1
|
Morohashi S, Zhou L, Kanemoto K, Kwon E, Yoshikai N. Hexadehydro Diels-Alder/Alkynyliodanation Cascade: A Highly Regioselective Entry to Polycyclic Aromatics. Org Lett 2025; 27:4269-4274. [PMID: 40231630 PMCID: PMC12038833 DOI: 10.1021/acs.orglett.5c00956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/04/2025] [Accepted: 04/10/2025] [Indexed: 04/16/2025]
Abstract
We report here a cascade process integrating the hexadehydro Diels-Alder (HDDA) reaction with alkynyliodanation, enabling efficient synthesis of highly substituted aryl-λ3-iodanes. Heating a mixture of a tetrayne and an alkynylbenziodoxole induces regioselective insertion of the tetrayne-derived aryne into the alkynyl-iodine(III) bond, yielding a 1,4-dialkynyl-2-iodanyl-3-aryl(or alkyl)benzene derivative. The unique regiochemistry facilitates subsequent π-extension, allowing divergent access to polyaromatic frameworks, such as helicenes and cyclopenta[cd]pyrenes, underscoring the utility of aryne carboiodanation in complex aromatic synthesis.
Collapse
Affiliation(s)
- Shunya Morohashi
- Graduate
School of Pharmaceutical Sciences, Tohoku
University, Sendai 980-8578, Japan
| | - Liejin Zhou
- Key
Laboratory of the Ministry of Education for Advanced Catalysis Materials,
College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, P.R. China
| | - Kazuya Kanemoto
- Graduate
School of Pharmaceutical Sciences, Tohoku
University, Sendai 980-8578, Japan
| | - Eunsang Kwon
- Research
and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
- Endowed
Research Laboratory of Dimensional Integrated Nanomaterials, Graduate
School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Naohiko Yoshikai
- Graduate
School of Pharmaceutical Sciences, Tohoku
University, Sendai 980-8578, Japan
| |
Collapse
|
2
|
Huang L, Chen LP, Du Y, Fang MY, Wang BQ, Feng C, Xiang SK. Bay-Region Annulative π-Extension of o-Iodobiphenyls with Aliphatic Anhydrides Catalyzed by Pd(OAc) 2. Org Lett 2021; 23:7535-7539. [PMID: 34553944 DOI: 10.1021/acs.orglett.1c02746] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bay-region annulative π-extension of o-iodobiphenyls with aliphatic anhydrides was developed. Many o-iodobiphenyls and aliphatic anhydrides can react well under the optimized conditions. A lot of phenanthrol derivatives can be efficiently prepared by this approach. The control experiments support that dibenzopalladacyclopentadienes may be the reaction intermediates.
Collapse
Affiliation(s)
- Lin Huang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Li-Ping Chen
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Yu Du
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Mao-Ying Fang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Bi-Qin Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Chun Feng
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Shi-Kai Xiang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China
| |
Collapse
|
3
|
Fluegel LL, Hoye TR. Hexadehydro-Diels-Alder Reaction: Benzyne Generation via Cycloisomerization of Tethered Triynes. Chem Rev 2021; 121:2413-2444. [PMID: 33492939 PMCID: PMC8008985 DOI: 10.1021/acs.chemrev.0c00825] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The hexadehydro-Diels-Alder (HDDA) reaction is the thermal cyclization of an alkyne and a 1,3-diyne to generate a benzyne intermediate. This is then rapidly trapped, in situ, by a variety of species to yield highly functionalized benzenoid products. In contrast to nearly all other methods of aryne generation, no other reagents are required to produce an HDDA benzyne. The versatile and customizable nature of the process has attracted much attention due not only to its synthetic potential but also because of the fundamental mechanistic insights the studies often afford. The authors have attempted to provide here a comprehensive compilation of publications appearing by mid-2020 that describe experimental results of HDDA reactions.
Collapse
Affiliation(s)
- Lucas L Fluegel
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Thomas R Hoye
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
4
|
Le A, Lee D. Selectivity between an Alder–ene reaction and a [2 + 2] cycloaddition in the intramolecular reactions of allene-tethered arynes. Org Chem Front 2021. [DOI: 10.1039/d1qo00459j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Substituent-dependent reactivity and selectivity in the intramolecular reactions of arynes tethered with an allene are described.
