1
|
Song Y, Liu Z, Liu C, Zhang J, Zhao Y. Construction of Benzoxazole and Isoquinoline Compounds via Base-Mediated Cyclization of Amino Acid Derivatives. Org Lett 2025; 27:3060-3065. [PMID: 40103404 DOI: 10.1021/acs.orglett.5c00736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Biological organisms contain bioactive macromolecules such as amino acids, which serve as basic materials for constructing cells and repairing tissues. Due to the unique properties of the fluorine atom, which can alter the structure of proteins and increase their lipophilicity, incorporating a fluorine atom into amino acids has become a research hotspot. In this study, ethyl 3-bromo-2-((diphenylmethylene)amino)-3,3-difluoropropanoate was synthesized from glycine derivatives. Under alkaline conditions, this compound reacted with 2-aminophenol to generate a benzoxazole-containing amino acid derivative. This method is simple to operate, without metal participation, and is performed under relatively eco-friendly reaction conditions, providing a novel approach for the synthesis of benzoxazole heterocycles.
Collapse
Affiliation(s)
- Yilian Song
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Zechao Liu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Chuangchuang Liu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Jingyu Zhang
- College of Energy, Soochow Institute for Energy and Materials Innovations, Soochow University, Suzhou 215006, P. R. China
| | - Yingsheng Zhao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
2
|
Roy S, Besset T. New Opportunities to Access Fluorinated Molecules Using Organophotoredox Catalysis via C(sp 3)-F Bond Cleavage. JACS AU 2025; 5:466-485. [PMID: 40017776 PMCID: PMC11862972 DOI: 10.1021/jacsau.4c01158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 03/01/2025]
Abstract
Fluorinated molecules are of paramount importance because of their unique properties. As a result, the search for innovative approaches to the synthesis of this class of compounds has been relentless over the years. Among these, the combination of photocatalysis and organofluorine chemistry turned out to be an effective partnership to access unattainable fluorinated molecules. This Perspective provides an overview of the recent advances in synthesizing fluorinated molecules via an organophotoredox-catalyzed defluorination process from trifluoromethylated compounds. It encompasses the preparation of difluoromethylated (hetero)arenes, amides, and esters as well as gem-difluoroalkene derivatives using C(sp3)-F bond activation or β-fragmentation. This Perspective will highlight remaining challenges and discuss future research opportunities.
Collapse
Affiliation(s)
- Sourav Roy
- INSA
Rouen Normandie, Univ Rouen Normandie, CNRS,
Normandie Univ, COBRA UMR 6014, F-76000 Rouen, France
| | - Tatiana Besset
- INSA
Rouen Normandie, Univ Rouen Normandie, CNRS,
Normandie Univ, COBRA UMR 6014, F-76000 Rouen, France
| |
Collapse
|
3
|
Huang J, Li Y, You Y, He X, Wang X, Yuan K. Pd II/Cu I-Cocatalyzed Radical Arylation of gem-Difluoroalkenes Using Arylsulfonyl Chlorides. J Org Chem 2024; 89:17761-17767. [PMID: 39514978 DOI: 10.1021/acs.joc.4c00709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
A PdII/CuI-cocatalyzed arylation of gem-difluoroalkenes with arylsulfonyl chlorides, affording various defluorinative arylation/1,2-difunctionalized products, was developed. The interception of aryl radicals generated from the reduction of arylsulfonyl chlorides delivers some hypervalent Pd species, which present high reactivities and chemoselectivities toward the defluorinative arylation product formation. Besides, the nature of the electron-deficient Pd metal center is more prone to reductive elimination under acidic conditions, providing an opportunity to explore new reactivates of fluorinated alkenes into more elaborate substructures.
Collapse
Affiliation(s)
- Jiahui Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Yixiao Li
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Yuantao You
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Xingying He
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Xiaozhen Wang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Kedong Yuan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
4
|
Intelli AJ, Wayment CZ, Lee RT, Yuan K, Altman RA. Palladium and copper co-catalyzed chloro-arylation of gem-difluorostyrenes - use of a nitrite additive to suppress β-F elimination. Chem Sci 2024:d4sc04939j. [PMID: 39386912 PMCID: PMC11456958 DOI: 10.1039/d4sc04939j] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/28/2024] [Indexed: 10/12/2024] Open
Abstract
The installation of fluorine and fluorinated functional groups in organic molecules perturbs the physicochemical properties of those molecules and enables the development of new therapeutics, agrichemicals, biological probes and materials. However, current synthetic methodologies cannot access some fluorinated functional groups and fluorinated scaffolds. One such group, the gem-difluorobenzyl motif, might be convergently synthesized by reacting a nucleophilic aryl precursor and an electrophilic gem-difluoroalkene. Previous attempts have relied on forming unstable anionic or organometallic intermediates that rapidly decompose through a β-F elimination process to deliver monofluorovinyl products. In contrast, we report a fluorine-retentive palladium and copper co-catalyzed chloro-arylation of gem-difluorostyrenes that takes advantage of a nitrite (NO2 -) additive to avoid the favorable β-F elimination pathway that forms monofluorinated products, instead delivering difluorinated products.
