 10.3762/bjoc.17.28] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/07/2021] [Indexed: 12/15/2022] Open
Abstract
We previously reviewed the use of 19F NMR in the broad field of chemical biology [Cobb, S. L.; Murphy, C. D. J. Fluorine Chem. 2009, 130, 132-140] and present here a summary of the literature from the last decade that has the technique as the central method of analysis. The topics covered include the synthesis of new fluorinated probes and their incorporation into macromolecules, the application of 19F NMR to monitor protein-protein interactions, protein-ligand interactions, physiologically relevant ions and in the structural analysis of proteins and nucleic acids. The continued relevance of the technique to investigate biosynthesis and biodegradation of fluorinated organic compounds is also described.
Collapse
Affiliation(s)
- Diana Gimenez
- Department of Chemistry, Durham University, South Road, Durham, DH13LE, UK
| | - Aoife Phelan
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Cormac D Murphy
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Steven L Cobb
- Department of Chemistry, Durham University, South Road, Durham, DH13LE, UK
| |
Collapse
|
12
|
Wu T, Li A, Chen K, Peng X, Zhang J, Jiang M, Chen S, Zheng X, Zhou X, Jiang ZX. Perfluoro- tert-butanol: a cornerstone for high performance fluorine-19 magnetic resonance imaging. Chem Commun (Camb) 2021; 57:7743-7757. [PMID: 34286714 DOI: 10.1039/d1cc02133h] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
As a versatile quantification and tracking technology, 19F magnetic resonance imaging (19F MRI) provides quantitative "hot-spot" images without ionizing radiation, tissue depth limit, and background interference. However, the lack of suitable imaging agents severely hampers its clinical application. First, because the 19F signals are solely originated from imaging agents, the relatively low sensitivity of MRI technology requires high local 19F concentrations to generate images, which are often beyond the reach of many 19F MRI agents. Second, the peculiar physicochemical properties of many fluorinated compounds usually lead to low 19F signal intensity, tedious formulation, severe organ retention, etc. Therefore, the development of 19F MRI agents with high sensitivity and with suitable physicochemical and biological properties is of great importance. To this end, perfluoro-tert-butanol (PFTB), containing nine equivalent 19F and a modifiable hydroxyl group, has outperformed most perfluorocarbons as a valuable building block for high performance 19F MRI agents. Herein, we summarize the development and application of PFTB-based 19F MRI agents and analyze the strategies to improve their sensitivity and physicochemical and biological properties. In the context of PFC-based 19F MRI agents, we also discuss the challenges and prospects of PFTB-based 19F MRI agents.
Collapse
Affiliation(s)
- Tingjuan Wu
- Group of Lead Compound, Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, Hunan, China.
| | - Anfeng Li
- Group of Lead Compound, Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, Hunan, China.
| | - Kexin Chen
- Group of Lead Compound, Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, Hunan, China.
| | - Xingxing Peng
- Group of Lead Compound, Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, Hunan, China.
| | - Jing Zhang
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| | - Mou Jiang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovative Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Wuhan 430071, China.
| | - Shizhen Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovative Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Wuhan 430071, China.
| | - Xing Zheng
- Group of Lead Compound, Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, Hunan, China.
| | - Xin Zhou
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovative Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Wuhan 430071, China.
| | - Zhong-Xing Jiang
- Group of Lead Compound, Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, Hunan, China. and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
13
|
Miller MA, Sletten EM. Perfluorocarbons in Chemical Biology. Chembiochem 2020; 21:3451-3462. [PMID: 32628804 PMCID: PMC7736518 DOI: 10.1002/cbic.202000297] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/03/2020] [Indexed: 01/10/2023]
Abstract
Perfluorocarbons, saturated carbon chains in which all the hydrogen atoms are replaced with fluorine, form a separate phase from both organic and aqueous solutions. Though perfluorinated compounds are not found in living systems, they can be used to modify biomolecules to confer orthogonal behavior within natural systems, such as improved stability, engineered assembly, and cell-permeability. Perfluorinated groups also provide handles for purification, mass spectrometry, and 19 F NMR studies in complex environments. Herein, we describe how the unique properties of perfluorocarbons have been employed to understand and manipulate biological systems.
