1
|
Krech A, Laktsevich-Iskryk M, Deil N, Fokin M, Kimm M, Ošeka M. Asymmetric cyclopropanation via an electro-organocatalytic cascade. Chem Commun (Camb) 2024; 60:14026-14029. [PMID: 39463232 DOI: 10.1039/d4cc05092d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
We report an iminium ion-promoted, asymmetric synthesis of cyclopropanes via an electrocatalytic, iodine-mediated ring closure. The mild, controlled electrochemical generation of electrophilic iodine species in catalytic quantities prevents organocatalyst deactivation, while also eliminating the need for halogenating reagents, thus simplifying traditional synthetic approaches.
Collapse
Affiliation(s)
- Anastasiya Krech
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, Tallinn 12618, Estonia.
| | - Marharyta Laktsevich-Iskryk
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, Tallinn 12618, Estonia.
| | - Nora Deil
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, Tallinn 12618, Estonia.
| | - Mihhail Fokin
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, Tallinn 12618, Estonia.
| | - Mariliis Kimm
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, Tallinn 12618, Estonia.
| | - Maksim Ošeka
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, Tallinn 12618, Estonia.
| |
Collapse
|
2
|
Indurmuddam RR, Huang PC, Hong BC, Chien SY. Visible-Light-Photocatalyzed Self-Cyclopropanation Reactions of Dibenzoylmethanes for the Synthesis of Cyclopropanes. Org Lett 2024; 26:5752-5757. [PMID: 38949643 DOI: 10.1021/acs.orglett.4c01875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
A new self-cyclopropanation of 1,3-diphenylpropane-1,3-dione, leading to tetrasubstituted cyclopropane containing three contiguous stereogenic centers with high stereoselectivity, has been achieved through violet-light-emitting diode-irradiated photocatalysis, featuring both cycloaddition and a distinctive rearrangement. Diverging from conventional cyclopropanation pathways, this reaction yields a tetrasubstituted cyclopropane through unprecedented rearrangement and cascade reactions.
Collapse
Affiliation(s)
| | - Pei-Chi Huang
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chia-Yi 621, Taiwan ROC
| | - Bor-Cherng Hong
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chia-Yi 621, Taiwan ROC
| | - Su-Ying Chien
- Instrumentation Center, National Taiwan University, Taipei 106, Taiwan ROC
| |
Collapse
|
3
|
Shaikh MA, Ubale AS, Gnanaprakasam B. Amberlyst-A26-Mediated Corey-Chaykovsky Cyclopropanation of 9-Alkylidene-9 H-fluorene under Continuous Process. J Org Chem 2024; 89:2283-2293. [PMID: 38316018 DOI: 10.1021/acs.joc.3c02260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Herein, we have developed a continuous-process for the direct cyclopropanation of various alkenes nonconjugated with carbonyl using trimethylsulfoxonium iodide as a methylene source via the Corey-Chaykovsky cyclopropanation reaction in the presence of Amberlyst-A26 as a heterogeneous base. Several 9-alkylidene-9H-fluorene derivatives successfully undergo Corey-Chaykovsky cyclopropanation to afford spiro[cyclopropane-1,9'-fluorene] in excellent yields under the continuous-process module. Furthermore, continuous process for the cyclopropanation of 3-benzylideneindolin-2-one derivatives using Amberlyst-A26 as a heterogeneous base has been described, which afford spiro[cyclopropane-1,3'-indolin]-2'-one derivatives.
Collapse
Affiliation(s)
- Moseen A Shaikh
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Maharashtra 411008, India
| | - Akash S Ubale
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Maharashtra 411008, India
| | - Boopathy Gnanaprakasam
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Maharashtra 411008, India
| |
Collapse
|
4
|
Killi N, Bartenbach J, Kuckling D. Polymeric Networks Containing Amine Derivatives as Organocatalysts for Knoevenagel Reaction within Continuously Driven Microfluidic Reactors. Gels 2023; 9:gels9030171. [PMID: 36975620 PMCID: PMC10048661 DOI: 10.3390/gels9030171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
The Knoevenagel reaction is a classic reaction in organic chemistry for the formation of C-C bonds. In this study, various catalytic monomers for Knoevenagel reactions were synthesized and polymerized via photolithography to form polymeric gel dots with a composition of 90% catalyst, 9% gelling agent and 1% crosslinker. Furthermore, these gel dots were inserted into a microfluidic reactor (MFR) and the conversion of the reaction using gel dots as catalysts in the MFR for 8 h at room temperature was studied. The gel dots containing primary amines showed a better conversion of about 83–90% with aliphatic aldehyde and 86–100% with aromatic aldehyde, compared to the tertiary amines (52–59% with aliphatic aldehyde and 77–93% with aromatic aldehydes) which resembles the reactivity of the amines. Moreover, the addition of polar solvent (water) in the reaction mixture and the swelling properties of the gel dots by altering the polymer backbone showed a significant enhancement in the conversion of the reaction, due to the increased accessibility of the catalytic sites in the polymeric network. These results suggested the primary-amine-based catalysts facilitate better conversion compared to tertiary amines and the reaction solvent had a significant influence on organocatalysis to improve the efficiency of MFR.