Collapse
Affiliation(s)
- Andrew J Intelli
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University West Lafayette Indiana 47907 USA
| | - Coriantumr Z Wayment
- James Tarpo Jr and Margaret Tarpo Department of Chemistry, Purdue University West Lafayette Indiana 47907 USA
| | - Ryan T Lee
- Department of Chemistry and Chemical Biology, Rutgers University Piscataway New Jersey 08854 USA
| | - Kedong Yuan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target Clinical Pharmacology, Guangzhou Medical University Guangzhou 511436 China
| | - Ryan A Altman
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University West Lafayette Indiana 47907 USA
- James Tarpo Jr and Margaret Tarpo Department of Chemistry, Purdue University West Lafayette Indiana 47907 USA
| |
Collapse
|
5
|
Yang L, Tao Z, Xu HD, Shen MH, Chu H. Synthesis of gem-Difluorinated Oxa/Azaspiro[2.4]heptanes via Palladium-Catalyzed Spirocyclopropanation. Org Lett 2024; 26:5782-5787. [PMID: 38940384 DOI: 10.1021/acs.orglett.4c01912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
A palladium-catalyzed spirocyclopropanation of gem-difluoroalkenes with π-allylpalladium 1,4-dipoles has been successfully developed, which gives a powerful and straightforward synthetic strategy for the construction of novel gem-difluorinated spirocyclic compounds, 6,6-difluoro-5-oxa/azaspiro[2.4]heptanes. The scope of gem-difluoroalkenes can be extended to styrenes, acrylic esters, and acrylamides to realize the installment of various functional groups and different heteroatoms on the spirocyclic skeletons, which could be converted to valuable compounds with potential biological activity. The mechanistic investigations revealed the competition between spirocyclopropanation and β-F elimination of π-allylpalladium zwitterionic intermediates.
Collapse
Affiliation(s)
- Linhui Yang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Zhu Tao
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Hua-Dong Xu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Mei-Hua Shen
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Haoke Chu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| |
Collapse
|
6
|
Minami Y, Imamura S, Matsuyama N, Nakajima Y, Yoshida M. Catalytic thiolation-depolymerization-like decomposition of oxyphenylene-type super engineering plastics via selective carbon-oxygen main chain cleavages. Commun Chem 2024; 7:37. [PMID: 38378901 PMCID: PMC10879179 DOI: 10.1038/s42004-024-01120-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/05/2024] [Indexed: 02/22/2024] Open
Abstract
As the effective use of carbon resources has become a pressing societal issue, the importance of chemical recycling of plastics has increased. The catalytic chemical decomposition for plastics is a promising approach for creating valuable products under efficient and mild conditions. Although several commodity and engineering plastics have been applied, the decompositions of stable resins composed of strong main chains such as polyamides, thermoset resins, and super engineering plastics are underdeveloped. Especially, super engineering plastics that have high heat resistance, chemical resistance, and low solubility are nearly unexplored. In addition, many super engineering plastics are composed of robust aromatic ethers, which are difficult to cleave. Herein, we report the catalytic depolymerization-like chemical decomposition of oxyphenylene-based super engineering plastics such as polyetheretherketone and polysulfone using thiols via selective carbon-oxygen main chain cleavage to form electron-deficient arenes with sulfur functional groups and bisphenols. The catalyst combination of a bulky phosphazene base P4-tBu with inorganic bases such as tripotassium phosphate enabled smooth decomposition. This method could be utilized with carbon- or glass fiber-enforced polyetheretherketone materials and a consumer resin. The sulfur functional groups in one product could be transformed to amino and sulfonium groups and fluorine by using suitable catalysts.
Collapse
Affiliation(s)
- Yasunori Minami
- Interdisciplinary Research Center for Catalytic Chemistry (IRC3), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan.
- PRESTO, Japan Science and Technology Agency (JST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan.
| | - Sae Imamura
- Interdisciplinary Research Center for Catalytic Chemistry (IRC3), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Nao Matsuyama
- Interdisciplinary Research Center for Catalytic Chemistry (IRC3), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Yumiko Nakajima
- Interdisciplinary Research Center for Catalytic Chemistry (IRC3), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Masaru Yoshida
- Interdisciplinary Research Center for Catalytic Chemistry (IRC3), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| |
Collapse
|
7
|
Zong Y, Tsui GC. Addition of Carboxylic Acids to gem-Difluoroalkenes for the Synthesis of gem-Difluoromethylenated Compounds. Org Lett 2024; 26:1261-1264. [PMID: 38301042 PMCID: PMC10877607 DOI: 10.1021/acs.orglett.4c00095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/03/2024]
Abstract
We herein describe a straightforward protocol for the synthesis of carboxylic esters containing a gem-difluoromethylene unit. Readily available carboxylic acids can act as nucleophiles to add regioselectively to tetrasubstituted or trisubstituted β,β-difluoroacrylates (formal hydroacetoxylation) for the construction of RCO2-CF2 bonds. Thermal conditions are sufficient without the use of catalysts or additives.
Collapse
Affiliation(s)
- Yuwei Zong
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New
Territories 999077, Hong
Kong SAR, China
| | - Gavin Chit Tsui
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New
Territories 999077, Hong
Kong SAR, China
| |
Collapse
|
8
|
Wang R, Ma R, Feng K, Lu H, Zhao W, Jin H. Total Synthesis and Anti-Inflammatory Evaluation of Osajin, Scandenone and Analogues. Pharmaceuticals (Basel) 2024; 17:86. [PMID: 38256918 PMCID: PMC10819276 DOI: 10.3390/ph17010086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
In this study, the total synthesis of osajin, scandenone and their analogues have been accomplished. The key synthetic steps include aldol/intramolecular iodoetherification/elimination sequence reactions and a Suzuki coupling reaction to assemble the tricyclic core, chemoselective propargylation and Claisen rearrangement reactions to obtain natural compounds. In addition, we also designed and synthesized twenty-five natural product analogues. All synthetic compounds were screened for anti-inflammatory activity against tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Collectively, Compound 39e and 39d were considered as promising lead compounds for further development.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, College of Pharmacy, Nankai University, Tianjin 300350, China; (R.W.); (R.M.); (K.F.); (H.L.)
| | - Ran Ma
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, College of Pharmacy, Nankai University, Tianjin 300350, China; (R.W.); (R.M.); (K.F.); (H.L.)