Collapse
Affiliation(s)
- Anh Le
- Department of Chemistry
- University of Illinois at Chicago
- Chicago
- USA
| | - Daesung Lee
- Department of Chemistry
- University of Illinois at Chicago
- Chicago
- USA
| |
Collapse
|
5
|
Maier J, Deutsch M, Merz J, Ye Q, Diamond O, Schilling M, Friedrich A, Engels B, Marder TB. Highly Conjugated π-Systems Arising from Cannibalistic Hexadehydro-Diels-Alder Couplings: Cleavage of C-C Single and Triple Bonds. Chemistry 2020; 26:15989-16000. [PMID: 32619049 PMCID: PMC7756338 DOI: 10.1002/chem.202002511] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Indexed: 11/30/2022]
Abstract
We have investigated the cannibalistic self-trapping reaction of an ortho-benzyne derivative generated from 1,11-bis(p-tolyl)undeca-1,3,8,10-tetrayne in an HDDA reaction. Without adding any specific trapping agent, the highly reactive benzyne is trapped by another bisdiyne molecule in at least three different modes. We have isolated and characterized the resulting products and performed high-level calculations concerning the reaction mechanism. During the cannibalistic self-trapping process, either a C≡C triple bond or an sp-sp3 C-C single bond is cleaved. Up to seven rings and nine C-C bonds are formed starting from two 1,11-bis(p-tolyl)undeca-1,3,8,10-tetrayne molecules. Our experiments and calculations provide considerable insight into the variety of reaction pathways which the ortho-benzyne derivative, generated from a bisdiyne, can take when reacting with another bisdiyne molecule.
Collapse
Affiliation(s)
- Jan Maier
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry &, Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Marian Deutsch
- Institut für Physikalische und Theoretische Chemie, Julius-Maximilians-Universität WürzburgEmil-Fischer-Straße 4297074WürzburgGermany
| | - Julia Merz
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry &, Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Qing Ye
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry &, Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Southern University of Science and TechnologyNo 1088, Xueyuan Rd.Xili, Nanshan DistrictShenzhen, GuangdongP. R. China
| | - Oliver Diamond
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry &, Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Maja‐Tessa Schilling
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry &, Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Alexandra Friedrich
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry &, Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Bernd Engels
- Institut für Physikalische und Theoretische Chemie, Julius-Maximilians-Universität WürzburgEmil-Fischer-Straße 4297074WürzburgGermany
| | - Todd B. Marder
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry &, Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
6
|
Diels-Alder Cycloaddition to the Bay Region of Perylene and Its Derivatives as an Attractive Strategy for PAH Core Expansion: Theoretical and Practical Aspects. Molecules 2020; 25:molecules25225373. [PMID: 33213037 PMCID: PMC7698498 DOI: 10.3390/molecules25225373] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/31/2020] [Accepted: 11/05/2020] [Indexed: 11/16/2022] Open
Abstract
PAHs (polycyclic aromatics hydrocarbons), the compound group that contains perylene and its derivatives, including functionalized ones, have attracted a great deal of interest in many fields of science and modern technology. This review presents all of the research devoted to modifications of PAHs that are realized via the Diels–Alder (DA) cycloaddition of various dienophiles to the bay regions of PAHs, leading to the π-extension of the starting molecule. This type of annulative π-extension (APEX) strategy has emerged as a powerful and efficient synthetic method for the construction of polycyclic aromatic hydrocarbons and their functionalized derivatives, nanographenes, and π-extended fused heteroarenes. Then, [4 + 2] cycloadditions of ethylenic dienophiles, -N=N-, i.e., diazo-dienophiles and acetylenic dienophiles, are presented. This subject is discussed from the organic synthesis point of view but supported by theoretical calculations. The possible applications of DA cycloaddition to PAH bay regions in various science and technology areas, and the prospects for the development of this synthetic method, are also discussed.