Collapse
|
5
|
Xia Y, Ning Y, Liu M, Che FE. Recoverable PEG-Supported Amino Alcohol Ligand for Copper-Catalyzed Enantio- and syn-Selective Henry Reaction with Nitroethanol: Sustainable and Straightforward Access to Chiral syn-2-Nitro-1,3-Diols. J Catal 2022. [DOI: 10.1016/j.jcat.2022.11.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Wang J, Li J, Wang Y, He S, You H, Chen FE. Polymer-Supported Chiral Heterogeneous Copper Catalyst for Asymmetric Conjugate Addition of Ketones and Imines under Batch and Flow. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Junwen Wang
- School of science, Harbin Institute of Technology (Shenzhen), Taoyuan Street, Nanshan District, Shenzhen 518055, China
| | - Jun Li
- School of science, Harbin Institute of Technology (Shenzhen), Taoyuan Street, Nanshan District, Shenzhen 518055, China
| | - Yan Wang
- School of science, Harbin Institute of Technology (Shenzhen), Taoyuan Street, Nanshan District, Shenzhen 518055, China
| | - Sisi He
- School of science, Harbin Institute of Technology (Shenzhen), Taoyuan Street, Nanshan District, Shenzhen 518055, China
| | - Hengzhi You
- School of science, Harbin Institute of Technology (Shenzhen), Taoyuan Street, Nanshan District, Shenzhen 518055, China
- Green Pharmaceutical Engineering Research Center, Harbin Institute of Technology (Shenzhen), Taoyuan Street, Nanshan District, Shenzhen 518055, China
| | - Fen-Er Chen
- School of science, Harbin Institute of Technology (Shenzhen), Taoyuan Street, Nanshan District, Shenzhen 518055, China
- Green Pharmaceutical Engineering Research Center, Harbin Institute of Technology (Shenzhen), Taoyuan Street, Nanshan District, Shenzhen 518055, China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
| |
Collapse
|
7
|
García-Monzón I, Borges-González J, Martín T. Solid‐Supported Tetrahydropyran‐Based Hybrid Dipeptide Catalysts for Michael Addition of Aldehydes to Nitrostyrenes. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | | | - Tomás Martín
- Instituto de Productos Naturales y Agrobiología SPAIN
| |
Collapse
|
8
|
Hayashi Y, Hattori S, Koshino S. Asymmetric flow reactions catalyzed by immobilized diphenylprolinol alkyl ether: Michael reaction and domino reactions. Chem Asian J 2022; 17:e202200314. [DOI: 10.1002/asia.202200314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/14/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Yujiro Hayashi
- Tohoku University Department of Chemistry 6-3, Aramaki-AzaAobaAobaku 980-8578 Sendai JAPAN
| | - Shusuke Hattori
- Tohoku University Graduate School of Science Faculty of Science: Tohoku Daigaku Daigakuin Rigaku Kenkyuka Rigakubu Chemistry JAPAN
| | - Seitaro Koshino
- Tohoku University Graduate School of Science Faculty of Science: Tohoku Daigaku Daigakuin Rigaku Kenkyuka Rigakubu Chemistry JAPAN
| |
Collapse
|
9
|
Sansinenea E, Ortiz A. The Chemistry of Cyclopropanes and New Insight in Organocatalyzed Asymmetric Cyclopropanation. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Aurelio Ortiz
- Benemerita Universidad Autonoma de Puebla Facultad de Ciencias Quimicas 14 sur y av san claudio 72570 Puebla MEXICO
| |
Collapse
|
10
|
Chaudhari MB, Gupta P, Llanes P, Zhou L, Zanda N, Pericàs MA. An enantio- and diastereoselective approach to indoloquinolizidines in continuous flow. Org Biomol Chem 2022; 20:8273-8279. [DOI: 10.1039/d2ob01462a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A solvent-free enantioselective Michael addition mediated by a polymer-supported Jørgensen–Hayashi catalyst and a domino Pictet–Spengler plus lactamisation sequence has been reported in continuous flow.
Collapse
Affiliation(s)
- Moreshwar B. Chaudhari
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Prachi Gupta
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Patricia Llanes
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Leijie Zhou
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Nicola Zanda
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Miquel A. Pericàs
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007, Tarragona, Spain
| |
Collapse
|
11
|
Li Y, Wang C, Chen Q, Li H, Su Y, Cheng T, Liu G, Tan C. Integrated Suzuki Cross-Coupling/Reduction Cascade Reaction of meta-/para-Chloroacetophenones and Arylboronic Acids under Batch and Continuous Flow Conditions. Chem Asian J 2021; 16:2338-2345. [PMID: 34190417 DOI: 10.1002/asia.202100479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/14/2021] [Indexed: 12/23/2022]
Abstract
Overcoming the incompatibility of a pair of conflicting catalysts via a flow methodology has great significance in the practical applications for multistep organic transformations. In this study, a multiple continuous-flow system is developed, which can boost the reactivity and selectivity in a sequential enantioselective cascade reaction. During this process, a periodic mesoporous organosilica-supported Pd/carbene species as a Suzuki cross-coupling catalyst is packed in the first column reactor, whereas another periodic mesoporous organosilica-supported Ru/diamine species as an asymmetric transfer hydrogenation catalyst is packed in the second column reactor. As we envisioned, the initially Pd-catalyzed cross-coupling reaction of meta-/para-chloroacetophenones and aryl boronic acids followed by the subsequentially Ru-catalyzed reduction provides chiral biarylols with enhanced yields and enantioselectivities. Furthermore, the advantages of the easy handling and the simple procedure make this system an attractive application in a scale-up preparation of optically pure organic molecules under environmentally-friendly conditions.