- Tianjin International Joint Academy of Biomedicine, Tianjin 300457, China
| | - Ke Feng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, College of Pharmacy, Nankai University, Tianjin 300350, China; (R.W.); (R.M.); (K.F.); (H.L.)
| | - Hongchen Lu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, College of Pharmacy, Nankai University, Tianjin 300350, China; (R.W.); (R.M.); (K.F.); (H.L.)
- Tianjin International Joint Academy of Biomedicine, Tianjin 300457, China
| | - Wei Zhao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, College of Pharmacy, Nankai University, Tianjin 300350, China; (R.W.); (R.M.); (K.F.); (H.L.)
| | - Hongzhen Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, College of Pharmacy, Nankai University, Tianjin 300350, China; (R.W.); (R.M.); (K.F.); (H.L.)
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266071, China
| |
Collapse
|
9
|
Liang YF, Bilal M, Tang LY, Wang TZ, Guan YQ, Cheng Z, Zhu M, Wei J, Jiao N. Carbon-Carbon Bond Cleavage for Late-Stage Functionalization. Chem Rev 2023; 123:12313-12370. [PMID: 37942891 DOI: 10.1021/acs.chemrev.3c00219] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Late-stage functionalization (LSF) introduces functional group or structural modification at the final stage of the synthesis of natural products, drugs, and complex compounds. It is anticipated that late-stage functionalization would improve drug discovery's effectiveness and efficiency and hasten the creation of various chemical libraries. Consequently, late-stage functionalization of natural products is a productive technique to produce natural product derivatives, which significantly impacts chemical biology and drug development. Carbon-carbon bonds make up the fundamental framework of organic molecules. Compared with the carbon-carbon bond construction, the carbon-carbon bond activation can directly enable molecular editing (deletion, insertion, or modification of atoms or groups of atoms) and provide a more efficient and accurate synthetic strategy. However, the efficient and selective activation of unstrained carbon-carbon bonds is still one of the most challenging projects in organic synthesis. This review encompasses the strategies employed in recent years for carbon-carbon bond cleavage by explicitly focusing on their applicability in late-stage functionalization. This review expands the current discourse on carbon-carbon bond cleavage in late-stage functionalization reactions by providing a comprehensive overview of the selective cleavage of various types of carbon-carbon bonds. This includes C-C(sp), C-C(sp2), and C-C(sp3) single bonds; carbon-carbon double bonds; and carbon-carbon triple bonds, with a focus on catalysis by transition metals or organocatalysts. Additionally, specific topics, such as ring-opening processes involving carbon-carbon bond cleavage in three-, four-, five-, and six-membered rings, are discussed, and exemplar applications of these techniques are showcased in the context of complex bioactive molecules or drug discovery. This review aims to shed light on recent advancements in the field and propose potential avenues for future research in the realm of late-stage carbon-carbon bond functionalization.
Collapse
Affiliation(s)
- Yu-Feng Liang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Muhammad Bilal
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Le-Yu Tang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Tian-Zhang Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yu-Qiu Guan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Zengrui Cheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Minghui Zhu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jialiang Wei
- Changping Laboratory, Yard 28, Science Park Road, Changping District, Beijing 102206, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Changping Laboratory, Yard 28, Science Park Road, Changping District, Beijing 102206, China
- State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
10
|
Han X, Liu X, Len C, Liu L, Wang D, Zhang Y, Duan XH, Hu M. Photoredox-Catalyzed gem-Difluoromethylenation of Aliphatic Alcohols with 1,1-Difluoroalkenes to Access α,α-Difluoromethylene Ethers. J Org Chem 2023; 88:12744-12754. [PMID: 37610918 DOI: 10.1021/acs.joc.3c01428] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
A switchable synthesis of alcohols and ketones bearing a CF2-OR scaffold using visible-light promotion is described. The method of PDI catalysis is characterized by its ease of operation, broad substrate scopes, and the ability to switch between desired products without the need for transition metal catalysts. The addition or absence of a base plays a key role in controlling the synthesis of the major desired products.
Collapse
Affiliation(s)
- Xinxin Han
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xin Liu
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - Christophe Len
- CNRS, Institute of Chemistry for Life and Health Sciences, Chimie ParisTech, PSL University, 11 rue Pierre et Marie Curie, F-75005 Paris, France
- Université de Technologie de Compiègne, Sorbonne Université, F-60203 Compiègne, France
| | - Le Liu
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - Dongdong Wang
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yinbin Zhang
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China
| | - Xin-Hua Duan
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - Mingyou Hu
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
11
|
Sun G, Li J, Liu X, Liu Y, Wen X, Sun H, Xu QL. Organophosphorus-Catalyzed "Dual-Substrate Deoxygenation" Strategy for C-S Bond Formation from Sulfonyl Chlorides and Alcohols/Acids. J Org Chem 2023. [PMID: 37296496 DOI: 10.1021/acs.joc.3c00532] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A green method to construct C-S bonds using sulfonyl chlorides and alcohols/acids via a PIII/PV═O catalytic system is reported. The organophosphorus-catalyzed umpolung reaction promotes us to propose the "dual-substrate deoxygenation" strategy. Herein, we adopt the "dual-substrate deoxygenation" strategy, which achieves the deoxygenation of sulfonyl chlorides and alcohols/acids to synthesize thioethers/thioesters driven by PIII/PV═O redox cycling. The catalytic method represents an operationally simple approach using stable phosphine oxide as a precatalyst and shows broad functional group tolerance. The potential application of this protocol is demonstrated by the late-stage diversification of drug analogues.