Collapse
|
7
|
Kurpanik A, Matussek M, Szafraniec-Gorol G, Filapek M, Lodowski P, Marcol-Szumilas B, Ignasiak W, Małecki JG, Machura B, Małecka M, Danikiewicz W, Pawlus S, Krompiec S. APEX Strategy Represented by Diels-Alder Cycloadditions-New Opportunities for the Syntheses of Functionalised PAHs. Chemistry 2020; 26:12150-12157. [PMID: 32339360 DOI: 10.1002/chem.202001327] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Indexed: 11/08/2022]
Abstract
Diels-Alder cycloaddition of various dienophiles to the bay region of polycyclic aromatic hydrocarbons (PAHs) is a particularly effective and useful tool for the modification of the structure of PAHs and thereby their final properties. The Diels-Alder cycloaddition belongs to the single-step annulative π-extension (APEX) reactions and represents the maximum in synthetic efficiency for the constructions of π-extended PAHs including functionalised ones, nanographenes, and π-extended fused heteroarenes. Herein we report new applications of the APEX strategy for the synthesis of derivatives of 1,2-diarylbenzo[ghi]perylene, 1,2-diarylbenzo[ghi]perylenebisimide and 1,2-disubstituted-benzo[j]coronene. Namely, the so far unknown cycloaddition of 1,2-diarylacetylenes into the perylene and perylenebisimide bay regions was used. 1,2-Disubstituted-benzo[j]coronenes were obtained via cycloaddition of benzyne into 1,2-diarylbenzo[ghi]perylenes by using a new highly effective system for benzyne generation and/or high pressure conditions. Moreover, we report an unprecedented Diels-Alder cycloaddition-cycloaromatisation domino-type reaction between 1,4-(9,9-dialkylfluoren-3-yl)-1,3-butadiynes and perylene. The obtained diaryl-substituted core-extended PAHs were characterised by DFT calculation as well as electrochemical and spectroscopic measurements.
Collapse
Affiliation(s)
- Aneta Kurpanik
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, Bankowa 14, 40-007, Katowice, Poland
| | - Marek Matussek
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, Bankowa 14, 40-007, Katowice, Poland
| | - Grażyna Szafraniec-Gorol
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, Bankowa 14, 40-007, Katowice, Poland
| | - Michał Filapek
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, Bankowa 14, 40-007, Katowice, Poland
| | - Piotr Lodowski
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, Bankowa 14, 40-007, Katowice, Poland
| | - Beata Marcol-Szumilas
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, Bankowa 14, 40-007, Katowice, Poland
| | - Witold Ignasiak
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, Bankowa 14, 40-007, Katowice, Poland
| | - Jan Grzegorz Małecki
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, Bankowa 14, 40-007, Katowice, Poland
| | - Barbara Machura
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, Bankowa 14, 40-007, Katowice, Poland
| | - Magdalena Małecka
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, Bankowa 14, 40-007, Katowice, Poland
| | - Witold Danikiewicz
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Sebastian Pawlus
- August Chełkowski Institute of Physics &, Silesian Centre for Education and Interdisciplinary Studies, Faculty of Science and Technology, University of Silesia, 75. Pułku Piechoty 1A, 41-500, Chorzów, Poland
| | - Stanisław Krompiec
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, Bankowa 14, 40-007, Katowice, Poland
| |
Collapse
|
8
|
Ma X, Maier J, Wenzel M, Friedrich A, Steffen A, Marder TB, Mitrić R, Brixner T. Direct observation of o-benzyne formation in photochemical hexadehydro-Diels-Alder ( hν-HDDA) reactions. Chem Sci 2020; 11:9198-9208. [PMID: 34123168 PMCID: PMC8163437 DOI: 10.1039/d0sc03184d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Reactive ortho-benzyne derivatives are believed to be the initial products of liquid-phase [4 + 2]-cycloadditions between a 1,3-diyne and an alkyne via what is known as a hexadehydro-Diels–Alder (HDDA) reaction. The UV/VIS spectroscopic observation of o-benzyne derivatives and their photochemical dynamics in solution, however, have not been reported previously. Herein, we report direct UV/VIS spectroscopic evidence for the existence of an o-benzyne in solution, and establish the dynamics of its formation in a photoinduced reaction. For this purpose, we investigated a bis-diyne compound using femtosecond transient absorption spectroscopy in the ultraviolet/visible region. In the first step, we observe excited-state isomerization on a sub-10 ps time scale. For identification of the o-benzyne species formed within 50–70 ps, and the corresponding photochemical hexadehydro-Diels–Alder (hν-HDDA) reactions, we employed two intermolecular trapping strategies. In the first case, the o-benzyne was trapped by a second bis-diyne, i.e., self-trapping. The self-trapping products were then identified in the transient absorption experiments by comparing their spectral features to those of the isolated products. In the second case, we used perylene for trapping and reconstructed the spectrum of the trapping product by removing the contribution of irrelevant species from the experimentally observed spectra. Taken together, the UV/VIS spectroscopic data provide a consistent picture for o-benzyne derivatives in solution as the products of photo-initiated HDDA reactions, and we deduce the time scales for their formation. We report the transient ultraviolet/visible absorption spectrum of an o-benzyne species in solution for the first time.![]()