Collapse
Affiliation(s)
- Yilong Li
- Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China
| | - Chengyi Wang
- Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China
| | - Qipeng Chen
- Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China
| | - Hongyu Li
- Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China
| | - Yu Su
- Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China
| | - Tanyu Cheng
- Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China
| | - Guohua Liu
- Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China
| | - Chunxia Tan
- Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China
| |
Collapse
|
12
|
Sá MM, Maximiano AP, Ramos GS, Marques MV. Functionalized Cyclopropanes as Versatile Intermediates for the Diversity-Oriented Synthesis of γ-Lactones, γ-Lactams and δ-Lactams. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1389-1203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AbstractA two-step procedure for the preparation of cyclopropanecarboxaldehyde-1,1-diester from a γ,δ-epoxyester and its synthetic versatility are described herein. The epoxide ring-opening/cyclopropanation process occurs in the presence of Mg(ClO4)2 under heating, resulting in cyclopropanemethanol-1,1-diester in 65% yield. A mild TEMPO-mediated oxidation of this substrate readily generated the corresponding aldehyde in 75% yield, which was applied in the one-pot synthesis of four cyclopropylidene-γ-lactams and three δ-lactams. In addition, vinylcyclopropanes were obtained through the Wittig reaction of the aldehyde with phosphonium salts and used as precursors for tetrahydrofurans.
Collapse
Affiliation(s)
- Marcus M. Sá
- MESOLab (Laboratory of Methodology and Organic Synthesis), Departamento de Química, Universidade Federal de Santa Catarina
| | - Adrielle P. Maximiano
- MESOLab (Laboratory of Methodology and Organic Synthesis), Departamento de Química, Universidade Federal de Santa Catarina
| | - Giovana S. Ramos
- MESOLab (Laboratory of Methodology and Organic Synthesis), Departamento de Química, Universidade Federal de Santa Catarina
| | | |
Collapse
|
13
|
Direct Asymmetric Aldol Reaction in Continuous Flow Using Gel‐Bound Organocatalysts. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
14
|
Schmiegel CJ, Berg P, Obst F, Schoch R, Appelhans D, Kuckling D. Continuous Flow Synthesis of Azoxybenzenes by Reductive Dimerization of Nitrosobenzenes with Gel‐Bound Catalysts. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Carsten J. Schmiegel
- Department of Chemistry, Faculty of Science Paderborn University Warburger Str. 100 33098 Paderborn Germany
| | - Patrik Berg
- Department of Chemistry, Faculty of Science Paderborn University Warburger Str. 100 33098 Paderborn Germany
| | - Franziska Obst
- Leibniz Institute for Polymer Research Dresden Hohe Str. 6 01069 Dresden Germany
| | - Roland Schoch
- Department of Chemistry, Faculty of Science Paderborn University Warburger Str. 100 33098 Paderborn Germany
| | - Dietmar Appelhans
- Leibniz Institute for Polymer Research Dresden Hohe Str. 6 01069 Dresden Germany
| | - Dirk Kuckling
- Department of Chemistry, Faculty of Science Paderborn University Warburger Str. 100 33098 Paderborn Germany
| |
Collapse
|
15
|
Koshino S, Hattori S, Hasegawa S, Haraguchi N, Yamamoto T, Suginome M, Uozumi Y, Hayashi Y. Amphiphilic Immobilized Diphenylprolinol Alkyl Ether Catalyst on PS-PEG Resin. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Seitaro Koshino
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Shusuke Hattori
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Shota Hasegawa
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Naoki Haraguchi
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan
| | - Takeshi Yamamoto
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Michinori Suginome
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yasuhiro Uozumi
- Institute for Molecular Science (IMS), Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Yujiro Hayashi
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
16
|
Puglisi A, Rossi S. Stereoselective organocatalysis and flow chemistry. PHYSICAL SCIENCES REVIEWS 2021. [DOI: 10.1515/psr-2018-0099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Organic synthesis has traditionally been performed in batch. Continuous-flow chemistry was recently rediscovered as an enabling technology to be applied to the synthesis of organic molecules. Organocatalysis is a well-established methodology, especially for the preparation of enantioenriched compounds. In this chapter we discuss the use of chiral organocatalysts in continuous flow. After the classification of the different types of catalytic reactors, in Section 2, each class will be discussed with the most recent and significant examples reported in the literature. In Section 3 we discuss homogeneous stereoselective reactions in flow, with a look at the stereoselective organophotoredox transformations in flow. This research topic is emerging as one of the most powerful method to prepare enantioenriched products with structures that would otherwise be challenging to make. Section 4 describes the use of supported organocatalysts in flow chemistry. Part of the discussion will be devoted to the choice of the support. Examples of packed-bed, monolithic and inner-wall functionalized reactors will be introduced and discussed. We hope to give an overview of the potentialities of the combination of (supported) chiral organocatalysts and flow chemistry.