Collapse
Affiliation(s)
- Margeaux A Miller
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E Young Dr E, Los Angeles, CA, 90095, USA
| | - Ellen M Sletten
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E Young Dr E, Los Angeles, CA, 90095, USA
| |
Collapse
|
14
|
Dalvit C, Veronesi M, Vulpetti A. Fluorine NMR functional screening: from purified enzymes to human intact living cells. JOURNAL OF BIOMOLECULAR NMR 2020; 74:613-631. [PMID: 32347447 DOI: 10.1007/s10858-020-00311-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
The substrate- or cofactor-based fluorine NMR screening, also known as n-FABS (n fluorine atoms for biochemical screening), represents a powerful method for performing a direct functional assay in the search of inhibitors or enhancers of an enzymatic reaction. Although it suffers from the intrinsic low sensitivity compared to other biophysical techniques usually applied in functional assays, it has some distinctive features that makes it appealing for tackling complex chemical and biological systems. Its strengths are represented by the easy set-up, robustness, flexibility, lack of signal interference and rich information content resulting in the identification of bona fide inhibitors and reliable determination of their inhibitory strength. The versatility of the n-FABS allows its application to either purified enzymes, cell lysates or intact living cells. The principles, along with theoretical, technical and practical aspects, of the methodology are discussed. Furthermore, several applications of the technique to pharmaceutical projects are presented.
Collapse
Affiliation(s)
| | - Marina Veronesi
- D3-PharmaChemistry, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Anna Vulpetti
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, 4002, Basel, Switzerland
| |
Collapse
|
15
|
Orlandi S, Cavazzini M, Capuani S, Ciardello A, Pozzi G. Synthesis and 19F NMR parameters of a perfluoro-tert-butoxy tagged L-DOPA analogue. J Fluor Chem 2020. [DOI: 10.1016/j.jfluchem.2020.109596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
16
|
Tressler CM, Zondlo NJ. Perfluoro- tert-Butyl Hydroxyprolines as Sensitive, Conformationally Responsive Molecular Probes: Detection of Protein Kinase Activity by 19F NMR. ACS Chem Biol 2020; 15:1096-1103. [PMID: 32125821 DOI: 10.1021/acschembio.0c00131] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
19F NMR spectroscopy provides the ability to quantitatively analyze single species in complex solutions but is often limited by the modest sensitivity inherent to NMR. 4R- and 4S-Perfluoro-tert-buyl hydroxyproline contain 9 equivalent fluorines, in amino acids with strong conformational preferences. In order to test the ability to use these amino acids as sensitive probes of protein modifications, the perfluoro-tert-buyl hydroxyprolines were incorporated into substrate peptides of the protein kinases PKA and Akt. Peptides containing each diastereomeric proline were rapidly phosphorylated by each protein kinase and exhibited 19F chemical shift changes as a result of phosphorylation. The sensitivity of the perfluoro-tert-butyl group allowed quantitative analysis of the kinetics of phosphorylation over three half-lives at single-digit micromolar concentrations of each species. The distinct conformational preferences of these amino acids allowed the optimization of the substrate with a conformationally matched amino acid, in order to maximize the rate of phosphorylation. PKA preferred the 4R-amino acid at the -1 position, whereas the closely related AGC kinase Akt preferred the 4S-amino acid. These data, combined with analysis of structures of the Michaelis complexes of these kinases in the PDB, suggest that PKA recognizes the PPII conformation at the P-1 position relative to the phosphorylation site, while Akt/PKB recognizes an extended conformation at this position. These results suggest that conformational targeting may be employed to increase specificity in recognition by protein kinases. Perfluoro-tert-butyl hydroxyprolines were applied to the real-time detection and quantification of PKA activity and inhibition of PKA activity in HeLa cell extracts via 19F NMR spectroscopy. The coupling of proline ring pucker with main chain conformation suggests broad application of perfluoro-tert-butyl hydroxyprolines in molecular sensing and imaging.