Collapse
Affiliation(s)
- Xiaonan Ma
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg Am Hubland 97074 Würzburg Germany .,Institute of Molecular Plus, Tianjin University No. 92 Weijin Road, Nankai District 300072 Tianjin China
| | - Jan Maier
- Institut für Anorganische Chemie, Institute for Sustainable Chemistry & Catalysis with Boron, Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Michael Wenzel
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Alexandra Friedrich
- Institut für Anorganische Chemie, Institute for Sustainable Chemistry & Catalysis with Boron, Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Andreas Steffen
- Institut für Anorganische Chemie, Institute for Sustainable Chemistry & Catalysis with Boron, Universität Würzburg Am Hubland 97074 Würzburg Germany .,Institut für Anorganische Chemie, Technische Universität Dortmund Otto-Hahn-Str.6 44227 Dortmund Germany
| | - Todd B Marder
- Institut für Anorganische Chemie, Institute for Sustainable Chemistry & Catalysis with Boron, Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Roland Mitrić
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Tobias Brixner
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg Am Hubland 97074 Würzburg Germany
| |
Collapse
|
9
|
Peng Q, Zhang W, Zhao K, Du Y, Feng C, Wang B, Fang D, Chen X, Ni H, Xiang S. Amide‐Directed Bay‐Region Two‐Step Annulative π‐Extension (APEX) of Biphenyls and Terphenyls with Diaryliodonium Salts: Efficient Access to Polycyclic Aromatic Hydrocarbons. Adv Synth Catal 2020. [DOI: 10.1002/adsc.201901010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Qiong Peng
- College of Chemistry and Materials ScienceSichuan Normal University Chengdu 610068 P. R. of China
| | - Wen Zhang
- College of Chemistry and Materials ScienceSichuan Normal University Chengdu 610068 P. R. of China
| | - Ke Zhao
- College of Chemistry and Materials ScienceSichuan Normal University Chengdu 610068 P. R. of China
| | - Yu Du
- College of Chemistry and Materials ScienceSichuan Normal University Chengdu 610068 P. R. of China
| | - Chun Feng
- College of Chemistry and Materials ScienceSichuan Normal University Chengdu 610068 P. R. of China
| | - Bi‐Qin Wang
- College of Chemistry and Materials ScienceSichuan Normal University Chengdu 610068 P. R. of China
| | - Dong‐Mei Fang
- Chengdu Institute of BiologyChinese Academy of Sciences Chengdu 610041 P. R. of China
| | - Xiao‐Zhen Chen
- Chengdu Institute of BiologyChinese Academy of Sciences Chengdu 610041 P. R. of China
| | - Hai‐Liang Ni
- College of Chemistry and Materials ScienceSichuan Normal University Chengdu 610068 P. R. of China
| | - Shi‐Kai Xiang
- College of Chemistry and Materials ScienceSichuan Normal University Chengdu 610068 P. R. of China
| |
Collapse
|
10
|
Dyan OT, Borodkin GI, Zaikin PA. The Diels-Alder Reaction for the Synthesis of Polycyclic Aromatic Compounds. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901254] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Ok Ton Dyan
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry; 9 Academician Lavrentiev Ave. 630090 Novosibirsk Russian Federation
| | - Gennady I. Borodkin
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry; 9 Academician Lavrentiev Ave. 630090 Novosibirsk Russian Federation
- Novosibirsk State University; 630090 Novosibirsk Russian Federation
| | - Pavel A. Zaikin
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry; 9 Academician Lavrentiev Ave. 630090 Novosibirsk Russian Federation
| |
Collapse
|
11
|
Yan J, Pulis AP, Perry GJP, Procter DJ. Metal‐Free Synthesis of Benzothiophenes by Twofold C−H Functionalization: Direct Access to Materials‐Oriented Heteroaromatics. Angew Chem Int Ed Engl 2019; 58:15675-15679. [DOI: 10.1002/anie.201908319] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/15/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Jiajie Yan
- School of Chemistry University of Manchester Oxford Rd Manchester M13 9PL UK
| | - Alexander P. Pulis
- School of Chemistry University of Manchester Oxford Rd Manchester M13 9PL UK
| | - Gregory J. P. Perry
- School of Chemistry University of Manchester Oxford Rd Manchester M13 9PL UK
| | - David J. Procter
- School of Chemistry University of Manchester Oxford Rd Manchester M13 9PL UK
| |
Collapse
|
12
|
Yan J, Pulis AP, Perry GJP, Procter DJ. Metal‐Free Synthesis of Benzothiophenes by Twofold C−H Functionalization: Direct Access to Materials‐Oriented Heteroaromatics. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908319] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Jiajie Yan
- School of Chemistry University of Manchester Oxford Rd Manchester M13 9PL UK
| | - Alexander P. Pulis
- School of Chemistry University of Manchester Oxford Rd Manchester M13 9PL UK
| | - Gregory J. P. Perry
- School of Chemistry University of Manchester Oxford Rd Manchester M13 9PL UK
| | - David J. Procter