Collapse
Affiliation(s)
- Gang Sun
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Jing Li
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Xin Liu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Yiting Liu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Xiaoan Wen
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Hongbin Sun
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Qing-Long Xu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| |
Collapse
|
12
|
Wen L, Zhou N, Zhang Z, Liu C, Xu S, Feng P, Li H. Electrochemical Difunctionalization of gem-Difluoroalkenes: A Metal-Free Synthesis of α-Difluoro(alkoxyl/azolated) Methylated Ethers. Org Lett 2023; 25:3308-3313. [PMID: 37129411 DOI: 10.1021/acs.orglett.3c01130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A scalable electrochemical difunctionalization of gem-difluoroalkenes to structurally versatile difluoro motifs was achieved. This methodology features reagent-free conditions, good functional group tolerance, and a relatively broad substrate scope. Meanwhile, the electrolysis protocol is easy to handle, and the products show good regio- and chemoselectivity. The reaction mechanism was also preliminarily studied.
Collapse
Affiliation(s)
- Linzi Wen
- PET Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Chemistry, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Naifu Zhou
- Department of Chemistry, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Zhicheng Zhang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Cong Liu
- Department of Chemistry, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Shihai Xu
- Department of Chemistry, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Pengju Feng
- Department of Chemistry, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Hongsheng Li
- PET Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
13
|
Sorrentino JP, Herrick RM, Abd El-Gaber MK, Abdelazem AZ, Kumar A, Altman RA. General Co-catalytic Hydrothiolation of gem-Difluoroalkenes. J Org Chem 2022; 87:16676-16690. [PMID: 36469658 PMCID: PMC9772298 DOI: 10.1021/acs.joc.2c02343] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Regioselective functionalization of gem-difluoroalkenes enables convergent late-stage access to fluorinated functional groups, though most functionalization reactions proceed through defluorinative functionalization processes that deliver mono-fluorovinyl products. In contrast, fewer reactions undergo net hydrofunctionalization to generate difluorinated products. Herein, we report a photocatalytic hydrothiolation of gem-difluoroalkenes that enables access to a broad spectrum of α,α-difluoroalkylthioethers. Notably, the reaction successfully couples nonactivated substrates, which expands the scope of accessible molecules relative to previously reported reactions involving organo- or photocatalytic strategies. Further, this reaction successfully couples biologically relevant molecules under aqueous conditions, highlighting potential applications in both late-stage and biorthogonal functionalizations.
Collapse
Affiliation(s)
- Jacob P. Sorrentino
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, United States
| | - Ryan M. Herrick
- Department of Medicinal Chemistry and Molecular Pharmacology Purdue University, West Lafayette, Indiana 47906, United States
| | - Mohammed K. Abd El-Gaber
- Department of Medicinal Chemistry and Molecular Pharmacology Purdue University, West Lafayette, Indiana 47906, United States
- Medicinal Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Ahmed Z. Abdelazem
- Department of Medicinal Chemistry and Molecular Pharmacology Purdue University, West Lafayette, Indiana 47906, United States
- Biotechnology & Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef 62517, Egypt
| | - Ankit Kumar
- Department of Medicinal Chemistry and Molecular Pharmacology Purdue University, West Lafayette, Indiana 47906, United States
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Ryan A. Altman
- Department of Medicinal Chemistry and Molecular Pharmacology Purdue University, West Lafayette, Indiana 47906, United States
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, United States
| |
Collapse
|
14
|
Koley S, Cayton KT, González-Montiel GA, Yadav MR, Orsi DL, Intelli AJ, Cheong PHY, Altman RA. Cu(II)-Catalyzed Unsymmetrical Dioxidation of gem-Difluoroalkenes to Generate α,α-Difluorinated-α-phenoxyketones. J Org Chem 2022; 87:10710-10725. [PMID: 35914193 PMCID: PMC9391295 DOI: 10.1021/acs.joc.2c00925] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A Cu-based catalyst system convergently couples gem-difluoroalkenes with phenols under aerobic conditions to deliver α,α-difluorinated-α-phenoxyketones, an unstudied hybrid fluorinated functional group. Composed of α,α-difluorinated ketone and α,α-difluorinated ether moieties, these compounds have rarely been reported as a synthetic intermediate. Computational predictions and later experimental corroboration suggest that the phenoxy-substituted fluorinated ketone's sp3-hybridized hydrate form is energetically favored relative to the respective nonether variant and that perturbation of the electronic character of the ketone can further encourage the formation of the hydrate. The more facile conversion between ketone and hydrate forms suggests that analogues should readily covalently inhibit proteases and other enzymes. Further functionalization of the ketone group enables access to other useful fluorinated functional groups.