Collapse
Affiliation(s)
- Alessandra Puglisi
- Dipartimento di Chimica , Università degli Studi di Milano , via Golgi 19 , Milano , 20133 Italy
| | - Sergio Rossi
- Dipartimento di Chimica , Università degli Studi di Milano , via Golgi 19 , Milano , 20133 Italy
| |
Collapse
|
17
|
|
18
|
Okuno Y, Shibata T, Ohyou A, Suzuki R, Takegami M, Kato S, Isomura S, Aoki S, Kanno J, Sato Y. Synthesis of Bi‐functional Immobilized Polymer Catalysts via a Two‐step Radiation‐induced Graft Polymerization Process. ChemCatChem 2020. [DOI: 10.1002/cctc.202001451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yoshinori Okuno
- Yokohama University of Pharmacy Department of Medicinal Chemistry 601 Matano-cho Totsuka-ku Yokohama 245-0066 Japan
| | - Takako Shibata
- Yokohama University of Pharmacy Department of Medicinal Chemistry 601 Matano-cho Totsuka-ku Yokohama 245-0066 Japan
| | - Akie Ohyou
- Yokohama University of Pharmacy Department of Medicinal Chemistry 601 Matano-cho Totsuka-ku Yokohama 245-0066 Japan
| | - Rie Suzuki
- Yokohama University of Pharmacy Department of Medicinal Chemistry 601 Matano-cho Totsuka-ku Yokohama 245-0066 Japan
| | - Mayuko Takegami
- Yokohama University of Pharmacy Department of Medicinal Chemistry 601 Matano-cho Totsuka-ku Yokohama 245-0066 Japan
| | - Satoshi Kato
- Yokohama University of Pharmacy Department of Medicinal Chemistry 601 Matano-cho Totsuka-ku Yokohama 245-0066 Japan
| | - Shigeki Isomura
- Yokohama University of Pharmacy Department of Medicinal Chemistry 601 Matano-cho Totsuka-ku Yokohama 245-0066 Japan
| | - Shoji Aoki
- ECE Co. Ltd. Technical Development Group 4-2-1 Honfujisawa Fujisawa 251-8502 Japan
| | - Junichi Kanno
- ECE Co. Ltd. Technical Development Group 4-2-1 Honfujisawa Fujisawa 251-8502 Japan
| | - Yasuo Sato
- Yokohama University of Pharmacy Department of Medicinal Chemistry 601 Matano-cho Totsuka-ku Yokohama 245-0066 Japan
| |
Collapse
|
19
|
Warias R, Ragno D, Massi A, Belder D. A Visible-Light-Powered Polymerization Method for the Immobilization of Enantioselective Organocatalysts into Microreactors. Chemistry 2020; 26:13152-13156. [PMID: 32453458 PMCID: PMC7693110 DOI: 10.1002/chem.202002063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Indexed: 11/21/2022]
Abstract
A versatile one‐step photopolymerization approach for the immobilization of enantioselective organocatalysts is presented. Chiral organocatalyst‐containing monoliths based on polystyrene divinylbenzene copolymer were generated inside channels of microfluidic chips. Exemplary performance tests were performed for the monolithic Hayashi–Jørgensen catalyst in continuous flow, which showed good results for the Michael addition of aldehydes to nitroalkenes in terms of stereoselectivity and catalyst stability with minimal consumption of reagents and solvents.
Collapse
Affiliation(s)
- Rico Warias
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103, Leipzig, Germany
| | - Daniele Ragno
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Alessandro Massi
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Detlev Belder
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103, Leipzig, Germany
| |
Collapse
|
20
|
García-Lacuna J, Domínguez G, Pérez-Castells J. Flow Chemistry for Cycloaddition Reactions. CHEMSUSCHEM 2020; 13:5138-5163. [PMID: 32662578 DOI: 10.1002/cssc.202001372] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Continuous flow reactors form part of a rapidly growing research area that has changed the way synthetic chemistry is performed not only in academia but also at the industrial level. This Review highlights the most recent advances in cycloaddition reactions performed in flow systems. Cycloadditions are atom-efficient transformations for the synthesis of carbo- and heterocycles, involved in the construction of challenging skeletons of complex molecules. The main advantages of translating these processes into flow include using intensified conditions, safer handling of hazardous reagents and gases, easy tuning of reaction conditions, and straightforward scaling up. These benefits are especially important in cycloadditions such as the copper(I)-catalyzed azide alkyne cycloaddition (CuAAC), Diels-Alder reaction, ozonolysis and [2+2] photocycloadditions. Some of these transformations are key reactions in the industrial synthesis of pharmaceuticals.