- School of Chemistry University of Manchester Oxford Rd Manchester M13 9PL UK
| |
Collapse
|
13
|
Mitake A, Nagai R, Sekine A, Takano H, Sugimura N, Kanyiva KS, Shibata T. Consecutive HDDA and TDDA reactions of silicon-tethered tetraynes for the synthesis of dibenzosilole-fused polycyclic compounds and their unique reactivity. Chem Sci 2019; 10:6715-6720. [PMID: 31367326 PMCID: PMC6625486 DOI: 10.1039/c9sc00960d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/25/2019] [Indexed: 12/28/2022] Open
Abstract
Silicon-tethered tetraynes possessing a 1,3-diyne moiety underwent consecutive hexadehydro- and tetradehydro-Diels-Alder reactions to give a series of fused polycyclic aromatic compounds containing a dibenzosilole skeleton. The benzene ring in the product acted as a 1,3-diene and reacted with the active alkyne as well as oxygen to provide [4 + 2] cycloadducts.
Collapse
Affiliation(s)
- Akihito Mitake
- Department of Chemistry and Biochemistry , School of Advanced Science and Engineering , Waseda University , Shinjuku , Tokyo 169-8555 , Japan .
| | - Rikako Nagai
- Department of Chemistry and Biochemistry , School of Advanced Science and Engineering , Waseda University , Shinjuku , Tokyo 169-8555 , Japan .
| | - Ayato Sekine
- Department of Chemistry and Biochemistry , School of Advanced Science and Engineering , Waseda University , Shinjuku , Tokyo 169-8555 , Japan .
| | - Hideaki Takano
- Department of Chemistry and Biochemistry , School of Advanced Science and Engineering , Waseda University , Shinjuku , Tokyo 169-8555 , Japan .
| | - Natsuhiko Sugimura
- Materials Characterization Central Laboratory , School of Advanced Science and Engineering , Waseda University , Shinjuku , Tokyo 169-8555 , Japan
| | - Kyalo Stephen Kanyiva
- Global Center for Science and Engineering , School of Advanced Science and Engineering , Waseda University , Shinjuku , Tokyo 169-8555 , Japan
| | - Takanori Shibata
- Department of Chemistry and Biochemistry , School of Advanced Science and Engineering , Waseda University , Shinjuku , Tokyo 169-8555 , Japan .
| |
Collapse
|
14
|
Uchida K, Yoshida S, Hosoya T. Synthetic Aryne Chemistry toward Multicomponent Coupling. J SYN ORG CHEM JPN 2019. [DOI: 10.5059/yukigoseikyokaishi.77.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Suguru Yoshida
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University
| | - Takamitsu Hosoya
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University
| |
Collapse
|
15
|
Ito H, Segawa Y, Murakami K, Itami K. Polycyclic Arene Synthesis by Annulative π-Extension. J Am Chem Soc 2018; 141:3-10. [DOI: 10.1021/jacs.8b09232] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hideto Ito
- Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
- JST-ERATO, Itami Molecular Nanocarbon Project, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Yasutomo Segawa
- Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
- JST-ERATO, Itami Molecular Nanocarbon Project, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Kei Murakami
- Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Kenichiro Itami
- Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
- JST-ERATO, Itami Molecular Nanocarbon Project, Nagoya University, Chikusa, Nagoya 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan
| |
Collapse
|
16
|
dos Passos Gomes G, Morrison AE, Dudley GB, Alabugin IV. Optimizing Amine‐Mediated Alkyne–Allene Isomerization to Improve Benzannulation Cascades: Synergy between Theory and Experiments. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
| | - Alec E. Morrison
- Department of Chemistry and Biochemistry Florida State University 32306 Tallahassee FL USA
| | - Gregory B. Dudley
- C. Eugene Bennett Department of Chemistry West Virginia University 26505 Morgantown WV USA
| | - Igor V. Alabugin
- Department of Chemistry and Biochemistry Florida State University 32306 Tallahassee FL USA
| |
Collapse
|
17
|
The domino hexadehydro-Diels-Alder reaction transforms polyynes to benzynes to naphthynes to anthracynes to tetracynes (and beyond?). Nat Chem 2018; 10:838-844. [PMID: 30030536 PMCID: PMC6284823 DOI: 10.1038/s41557-018-0075-y] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 04/27/2018] [Indexed: 11/08/2022]
Abstract
Polyacenes are organic compounds that have multiple, fused, aromatic rings. These highly conjugated molecules often have interesting photonic and/or electronic properties that afford them the potential for application in a host of organoelectronic devices such as sensors, light-emitting diodes, photovoltaic devices and field-effect transistors. Here, we show the development and use of the domino hexadehydro-Diels-Alder reaction to synthesize structurally diverse polyacenes from acyclic polyyne precursors. The key event in these transformations is the successive reaction of multiple 1,3-butadiyne units with a series of in-situ-generated, diynophilic arynes. The polyyne substrates were designed to allow for rapid engagement of each progressively larger aryne following the initiating (and ratelimiting) production of the first reactive intermediate-the benzyne. We show that aryne-trapping reactions are broad in scope and that these cascade or domino processes can be quite efficient.