Collapse
Affiliation(s)
- Suvajit Koley
- Department of Medicinal Chemistry and Molecular Pharmacology; Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | - Kaylee T. Cayton
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, USA
| | | | - M. Ramu Yadav
- Department of Chemistry, MS-723, IIT Delhi, Hauz Khas, New Delhi, India 110016
| | - Douglas L. Orsi
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
| | - Andrew J. Intelli
- Department of Medicinal Chemistry and Molecular Pharmacology; Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | - Paul Ha-Yeon Cheong
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, USA
| | - Ryan A. Altman
- Department of Medicinal Chemistry and Molecular Pharmacology; Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
15
|
Liang Y, Zhou N, Ma G, Wen L, Wu X, Feng P. Tunable alkoxy-nucleophilic addition under photochemical condition: Dioxidation of gem‑difluoroalkenes with O2. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Gao Y, Qin W, Tian M, Zhao X, Hu X. Defluorinative Alkylation of Trifluoromethyl Alkenes with Soft Carbon Nucleophiles Enabled by a Catalytic Amount of Base. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ya Gao
- Institute of Advanced Synthesis School of Chemistry and Molecular Engineering Nanjing Tech University 30 South Puzhu Road Nanjing 211816 People's Republic of China
| | - Wei Qin
- Institute of Advanced Synthesis School of Chemistry and Molecular Engineering Nanjing Tech University 30 South Puzhu Road Nanjing 211816 People's Republic of China
| | - Ming‐Qing Tian
- Institute of Advanced Synthesis School of Chemistry and Molecular Engineering Nanjing Tech University 30 South Puzhu Road Nanjing 211816 People's Republic of China
| | - Xuefei Zhao
- Institute of Advanced Synthesis School of Chemistry and Molecular Engineering Nanjing Tech University 30 South Puzhu Road Nanjing 211816 People's Republic of China
| | - Xu‐Hong Hu
- Institute of Advanced Synthesis School of Chemistry and Molecular Engineering Nanjing Tech University 30 South Puzhu Road Nanjing 211816 People's Republic of China
| |
Collapse
|
17
|
Du P, Sun Q, Li H, Zhang J, Deng H, Jiang H. Silver-catalyzed Radical Cascade Arylthiodifluoromethylation/ Cyclization of Isonitriles for the Synthesis of 6-Phenanthridinyldifluoromethyl Aryl Thioethers. Chem Asian J 2022; 17:e202200088. [PMID: 35319154 DOI: 10.1002/asia.202200088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/07/2022] [Indexed: 11/10/2022]
Abstract
An efficient method for silver-catalyzed radical cascade arylthiodifluoromethylation/cyclization of isonitriles is disclosed. The transformation comprised addition of an arylthiodifluoromethyl radical generated in situ by the oxidative decarboxylation of arylthiodifluoroacetic salts to the isonitrile functionality to construct an ArSCF2 -C bond, followed by intramolecular cyclization to eventually afford 6-phenanthridinyldifluoromethyl aryl thioethers. The protocol provided a variety of 6-phenanthridinyldifluoromethyl aryl thioethers in medium to excellent yields with a good functional group tolerance under mild reaction conditions.
Collapse
Affiliation(s)
- Pengcheng Du
- Department of Chemistry, Shanghai University, Shanghai, 200444, P. R. China
| | - Qianqian Sun
- Department of Chemistry, Shanghai University, Shanghai, 200444, P. R. China
| | - Hongxiao Li
- Department of Chemistry, Shanghai University, Shanghai, 200444, P. R. China
| | - Jianhua Zhang
- Key Laboratory of Advanced Display and System Application, Ministry of Education, Shanghai University, Shanghai, 200072, P. R. China
| | - Hongmei Deng
- Laboratory for Microstructures, Shanghai University, Shanghai, 200444, P. R. China
| | - Haizhen Jiang
- Department of Chemistry, Shanghai University, Shanghai, 200444, P. R. China.,Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, P. R. China
| |
Collapse
|
18
|
Zhu YY, Liu S, Huang Y, Qing FL, Xu XH. Photoredox catalyzed difluoro(phenylthio)methylation of 2,3-allenoic acids with {difluoro(phenylthio)methyl}triphenylphosphonium triflate. J Fluor Chem 2022. [DOI: 10.1016/j.jfluchem.2022.109969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
One-pot synthesis of cyclobutenecarboxylate derivatives via olefinic C-F bond functionalization of gem-difluoroalkenes. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Zhu W, Xi H, Jiao W, Huang L, Wang L, Wu J. Difunctionalization of gem-Difluoroalkenes via Photoredox Catalysis: Synthesis of Diverse α,α-Difluoromethyl-β-alkoxysulfones. Org Lett 2022; 24:720-725. [PMID: 34981944 DOI: 10.1021/acs.orglett.1c04165] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Visible-light-promoted alkoxysulfonylation of gem-difluoroalkenes using sulfonyl chlorides and alcohols has been developed. The reaction exhibits a relatively broad substrate scope with excellent functional group compatibility. This synthesis method includes an atom transfer radical addition-like process. The products can be used as platform molecules for further modification.
Collapse
Affiliation(s)
- Wenjuan Zhu
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Hui Xi
- Zhengzhou Tobacco Research Institute of China National Tobacco Company, Zhengzhou 450001, P. R. China
| | - Wenyang Jiao
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Lihua Huang
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Lianjie Wang
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Junliang Wu
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
21
|
Li C, Li H, Yao G, Liang X, Zhao C, Xu H, Jiang H, Zhu C. Chemo- and regioselective defluorinative annulation of (trifluoromethyl)alkenes with pyrazolones: synthesis and insecticidal activity of 6-fluoro-1,4-dihydropyrano[2,3- c]pyrazoles. Org Chem Front 2022. [DOI: 10.1039/d2qo00786j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The chemo- and regioselective defluorinative [3 + 3] annulation of (trifluoromethyl)alkenes and pyrazolones gives useful 6-fluoro-1,4-dihydropyrano[2,3-c]pyrazoles.