Collapse
Affiliation(s)
- Caitlin M. Tressler
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Neal J. Zondlo
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
17
|
Meng H, Wen L, Xu Z, Li Y, Hao J, Zhao Y. Nonafluoro-tert-butoxylation of Diaryliodonium Salts. Org Lett 2019; 21:5206-5210. [DOI: 10.1021/acs.orglett.9b01813] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Huan Meng
- Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, China
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Lixian Wen
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Zhenchuang Xu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Yipeng Li
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Jian Hao
- Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, China
| | - Yanchuan Zhao
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
- Key Laboratory of Energy Regulation Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| |
Collapse
|
18
|
Sukach V, Melnykov S, Bertho S, Diachenko I, Retailleau P, Vovk M, Gillaizeau I. Access to Unprotected β-Fluoroalkyl β-Amino Acids and Their α-Hydroxy Derivatives. Org Lett 2019; 21:2340-2345. [PMID: 30873840 DOI: 10.1021/acs.orglett.9b00622] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Unprotected β-(het)aryl-β-fluoroalkyl β-amino acids and their α-hydroxy derivatives can be readily obtained using a decarboxylative Mannich-type reaction without protection/deprotection steps. This protocol utilizes lithium hexamethyldisilazide and (het)arylfluoroalkyl ketones to generate NH-ketimine intermediates. The mild reaction conditions allow the preparation of original fluorinated β-amino acids as useful building blocks in a practical and scalable manner.
Collapse
Affiliation(s)
- Volodymyr Sukach
- Le Studium Loire Valley Institute for Advanced Studies , 1, rue Dupanloup , Orléans 45000 , France.,Institute of Organic and Analytical Chemistry, ICOA UMR 7311 CNRS , Université d'Orléans , rue de Chartres , Orléans 45100 , France
| | - Serhii Melnykov
- Institute of Organic Chemistry of NAS of Ukraine , 5, Murmanska Str ., Kyiv 02660 , Ukraine.,Enamine LTD , 78 Chervonotkats'ka Str. , Kyiv 02094 , Ukraine
| | - Sylvain Bertho
- Institute of Organic and Analytical Chemistry, ICOA UMR 7311 CNRS , Université d'Orléans , rue de Chartres , Orléans 45100 , France
| | - Iryna Diachenko
- Institute of Organic and Analytical Chemistry, ICOA UMR 7311 CNRS , Université d'Orléans , rue de Chartres , Orléans 45100 , France
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, Avenue de la Terrasse , Gif-sur-Yvette 91198 , France
| | - Mykhailo Vovk
- Institute of Organic Chemistry of NAS of Ukraine , 5, Murmanska Str ., Kyiv 02660 , Ukraine
| | - Isabelle Gillaizeau
- Institute of Organic and Analytical Chemistry, ICOA UMR 7311 CNRS , Université d'Orléans , rue de Chartres , Orléans 45100 , France
| |
Collapse
|
19
|
Design and synthesis of a highly efficient labelling reagent for incorporation of tetrafluorinated aromatic azide into proteins. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Lou YG, Wang AJ, Zhao L, He LF, Li XF, He CY, Zhang X. Palladium-catalyzed cross-coupling of unactivated alkylzinc reagents with 2-bromo-3,3,3-trifluoropropene and its application in the synthesis of fluorinated amino acids. Chem Commun (Camb) 2019; 55:3705-3708. [DOI: 10.1039/c8cc10212k] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A palladium-catalyzed cross-coupling of unactivated alkylzinc reagents with 2-bromo-3,3,3-trifluoropropene (BTP) has been developed, which was used as a key step to prepare a series of trifluoromethylated and difluoromethylated amino acids.
Collapse
Affiliation(s)
- Yue-Guang Lou
- Generic Drug Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
- Zunyi
- P. R. China
| | - An-Jun Wang
- Generic Drug Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
- Zunyi
- P. R. China
| | - Liang Zhao
- Generic Drug Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
- Zunyi
- P. R. China
| | - Lin-Feng He
- Generic Drug Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
- Zunyi
- P. R. China
| | - Xiao-Fei Li
- Generic Drug Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
- Zunyi
- P. R. China
| | - Chun-Yang He
- Generic Drug Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
- Zunyi
- P. R. China
| | - Xingang Zhang
- Key Laboratory of Organofluorine Chemistry
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
| |
Collapse
|
21
|
Sengupta S, Chandrasekaran S. Modifications of amino acids using arenediazonium salts. Org Biomol Chem 2019; 17:8308-8329. [DOI: 10.1039/c9ob01471c] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aryl transfer reactions from arenediazonium salts have started to make their impact in chemical biology with initial forays in the arena of arylative modifications and bio-conjugations of amino acids, peptides and proteins.