Collapse
|
18
|
Rana A, Paul I, Schmittel M. Dynamic effects in the didehydro-Diels-Alder (DDDA) reaction of enyne-ketoenes: 50% stepwise bond formation in spite of concerted transition state. J PHYS ORG CHEM 2017. [DOI: 10.1002/poc.3732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Anup Rana
- Department of Chemistry and Biology; Universität Siegen; Siegen Germany
| | - Indrajit Paul
- Department of Chemistry and Biology; Universität Siegen; Siegen Germany
| | - Michael Schmittel
- Department of Chemistry and Biology; Universität Siegen; Siegen Germany
| |
Collapse
|
19
|
Annulative π-Extension (APEX): Rapid Access to Fused Arenes, Heteroarenes, and Nanographenes. Angew Chem Int Ed Engl 2017; 56:11144-11164. [DOI: 10.1002/anie.201701058] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Indexed: 11/07/2022]
|
20
|
Ito H, Ozaki K, Itami K. Die anellierende Erweiterung von π-Systemen (APEX-Reaktion): ein rascher Zugang zu kondensierten Arenen, Heteroarenen und Nanographenen. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201701058] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Hideto Ito
- Graduate School of Science; Nagoya University; Chikusa, Nagoya 464-8602 Japan
| | - Kyohei Ozaki
- Graduate School of Science; Nagoya University; Chikusa, Nagoya 464-8602 Japan
| | - Kenichiro Itami
- Graduate School of Science; Nagoya University; Chikusa, Nagoya 464-8602 Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM) and; JST-ERATO; Itami Molecular Nanocarbon Project; Chikusa, Nagoya 464-8602 Japan
| |
Collapse
|
21
|
Abstract
We demonstrate that the hexadehydro-Diels-Alder (HDDA) cycloisomerization reaction to produce reactive benzyne derivatives can be initiated photochemically. As with the thermal variant of the HDDA process, the reactive intermediates are formed in the absence of reagents or the resulting byproducts required for the generation of benzynes by traditional methods. This photo-HDDA (or hν-HDDA) reaction occurs at much lower temperatures (including even at -70 °C) than the thermal HDDA, but the benzynes produced behave in the same fashion with respect to their trapping reactions, suggesting they are of the same electronic state.
Collapse
Affiliation(s)
- Feng Xu
- Department of Chemistry, University of Minnesota , 207 Pleasant Street, SE, Minneapolis, Minnesota 55455, United States
| | - Xiao Xiao
- Department of Chemistry, University of Minnesota , 207 Pleasant Street, SE, Minneapolis, Minnesota 55455, United States
| | - Thomas R Hoye
- Department of Chemistry, University of Minnesota , 207 Pleasant Street, SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
22
|
Diamond OJ, Marder TB. Methodology and applications of the hexadehydro-Diels–Alder (HDDA) reaction. Org Chem Front 2017. [DOI: 10.1039/c7qo00071e] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hexadehydro-Diels–Alder (HDDA) reactions between alkynes and 1,3-diynes readily generate highly reactive and synthetically useful arynes.
Collapse
Affiliation(s)
- Oliver J. Diamond
- Institut für Anorganische Chemie
- Julius-Maximilians-Universität Würzburg
- 97074 Würzburg
- Germany
- Department of Chemistry
| | - Todd B. Marder
- Institut für Anorganische Chemie
- Julius-Maximilians-Universität Würzburg
- 97074 Würzburg
- Germany
| |
Collapse
|