Collapse
Affiliation(s)
- Jorge García-Lacuna
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities Urbanización Montepríncipe, 28660, Boadilla del Monte, Madrid, Spain
| | - Gema Domínguez
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities Urbanización Montepríncipe, 28660, Boadilla del Monte, Madrid, Spain
| | - Javier Pérez-Castells
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities Urbanización Montepríncipe, 28660, Boadilla del Monte, Madrid, Spain
| |
Collapse
|
21
|
Ochiai H, Nishiyama A, Haraguchi N, Itsuno S. Polymer-Supported Chiral Cis-Disubstituted Pyrrolidine Catalysts and Their Application to Batch and Continuous-Flow Systems. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00268] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Hidenori Ochiai
- Pharma & Supplemental Nutrition Solutions Vehicle, Pharma Business Division, Kaneka Cooperation, 1-8 Miyamae-cho, Takasago-cho, Takasago, Hyogo 676-8688, Japan
| | - Akira Nishiyama
- Pharma & Supplemental Nutrition Solutions Vehicle, Pharma Business Division, Kaneka Cooperation, 1-8 Miyamae-cho, Takasago-cho, Takasago, Hyogo 676-8688, Japan
| | - Naoki Haraguchi
- Department of Applied Chemistry and Life Science, Graduate School of Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan
| | - Shinichi Itsuno
- Department of Applied Chemistry and Life Science, Graduate School of Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan
| |
Collapse
|
22
|
Berg P, Obst F, Simon D, Richter A, Appelhans D, Kuckling D. Novel Application of Polymer Networks Carrying Tertiary Amines as a Catalyst Inside Microflow Reactors Used for
Knoevenagel
Reactions. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Patrik Berg
- Department of Chemistry Faculty of Science Paderborn University Warburger Str. 100 33098 Paderborn Germany
| | - Franziska Obst
- Leibniz Institute for Polymer Research Dresden Hohe Str. 6 01069 Dresden Germany
| | - David Simon
- Leibniz Institute for Polymer Research Dresden Hohe Str. 6 01069 Dresden Germany
| | - Andreas Richter
- Institute of Semiconductors and Microsystems Technische Universität Dresden Helmholtzstr. 10 01062 Dresden Germany
| | - Dietmar Appelhans
- Leibniz Institute for Polymer Research Dresden Hohe Str. 6 01069 Dresden Germany
| | - Dirk Kuckling
- Department of Chemistry Faculty of Science Paderborn University Warburger Str. 100 33098 Paderborn Germany
| |
Collapse
|
23
|
Affiliation(s)
- Romain Morodo
- Center for Integrated Technology and Organic Synthesis MolSys Research Unit University of Liège B‐4000 Liège (Sart Tilman) Belgium
| | - Pauline Bianchi
- Center for Integrated Technology and Organic Synthesis MolSys Research Unit University of Liège B‐4000 Liège (Sart Tilman) Belgium
| | - Jean‐Christophe M. Monbaliu
- Center for Integrated Technology and Organic Synthesis MolSys Research Unit University of Liège B‐4000 Liège (Sart Tilman) Belgium
| |
Collapse
|
24
|
Orsy G, Fülöp F, Mándity IM. N-Acetylation of Amines in Continuous-Flow with Acetonitrile-No Need for Hazardous and Toxic Carboxylic Acid Derivatives. Molecules 2020; 25:molecules25081985. [PMID: 32340371 PMCID: PMC7221708 DOI: 10.3390/molecules25081985] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 11/16/2022] Open
Abstract
A continuous-flow acetylation reaction was developed, applying cheap and safe reagent, acetonitrile as acetylation agent and alumina as catalyst. The method developed utilizes milder reagent than those used conventionally. The reaction was tested on various aromatic and aliphatic amines with good conversion. The catalyst showed excellent reusability and a scale-up was also carried out. Furthermore, a drug substance (paracetamol) was also synthesized with good conversion and yield.
Collapse
Affiliation(s)
- György Orsy
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary;
- MTA TTK Lendület Artificial Transporter Research Group, Institute of Materials and Environmental Chemistry, Research Center for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudosok krt. 2, 1117 Budapest, Hungary
| | - Ferenc Fülöp
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary;
- Research Group of Stereochemistry of the Hungarian Academy of Sciences, Dóm tér 8, H-6720 Szeged, Hungary
- Correspondence: (F.F.); (I.M.M.); Tel.: +36-1-3826-616 (I.M.M.)
| | - István M. Mándity
- MTA TTK Lendület Artificial Transporter Research Group, Institute of Materials and Environmental Chemistry, Research Center for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudosok krt. 2, 1117 Budapest, Hungary
- Department of Organic Chemistry, Faculty of Pharmacy, Semmelweis University, Hőgyes Endre u. 7, H-1092 Budapest, Hungary
- Correspondence: (F.F.); (I.M.M.); Tel.: +36-1-3826-616 (I.M.M.)
| |
Collapse
|
25
|
Dočekal V, Petrželová S, Císařová I, Veselý J. Enantioselective Cyclopropanation of 4‐Nitroisoxazole Derivatives. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000231] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Vojtěch Dočekal
- Department of Organic Chemistry, Faculty of ScienceCharles University Hlavova 2030/8 128 43 Prague 2 Czech Republic
| | - Simona Petrželová
- Department of Teaching and Didactics of Chemistry, Faculty of ScienceCharles University Hlavova 2030/8 128 43 Prague 2 Czech Republic
| | - Ivana Císařová
- Department of Inorganic Chemistry, Faculty of ScienceCharles University Hlavova 2030/8 128 43 Prague 2 Czech Republic
| | - Jan Veselý
- Department of Organic Chemistry, Faculty of ScienceCharles University Hlavova 2030/8 128 43 Prague 2 Czech Republic
| |
Collapse
|
26
|
Yu T, Ding Z, Nie W, Jiao J, Zhang H, Zhang Q, Xue C, Duan X, Yamada YMA, Li P. Recent Advances in Continuous-Flow Enantioselective Catalysis. Chemistry 2020; 26:5729-5747. [PMID: 31916323 DOI: 10.1002/chem.201905151] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/18/2019] [Indexed: 11/05/2022]
Abstract
The increased demand for more efficient, safe, and green production in fine chemical and pharmaceutical industry calls for the development of continuous-flow manufacturing, and for chiral chemicals in particular, enantioselective catalytic processes. In recent years, this emerging direction has received considerable attention and has seen rapid progress. In most cases, catalytic enantioselective flow processes using homogeneous, heterogeneous, or enzymatic catalysts have shown significant advantages over the conventional batch mode, such as shortened reaction times, lower catalysts loadings, and higher selectivities in addition to the normal merits of non-enantioselective flow operations. In this Minireview, the advancements, key strategies, methods, and technologies developed the last six years as well as remaining challenges are summarized.