Collapse
Affiliation(s)
- Saumitra Sengupta
- Department of Organic Chemistry
- Indian Institute of Science
- Bangalore
- India
| | | |
Collapse
|
22
|
Dalvit C, Vulpetti A. Ligand-Based Fluorine NMR Screening: Principles and Applications in Drug Discovery Projects. J Med Chem 2018; 62:2218-2244. [DOI: 10.1021/acs.jmedchem.8b01210] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Anna Vulpetti
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, 4002 Basel, Switzerland
| |
Collapse
|
23
|
Raynal L, Allardyce BJ, Wang X, Dilley RJ, Rajkhowa R, Henderson LC. Facile and versatile solid state surface modification of silk fibroin membranes using click chemistry. J Mater Chem B 2018; 6:8037-8042. [PMID: 32254922 DOI: 10.1039/c8tb02508h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reported is a fast and versatile protocol to surface modify pre-cast silk membranes targeting tyrosine residues.
Collapse
Affiliation(s)
- Laetitia Raynal
- Deakin University
- Institute for Frontier Materials
- Waurn Ponds Campus
- Geelong
- Australia
| | | | - Xungai Wang
- Deakin University
- Institute for Frontier Materials
- Waurn Ponds Campus
- Geelong
- Australia
| | | | - Rangam Rajkhowa
- Deakin University
- Institute for Frontier Materials
- Waurn Ponds Campus
- Geelong
- Australia
| | - Luke C. Henderson
- Deakin University
- Institute for Frontier Materials
- Waurn Ponds Campus
- Geelong
- Australia
| |
Collapse
|
24
|
Mykhailiuk PK, Kishko I, Kubyshkin V, Budisa N, Cossy J. Selective19F-Labeling of Functionalized Carboxylic Acids with Difluoromethyl Diazomethane (CF2HCHN2). Chemistry 2017; 23:13279-13283. [DOI: 10.1002/chem.201703446] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Indexed: 01/18/2023]
Affiliation(s)
- Pavel K. Mykhailiuk
- Taras Shevchenko National University of Kyiv; Chemistry Department; Volodymyrska 64 01601 Kyiv Ukraine
| | - Igor Kishko
- Taras Shevchenko National University of Kyiv; Chemistry Department; Volodymyrska 64 01601 Kyiv Ukraine
- Enamine Ltd.; Chervonotkatska 78 02094 Kyiv Ukraine
| | - Vladimir Kubyshkin
- Institute of Chemistry; Technical University of Berlin; Müller-Breslau-Str., 10 10623 Berlin Germany
| | - Nediljko Budisa
- Institute of Chemistry; Technical University of Berlin; Müller-Breslau-Str., 10 10623 Berlin Germany
| | - Janine Cossy
- Laboratoire de Chimie Organique, Institute of Chemistry, Biology and Innovation (CBI); ESPCI Paris/ (UMR 8231) CNRS/PSL Research University; 10 rue Vauquelin Paris 75231 Cedex 05 France)
| |
Collapse
|
25
|
Kirberger SE, Maltseva SD, Manulik JC, Einstein SA, Weegman BP, Garwood M, Pomerantz WCK. Synthesis of Intrinsically Disordered Fluorinated Peptides for Modular Design of High-Signal 19 F MRI Agents. Angew Chem Int Ed Engl 2017; 56:6440-6444. [PMID: 28471097 PMCID: PMC5493043 DOI: 10.1002/anie.201700426] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/13/2017] [Indexed: 12/28/2022]
Abstract
19 F MRI is valuable for in vivo imaging due to the only trace amounts of fluorine in biological systems. Because of the low sensitivity of MRI however, designing new fluorochemicals remains a significant challenge for achieving sufficient 19 F signal. Here, we describe a new class of high-signal, water-soluble fluorochemicals as 19 F MRI imaging agents. A polyamide backbone is used for tuning the proteolytic stability to avoid retention within the body, which is a limitation of current state-of-the-art perfluorochemicals. We show that unstructured peptides containing alternating N-ϵ-trifluoroacetyllysine and lysine provide a degenerate 19 F NMR signal. 19 F MRI phantom images provide sufficient contrast at micromolar concentrations, showing promise for eventual clinical applications. Finally, the degenerate high signal characteristics were retained when conjugated to a large protein, indicating potential for in vivo targeting applications, including molecular imaging and cell tracking.