Collapse
Affiliation(s)
- Chengxi Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510640, China
| | - Hengyuan Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510640, China
| | - Guangkai Yao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Xianghui Liang
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510640, China
| | - Chen Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Hanhong Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Huanfeng Jiang
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510640, China
| | - Chuanle Zhu
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
22
|
Xu X, Bao L, Ran L, Yang Z, Yan D, Wang CJ, Teng H. Synthesis of bioactive fluoropyrrolidines via copper(i)-catalysed asymmetric 1,3-dipolar cycloaddition of azomethine ylides. Chem Sci 2022; 13:1398-1407. [PMID: 35222924 PMCID: PMC8809416 DOI: 10.1039/d1sc04595d] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/06/2021] [Indexed: 12/18/2022] Open
Abstract
Chiral pyrrolidinyl units are important building blocks in biologically active natural products and drugs, and the development of efficient methods for the synthesis of diverse structured pyrrolidine derivatives is of great importance. Meanwhile, incorporating fluorine containing groups into small molecules often changes their activities to a great extent due to the special physicochemical properties of fluorine atoms. Herein, we report an efficient route to obtain enantioenriched 3,3-difluoro- and 3,3,4-trifluoropyrrolidinyl derivatives by Cu(i)-catalysed enantioselective 1,3-dipolar cycloaddition of azomethine ylides with less active 1,1-difluoro- and 1,1,2-trifluorostyrenes. A series of new fluorinated pyrrolidines have been prepared in high yields (up to 96%) and with excellent stereoselectivities (up to >20 : 1 dr and 97% ee), and these unique structural blocks could be readily introduced into some natural compounds and pharmaceuticals. Additionally, antifungal activity investigation against four common plant fungi showed that some products possess general and high biological activities; comparison with the low antifungal activities of corresponding nonfluorinated compounds revealed that the fluorine atoms at the pyrrolidinyl rings play a crucial role in the antifungal activity. Chiral fluoropyrrolidines were synthesized by Cu(i)-catalyzed enantioselective 1,3-dipolar cycloaddition of azomethine ylides with less active fluorinated styrenes, with broad substrate scope and high yield, stereoselectivity and biological activity.![]()
Collapse
Affiliation(s)
- Xiao Xu
- College of Science, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Longzhu Bao
- College of Science, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Lu Ran
- College of Science, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Zhenyan Yang
- College of Science, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Dingce Yan
- Analytical and Testing Center, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Chun-Jiang Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Huailong Teng
- College of Science, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| |
Collapse
|
23
|
Zhou L. Recent Advances in C-F Bond Cleavage Enabled by Visible Light Photoredox Catalysis. Molecules 2021; 26:molecules26227051. [PMID: 34834143 PMCID: PMC8621615 DOI: 10.3390/molecules26227051] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 12/05/2022] Open
Abstract
The creation of new bonds via C-F bond cleavage of readily available per- or oligofluorinated compounds has received growing interest. Using such a strategy, a myriad of valuable partially fluorinated products can be prepared, which otherwise are difficult to make by the conventional C-F bond formation methods. Visible light photoredox catalysis has been proven as an important and powerful tool for defluorinative reactions due to its mild, easy to handle, and environmentally benign characteristics. Compared to the classical C-F activation that proceeds via two-electron processes, radicals are the key intermediates using visible light photoredox catalysis, providing new modes for the cleavage of C-F bonds. In this review, a summary of the visible light-promoted C-F bond cleavage since 2018 was presented. The contents were classified by the fluorosubstrates, including polyfluorinated arenes, gem-difluoroalkenes, trifluoromethyl arenes, and trifluoromethyl alkenes. An emphasis is placed on the discussion of the mechanisms and limitations of these reactions. Finally, my personal perspective on the future development of this rapidly emerging field was provided.
Collapse
Affiliation(s)
- Lei Zhou
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
24
|
Sorrentino JP, Altman RA. Fluorine-Retentive Strategies for the Functionalization of gem-Difluoroalkenes. SYNTHESIS-STUTTGART 2021; 53:3935-3950. [PMID: 34707322 DOI: 10.1055/a-1547-9270] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
gem-Difluoroalkenes are readily available fluorinated building blocks, and the fluorine-induced electronic perturbations of the alkenes enables a wide array of selective functionalization reactions. However, many reactions of gem-difluoroalkenes result in a net C─F functionalization to generate monofluorovinyl products or addition of F to generate trifluoromethyl-containing products. In contrast, fluorine-retentive strategies for the functionalization of gem-difluoroalkenes remain less generally developed, and is now becoming a rapidly developing area. This review will present the development of fluorine-retentive strategies including electrophilic, nucleophilic, radical, and transition metal catalytic strategies with an emphasis on key physical organic and mechanistic aspects that enable reactivities.