Collapse
Affiliation(s)
- Tao Yu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Zhengwei Ding
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Wenzheng Nie
- Department of Chemistry, School of Science, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Jiao Jiao
- Department of Chemistry, School of Science, Xi'an Jiaotong University, Xi'an, 710061, P. R. China.,Xian Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Hailong Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Qian Zhang
- Department of Applied Chemistry, Xi'an University of Technology, Xi'an, 710048, P. R. China
| | - Chao Xue
- State Key Laboratory for Efficient Development and, Utilization of Fluorine and Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, Xi'an, 710065, P. R. China
| | - Xinhua Duan
- Department of Chemistry, School of Science, Xi'an Jiaotong University, Xi'an, 710061, P. R. China.,Xian Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yoichi M A Yamada
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, 3510198, Japan
| | - Pengfei Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.,Xian Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
27
|
Tobrman T, Krupička M, Polák P, Dvořáková H, Čubiňák M, Babor M, Dvořák D. Diastereoselective Cyclopropanation through Michael Addition-Initiated Ring Closure between α,α-Dibromoketones and α,β-Unsaturated Fischer Carbene Complexes. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tomáš Tobrman
- Department of Organic Chemistry; University of Chemistry and Technology; Technická 5, Prague 6 166 28 Prague Czech Republic
| | - Martin Krupička
- Department of Organic Chemistry; University of Chemistry and Technology; Technická 5, Prague 6 166 28 Prague Czech Republic
| | - Peter Polák
- Department of Organic Chemistry; University of Chemistry and Technology; Technická 5, Prague 6 166 28 Prague Czech Republic
| | - Hana Dvořáková
- Laboratory of NMR Spectroscopy; University of Chemistry and Technology; Technická 5, Prague 6 166 28 Prague Czech Republic
| | - Marek Čubiňák
- Department of Organic Chemistry; University of Chemistry and Technology; Technická 5, Prague 6 166 28 Prague Czech Republic
| | - Martin Babor
- Department of Solid State Chemistry; University of Chemistry and Technology; Technická 5, Prague 6 166 28 Prague Czech Republic
| | - Dalimil Dvořák
- Department of Organic Chemistry; University of Chemistry and Technology; Technická 5, Prague 6 166 28 Prague Czech Republic
| |
Collapse
|
28
|
De Risi C, Bortolini O, Brandolese A, Di Carmine G, Ragno D, Massi A. Recent advances in continuous-flow organocatalysis for process intensification. REACT CHEM ENG 2020. [DOI: 10.1039/d0re00076k] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The progresses on continuous-flow organocatalysis from 2016 to early 2020 are reviewed with focus on transition from batch to flow.
Collapse
Affiliation(s)
- Carmela De Risi
- Dipartimento di Scienze Chimiche e Farmaceutiche
- I-44121 Ferrara
- Italy
| | - Olga Bortolini
- Dipartimento di Scienze Chimiche e Farmaceutiche
- I-44121 Ferrara
- Italy
| | | | | | - Daniele Ragno
- Dipartimento di Scienze Chimiche e Farmaceutiche
- I-44121 Ferrara
- Italy
| | - Alessandro Massi
- Dipartimento di Scienze Chimiche e Farmaceutiche
- I-44121 Ferrara
- Italy
| |
Collapse
|
29
|
Ishitani H, Kanai K, Yoo W, Yoshida T, Kobayashi S. A Nickel‐Diamine/Mesoporous Silica Composite as a Heterogeneous Chiral Catalyst for Asymmetric 1,4‐Addition Reactions. Angew Chem Int Ed Engl 2019; 58:13313-13317. [DOI: 10.1002/anie.201906349] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/14/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Haruro Ishitani
- Green & Sustainable Chemistry Cooperation LaboratoryGraduate School of ScienceThe University of Tokyo Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Kan Kanai
- Department of ChemistrySchool of ScienceThe University of Tokyo Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Woo‐Jin Yoo
- Green & Sustainable Chemistry Cooperation LaboratoryGraduate School of ScienceThe University of Tokyo Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Tomoko Yoshida
- Advanced Research Institute for Natural Science and TechnologyOsaka City University 3-3-138 Sugimoto, Sumiyoshi-ku Osaka 558-8585 Japan
| | - Shū Kobayashi
- Department of ChemistrySchool of ScienceThe University of Tokyo Hongo, Bunkyo-ku Tokyo 113-0033 Japan
- Green & Sustainable Chemistry Cooperation LaboratoryGraduate School of ScienceThe University of Tokyo Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| |
Collapse
|
30
|
Ishitani H, Kanai K, Yoo W, Yoshida T, Kobayashi S. A Nickel‐Diamine/Mesoporous Silica Composite as a Heterogeneous Chiral Catalyst for Asymmetric 1,4‐Addition Reactions. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906349] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Haruro Ishitani
- Green & Sustainable Chemistry Cooperation LaboratoryGraduate School of ScienceThe University of Tokyo Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Kan Kanai
- Department of ChemistrySchool of ScienceThe University of Tokyo Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Woo‐Jin Yoo
- Green & Sustainable Chemistry Cooperation LaboratoryGraduate School of ScienceThe University of Tokyo Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Tomoko Yoshida
- Advanced Research Institute for Natural Science and TechnologyOsaka City University 3-3-138 Sugimoto, Sumiyoshi-ku Osaka 558-8585 Japan