Collapse
Affiliation(s)
- Steven E Kirberger
- Department of Chemistry, University of Minnesota - Twin Cities, 207 Pleasant St. SE, Minneapolis, MN, 55455, USA
| | - Sofia D Maltseva
- Department of Chemistry, University of Minnesota - Twin Cities, 207 Pleasant St. SE, Minneapolis, MN, 55455, USA
| | - Joseph C Manulik
- Department of Chemistry, University of Minnesota - Twin Cities, 207 Pleasant St. SE, Minneapolis, MN, 55455, USA
| | - Samuel A Einstein
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota - Twin Cities, 2021 6thSt. SE, Minneapolis, MN, 55455, USA
| | - Bradley P Weegman
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota - Twin Cities, 2021 6thSt. SE, Minneapolis, MN, 55455, USA
| | - Michael Garwood
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota - Twin Cities, 2021 6thSt. SE, Minneapolis, MN, 55455, USA
| | - William C K Pomerantz
- Department of Chemistry, University of Minnesota - Twin Cities, 207 Pleasant St. SE, Minneapolis, MN, 55455, USA
| |
Collapse
|
26
|
Kirberger SE, Maltseva SD, Manulik JC, Einstein SA, Weegman BP, Garwood M, Pomerantz WCK. Synthesis of Intrinsically Disordered Fluorinated Peptides for Modular Design of High-Signal 19
F MRI Agents. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201700426] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Steven E. Kirberger
- Department of Chemistry; University of Minnesota - Twin Cities; 207 Pleasant St. SE Minneapolis MN 55455 USA
| | - Sofia D. Maltseva
- Department of Chemistry; University of Minnesota - Twin Cities; 207 Pleasant St. SE Minneapolis MN 55455 USA
| | - Joseph C. Manulik
- Department of Chemistry; University of Minnesota - Twin Cities; 207 Pleasant St. SE Minneapolis MN 55455 USA
| | - Samuel A. Einstein
- Department of Radiology; Center for Magnetic Resonance Research; University of Minnesota - Twin Cities; 2021 6 St. SE Minneapolis MN 55455 USA
| | - Bradley P. Weegman
- Department of Radiology; Center for Magnetic Resonance Research; University of Minnesota - Twin Cities; 2021 6 St. SE Minneapolis MN 55455 USA
| | - Michael Garwood
- Department of Radiology; Center for Magnetic Resonance Research; University of Minnesota - Twin Cities; 2021 6 St. SE Minneapolis MN 55455 USA
| | - William C. K. Pomerantz
- Department of Chemistry; University of Minnesota - Twin Cities; 207 Pleasant St. SE Minneapolis MN 55455 USA
| |
Collapse
|
27
|
Tressler CM, Zondlo NJ. Perfluoro-tert-butyl Homoserine Is a Helix-Promoting, Highly Fluorinated, NMR-Sensitive Aliphatic Amino Acid: Detection of the Estrogen Receptor·Coactivator Protein-Protein Interaction by 19F NMR. Biochemistry 2017; 56:1062-1074. [PMID: 28165218 PMCID: PMC5894335 DOI: 10.1021/acs.biochem.6b01020] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Highly fluorinated amino acids can stabilize proteins and complexes with proteins, via enhanced hydrophobicity, and provide novel methods for identification of specific molecular events in complex solutions, via selective detection by 19F NMR and the absence of native 19F signals in biological contexts. However, the potential applications of 19F NMR in probing biological processes are limited both by the strong propensities of most highly fluorinated amino acids for the extended conformation and by the relatively modest sensitivity of NMR spectroscopy, which typically constrains measurements to mid-micromolar concentrations. Herein, we demonstrate that perfluoro-tert-butyl homoserine exhibits a propensity for compact conformations, including α-helix and polyproline helix (PPII), that is similar to that of methionine. Perfluoro-tert-butyl homoserine has nine equivalent fluorines that do not couple to any other nuclei, resulting in a sharp singlet that can be sensitively detected rapidly at low micromolar concentrations. Perfluoro-tert-butyl homoserine was incorporated at sites of leucine residues within the α-helical LXXLL short linear motif of estrogen receptor (ER) coactivator peptides. A peptide containing perfluoro-tert-butyl homoserine at position i + 3 of the ER coactivator LXXLL motif exhibited a Kd of 2.2 μM for the estradiol-bound estrogen receptor, similar to that of the native ligand. 19F NMR spectroscopy demonstrated the sensitive detection (5 μM concentration, 128 scans) of binding of the peptide to the ER and of inhibition of protein-protein interaction by the native ligand or by the ER antagonist tamoxifen. These results suggest diverse potential applications of perfluoro-tert-butyl homoserine in probing protein function and protein-protein interfaces in complex solutions.
Collapse
Affiliation(s)
- Caitlin M. Tressler
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Neal J. Zondlo
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|