Collapse
Affiliation(s)
- Jacob P Sorrentino
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Ryan A Altman
- Department of Medicinal Chemistry and Molecular Pharmacology and Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, United States
| |
Collapse
|
25
|
Liu J, Yu L, Zheng C, Zhao G. Asymmetric Synthesis of 2,2-Difluorotetrahydrofurans through Palladium-Catalyzed Formal [3+2] Cycloaddition. Angew Chem Int Ed Engl 2021; 60:23641-23645. [PMID: 34494347 DOI: 10.1002/anie.202111376] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Indexed: 12/21/2022]
Abstract
The asymmetric synthesis of 2,2-difluorinated tetrahydrofurans was accomplished via enantioselective formal [3+2] cycloaddition catalyzed by palladium. The asymmetric reaction between gem-difluoroalkenes and racemic vinyl epoxides or vinylethylene carbonates resulted in the formation of enantioenriched 2,2-difluorotetrahydrofurans with an enantioselectivity up to 98 %. Notably, the reaction used the readily available (R)-BINAP as the ligand at a low loading and yielded a wide variety of difluorinated products in moderate to high yields. Both chiral diastereomers could be obtained in a single sequence.
Collapse
Affiliation(s)
- Jun Liu
- Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P.R. China
| | - Longhui Yu
- Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P.R. China
| | - Changwu Zheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, P.R. China
| | - Gang Zhao
- Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P.R. China
| |
Collapse
|
26
|
Liu J, Yu L, Zheng C, Zhao G. Asymmetric Synthesis of 2,2‐Difluorotetrahydrofurans through Palladium‐Catalyzed Formal [3+2] Cycloaddition. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jun Liu
- Key Laboratory of Synthetic Chemistry of Natural Substances Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P.R. China
| | - Longhui Yu
- Key Laboratory of Synthetic Chemistry of Natural Substances Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P.R. China
| | - Changwu Zheng
- School of Pharmacy Shanghai University of Traditional Chinese Medicine 1200 Cailun Road Shanghai 201203 P.R. China
| | - Gang Zhao
- Key Laboratory of Synthetic Chemistry of Natural Substances Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P.R. China
| |
Collapse
|
27
|
Wang D, Cao FR, Lu G, Ren J, Zeng BB. Practical acetalization and transacetalization of carbonyl compounds catalyzed by recyclable PVP-I. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Liu C, Zhu C, Cai Y, Jiang H. Solvent-Switched Oxidation Selectivities with O 2 : Controlled Synthesis of α-Difluoro(thio)methylated Alcohols and Ketones. Angew Chem Int Ed Engl 2021; 60:12038-12045. [PMID: 33704886 DOI: 10.1002/anie.202017271] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Indexed: 12/12/2022]
Abstract
The solvent-switched hydroxylation and oxygenation of α-difluoro(thio)methylated carbanions with molecular oxygen under mild conditions are reported. This strategy tames the redox reactions of the in situ generated hydroperoxy difluoromethylsulfides, in which solvent-bonding can alter their reactivity and switch the oxidation selectivities. These controllable three-component reactions of gem-difluoroalkenes, thiols and molecular oxygen afford various useful α-difluoro(thio)methylated alcohols and ketones in high yields. Significantly, this protocol has been applied in the synthesis different bioactive molecules. Mechanism studies enable the detection of the hydroperoxy difluoromethylsulfide intermediates and exclude the thiol-based radical pathway.
Collapse
Affiliation(s)
- Chi Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Chuanle Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Yingying Cai
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
29
|
Sunagawa DE, Ishida N, Iwamoto H, Ohashi M, Fruit C, Ogoshi S. Synthesis of Fluoroalkyl Sulfides via Additive-Free Hydrothiolation and Sequential Functionalization Reactions. J Org Chem 2021; 86:6015-6024. [PMID: 33781063 DOI: 10.1021/acs.joc.1c00361] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A modular synthetic method, involving a hydrothiolation, silylation, and fluoroalkylation, for the construction of highly functionalized fluoroalkyl sulfides has been developed. The use of aprotic polar solvents enables the additive-free chemoselective hydrothiolation of tetrafluoroethylene, trifluorochloroethylene, and hexafluoropropene with various thiols. The stepwise functionalization reactions convert the hydrothiolated intermediates into the tetrafluoroethyl sulfides in high efficiency. The method avoids the use of the environmental pollutant Halon-2402, which was employed as a building block in a reported synthetic route.
Collapse
Affiliation(s)
- Denise E Sunagawa
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Naoyoshi Ishida
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hiroaki Iwamoto
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masato Ohashi
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Corinne Fruit
- Normandie University, UNIROUEN, INSA Rouen, CNRS, COBRA, F-76000 Rouen, France
| | - Sensuke Ogoshi
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
30
|
Liu C, Zhu C, Cai Y, Jiang H. Solvent‐Switched Oxidation Selectivities with O
2
: Controlled Synthesis of α‐Difluoro(thio)methylated Alcohols and Ketones. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202017271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Chi Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 P. R. China
| | - Chuanle Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 P. R. China
| | - Yingying Cai
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 P. R. China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 P. R. China
| |
Collapse
|
31
|
Zhang JQ, Hu D, Song J, Ren H. [3 + 2]-Annulation of gem-Difluoroalkenes and Pyridinium Ylides: Access to Functionalized 2-Fluoroindolizines. J Org Chem 2021; 86:4646-4660. [PMID: 33683121 DOI: 10.1021/acs.joc.0c03041] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A [3 + 2]-annulation of gem-difluoroalkenes and pyridinium ylides was developed employing ambient air as the sole oxidant in an open-vessel manner, affording a series of multifunctionalized 2-fluoroindolizines in moderate to good yields. In this reaction, gem-difluoroalkene acts as a C2 synthon and entirely avoids the competitive addition-elimination process, which provides facile access to 2-fluoroindolizines.