| | - Shū Kobayashi
- Department of ChemistrySchool of ScienceThe University of Tokyo Hongo, Bunkyo-ku Tokyo 113-0033 Japan
- Green & Sustainable Chemistry Cooperation LaboratoryGraduate School of ScienceThe University of Tokyo Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| |
Collapse
|
31
|
Vega-Peñaloza A, Paria S, Bonchio M, Dell’Amico L, Companyó X. Profiling the Privileges of Pyrrolidine-Based Catalysts in Asymmetric Synthesis: From Polar to Light-Driven Radical Chemistry. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01556] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Alberto Vega-Peñaloza
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Suva Paria
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Marcella Bonchio
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Luca Dell’Amico
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Xavier Companyó
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
32
|
Colella M, Carlucci C, Luisi R. Supported Catalysts for Continuous Flow Synthesis. Top Curr Chem (Cham) 2018; 376:46. [DOI: 10.1007/s41061-018-0225-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/15/2018] [Indexed: 12/14/2022]
|
33
|
Rodríguez‐Escrich C, Pericàs MA. Catalytic Enantioselective Flow Processes with Solid‐Supported Chiral Catalysts. CHEM REC 2018; 19:1872-1890. [DOI: 10.1002/tcr.201800097] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/02/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Carles Rodríguez‐Escrich
- Institute of Chemical Research of Catalonia (ICIQ)The Barcelona Institute of Science and Technology (BIST) Avinguda Països Catalans 16 43007 Tarragona Spain
| | - Miquel A. Pericàs
- Institute of Chemical Research of Catalonia (ICIQ)The Barcelona Institute of Science and Technology (BIST) Avinguda Països Catalans 16 43007 Tarragona Spain
- Departament de Química OrgànicaUniversitat de Barcelona 08080 Barcelona Spain
| |
Collapse
|
34
|
Lai J, Sayalero S, Ferrali A, Osorio-Planes L, Bravo F, Rodríguez-Escrich C, Pericàs MA. Immobilization of cis
-4-Hydroxydiphenylprolinol Silyl Ethers onto Polystyrene. Application in the Catalytic Enantioselective Synthesis of 5-Hydroxyisoxazolidines in Batch and Flow. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800572] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Junshan Lai
- Institute of Chemical Research of Catalonia (ICIQ); The Barcelona Institute of Science and Technology; Av. Països Catalans, 16 43007 Tarragona Spain
- Universitat Rovira i Virgili; Departament de Química Analítica i Química Orgànica; c/Marcel⋅lí Domingo, 1 43007 Tarragona Spain
| | - Sonia Sayalero
- Institute of Chemical Research of Catalonia (ICIQ); The Barcelona Institute of Science and Technology; Av. Països Catalans, 16 43007 Tarragona Spain
| | - Alessandro Ferrali
- Institute of Chemical Research of Catalonia (ICIQ); The Barcelona Institute of Science and Technology; Av. Països Catalans, 16 43007 Tarragona Spain
| | - Laura Osorio-Planes
- Institute of Chemical Research of Catalonia (ICIQ); The Barcelona Institute of Science and Technology; Av. Països Catalans, 16 43007 Tarragona Spain
| | - Fernando Bravo
- Institute of Chemical Research of Catalonia (ICIQ); The Barcelona Institute of Science and Technology; Av. Països Catalans, 16 43007 Tarragona Spain
| | - Carles Rodríguez-Escrich
- Institute of Chemical Research of Catalonia (ICIQ); The Barcelona Institute of Science and Technology; Av. Països Catalans, 16 43007 Tarragona Spain
| | - Miquel A. Pericàs
- Institute of Chemical Research of Catalonia (ICIQ); The Barcelona Institute of Science and Technology; Av. Països Catalans, 16 43007 Tarragona Spain
- Departament de Química Inorgànica i Orgànica; Universitat de Barcelona (UB); 08028 Barcelona Spain
| |
Collapse
|
35
|
|
36
|
Tomilov YV, Menchikov LG, Novikov RA, Ivanova OA, Trushkov IV. Methods for the synthesis of donor-acceptor cyclopropanes. RUSSIAN CHEMICAL REVIEWS 2018. [DOI: 10.1070/rcr4787] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
37
|
Nakashima E, Yamamoto H. Process Catalyst Mass Efficiency by Using Proline Tetrazole Column-Flow System. Chemistry 2018; 24:1076-1079. [PMID: 29315878 DOI: 10.1002/chem.201705982] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Indexed: 11/05/2022]
Abstract
Generally, organocatalysts are not decomposed during chemical transformation, which is different from traditional metal catalysts. To improve catalytic processes efficiency, various studies have been applied to flow synthesis for organocatalysis. Furthermore, many immobilized organocatalysts have been used for heterogeneous flow synthesis, which requires huge amounts of immobilized catalyst and requires several steps to prepare. We took advantage of organocatalysts with low-polarity organic solvent and developed a flow system through a packed-bed column with simply proline tetrazole (5-(2-pyrrolidinyl)-1H-tetrazole) for heterogeneous organocatalytic synthesis. Under ambient temperature, this heterogeneous organocatalyst continuous flow-column system with ketones as a donor provides aldol, Mannich, and o-nitroso aldol reactions in up to quantitative yields with excellent enantio- and chemoselectivity values. Our heterogeneous-flow synthesis provides extremely low process catalyst mass efficiency and continuous production without changing the packed-bed catalyst column.
Collapse
Affiliation(s)
- Erika Nakashima
- Molecular Catalyst Research Center, Chubu University, 1200 Matsumoto, Kasugai, Aichi, 487-8501, Japan
| | - Hisashi Yamamoto
- Molecular Catalyst Research Center, Chubu University, 1200 Matsumoto, Kasugai, Aichi, 487-8501, Japan
| |
Collapse
|
38
|
Altava B, Burguete MI, García-Verdugo E, Luis SV. Chiral catalysts immobilized on achiral polymers: effect of the polymer support on the performance of the catalyst. Chem Soc Rev 2018; 47:2722-2771. [DOI: 10.1039/c7cs00734e] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Achiral polymeric supports can have important positive effects on the activity, stability and selectivity of supported chiral catalysts.
Collapse
Affiliation(s)
- Belén Altava
- Department of Inorganic and Organic Chemistry
- University Jaume I
- Castellón
- Spain
| | - M. Isabel Burguete
- Department of Inorganic and Organic Chemistry
- University Jaume I
- Castellón
- Spain
| | | | - Santiago V. Luis
- Department of Inorganic and Organic Chemistry
- University Jaume I
- Castellón
- Spain
| |
Collapse
|
39
|
Tůma J, Kohout M. Silica gel-immobilized multidisciplinary materials applicable in stereoselective organocatalysis and HPLC separation. RSC Adv 2018; 8:1174-1181. [PMID: 35540900 PMCID: PMC9076945 DOI: 10.1039/c7ra12658a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 12/20/2017] [Indexed: 12/02/2022] Open
Abstract
In this pilot study, we present novel bifunctional silica gel-immobilized materials applicable as heterogeneous organocatalysts and stationary phases in HPLC. The materials provided high stereoselectivity in both batch and continuous flow catalysis of a model Michael addition (cyclohexanone to (E)-β-nitrostyrene). In the batch reaction, the catalysts proved their sustainable catalytic activity over five consecutive recycling experiments. Under continuous flow reaction conditions, the catalytic activity was found to be superior to the batch reaction, and moreover, the same immobilized materials were utilized as stationary phases in HPLC showing very good chemoselective separation of model acidic analytes. Novel multidisciplinary silica gel-based materials were successfully employed in highly stereoselective Michael addition and as stationary phases in HPLC separation.![]()
Collapse
Affiliation(s)
- J. Tůma
- Department of Organic Chemistry
- University of Chemistry and Technology Prague
- Czech Republic
| | - M. Kohout
- Department of Organic Chemistry
- University of Chemistry and Technology Prague
- Czech Republic
| |
Collapse
|
40
|
Solid supported Hayashi–Jørgensen catalyst as an efficient and recyclable organocatalyst for asymmetric Michael addition reactions. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.tetasy.2017.10.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
41
|
Porta R, Benaglia M, Annunziata R, Puglisi A, Celentano G. Solid Supported Chiral N
-Picolylimidazolidinones: Recyclable Catalysts for the Enantioselective, Metal- and Hydrogen-Free Reduction of Imines in Batch and in Flow Mode. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700376] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Riccardo Porta
- Dipartimento di Chimica; Università degli Studi di Milano; via Golgi 19 20133 Milano Italy
| | - Maurizio Benaglia
- Dipartimento di Chimica; Università degli Studi di Milano; via Golgi 19 20133 Milano Italy
| | - Rita Annunziata
- Dipartimento di Chimica; Università degli Studi di Milano; via Golgi 19 20133 Milano Italy
| | - Alessandra Puglisi
- Dipartimento di Chimica; Università degli Studi di Milano; via Golgi 19 20133 Milano Italy
| | - Giuseppe Celentano
- Dipartimento di Scienze Farmaceutiche; Università degli Studi di Milano; Via Mangiagalli, 25 Milano Italy
| |
Collapse
|
42
|
Plutschack MB, Pieber B, Gilmore K, Seeberger PH. The Hitchhiker's Guide to Flow Chemistry ∥. Chem Rev 2017; 117:11796-11893. [PMID: 28570059 DOI: 10.1021/acs.chemrev.7b00183] [Citation(s) in RCA: 1087] [Impact Index Per Article: 135.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Flow chemistry involves the use of channels or tubing to conduct a reaction in a continuous stream rather than in a flask. Flow equipment provides chemists with unique control over reaction parameters enhancing reactivity or in some cases enabling new reactions. This relatively young technology has received a remarkable amount of attention in the past decade with many reports on what can be done in flow. Until recently, however, the question, "Should we do this in flow?" has merely been an afterthought. This review introduces readers to the basic principles and fundamentals of flow chemistry and critically discusses recent flow chemistry accounts.
Collapse
Affiliation(s)
- Matthew B Plutschack
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces , Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Bartholomäus Pieber
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces , Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Kerry Gilmore
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces , Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces , Am Mühlenberg 1, 14476 Potsdam, Germany.,Institute of Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin , Arnimallee 22, 14195 Berlin, Germany
| |
Collapse
|
43
|
Zhang Y, Lin L, Chen Y, Liu X, Feng X. N
,N′
-Dioxide-Lanthanum(III)-Catalyzed Asymmetric Cyclopropanation of 2-Cyano-3-arylacrylates with 2-Bromomalonates. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700212] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yuheng Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry; Sichuan University; Chengdu 610064 People's Republic of China
| | - Lili Lin
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry; Sichuan University; Chengdu 610064 People's Republic of China
| | - Yushuang Chen
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry; Sichuan University; Chengdu 610064 People's Republic of China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry; Sichuan University; Chengdu 610064 People's Republic of China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry; Sichuan University; Chengdu 610064 People's Republic of China
| |
Collapse
|