Collapse
Affiliation(s)
- Jun-Qi Zhang
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P.R. China
| | - Dandan Hu
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P.R. China
| | - Jinyu Song
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P.R. China
| | - Hongjun Ren
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P.R. China
| |
Collapse
|
32
|
Sorrentino JP, Orsi DL, Altman RA. Acid-Catalyzed Hydrothiolation of gem-Difluorostyrenes to Access α,α-Difluoroalkylthioethers. J Org Chem 2021; 86:2297-2311. [PMID: 33471529 PMCID: PMC7869866 DOI: 10.1021/acs.joc.0c02440] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The substitution of hydrogen atoms with fluorine in bioactive molecules can greatly impact physicochemical, pharmacokinetic, and pharmacodynamic properties. However, current synthetic methods cannot readily access many fluorinated motifs, which impedes utilization of these groups. Thus, the development of new methods to introduce fluorinated functional groups is critical for developing the next generation of biological probes and therapeutic agents. The synthesis of one such substructure, the α,α-difluoroalkylthioether, typically requires specialized conditions that necessitate early-stage installation. A late-stage and convergent approach to access α,α-difluoroalkylthioethers could involve nucleophilic addition of thiols across gem-difluorostyrenes. Unfortunately, under basic conditions, nucleophilic addition to gem-difluorostyrenes generates an anionic intermediate that can undergo facile elimination of fluoride to generate α-fluorovinylthioethers. To overcome this decomposition, we herein exploit an acid-based catalyst system to facilitate simultaneous nucleophilic addition and protonation of the unstable intermediate. Ultimately, the optimized mild conditions afford the desired α,α-difluoroalkylthioethers in high selectivity and moderate to excellent yields. These α,α-difluoroalkylthioethers are less nucleophilic and more oxidatively stable relative to nonfluorinated thioethers, suggesting the potential application of this unexplored functional group in biological probes and therapeutic agents.
Collapse
Affiliation(s)
- Jacob P. Sorrentino
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Douglas L. Orsi
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, United States
| | - Ryan A. Altman
- Department of Medicinal Chemistry and Molecular Pharmacology and Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, United States
| |
Collapse
|
33
|
Radical coupling of arylthiodifluoroacetic acids and ethynylbenziodoxolone (EBX) reagents to access arylthiodifluoromethylated alkynes. J Fluor Chem 2021. [DOI: 10.1016/j.jfluchem.2020.109715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
34
|
Puleo TR, Sujansky SJ, Wright SE, Bandar JS. Organic Superbases in Recent Synthetic Methodology Research. Chemistry 2021; 27:4216-4229. [DOI: 10.1002/chem.202003580] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Thomas R. Puleo
- Department of Chemistry Colorado State University Fort Collins Colorado 80523 USA
| | - Stephen J. Sujansky
- Department of Chemistry Colorado State University Fort Collins Colorado 80523 USA
| | - Shawn E. Wright
- Department of Chemistry Colorado State University Fort Collins Colorado 80523 USA
| | - Jeffrey S. Bandar
- Department of Chemistry Colorado State University Fort Collins Colorado 80523 USA
| |
Collapse
|
35
|
Xu K, Xu Z, Zhang M, Yan X, Mao G, Wang T, Wu Y, Liu L. The aerobic oxidative hydroxysulfurization of gem-difluoroalkenes to produce α,α-difluoro-β-hydroxysulfides. Org Chem Front 2021. [DOI: 10.1039/d1qo00676b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The efficient aerobic oxidative hydroxysulfurization of gem-difluoroalkenes with aryl or even alkyl thiols to produce α,α-difluoro-β-hydroxysulfides has been developed.
Collapse
Affiliation(s)
- Kai Xu
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China
| | - Zhenli Xu
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China
| | - Mengzhen Zhang
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China
| | - Xiaoxiao Yan
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China
| | - Guoliang Mao
- College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing 163318, P. R. China
| | - Tao Wang
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China
| | - Yangjie Wu
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Lantao Liu
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
36
|
Wu X, Ma G, Peng X, Ning Z, Lin Z, Chen X, Tang Y, Feng P. Photoredox initiated azole-nucleophilic addition: oxo-azolation of gem-difluoroalkenes. Org Chem Front 2021. [DOI: 10.1039/d1qo00701g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A protocol for photoredox initiated oxo-azolation of gem-difluoroalkenes has been demonstrated. The strategy offers a facile access to a series of synthetically useful azolated difluoroacetonarenes and tolerates a wide range of functional groups.
Collapse
Affiliation(s)
- Xing Wu
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Guojian Ma
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Xichao Peng
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Zuozhou Ning
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Zirun Lin
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Xiaoguang Chen
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Yu Tang
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Pengju Feng
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
37
|
Liu X, Lin J, Zhuang C, Zhong J, Song D, Zhao J, Cao H. Switchable hydroxysulfonyloxylation and defluorination–decarboxylation sulfonylation of gem-difluoroalkenes with sodium sulfinate via aerobic oxidation. Org Chem Front 2021. [DOI: 10.1039/d1qo01005k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel and attractive aerobic oxidative hydroxysulfonyloxylation of gem-difluoroalkenes with sodium sulfinate via free radical addition has been developed.
Collapse
Affiliation(s)
- Xiang Liu
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Jiatong Lin
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Canzhan Zhuang
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Jinling Zhong
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Dan Song
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Jiaji Zhao
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Hua Cao
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China
| |
Collapse
|
38
|
Liu H, Wang Z, Li X, Diao Z, Liu H, Sun F, Li Y, Dong Y, Li X. (Arylsulfinyl)difluoromethylation of Alkyl Halides: Facile Access to Diverse Fluorinated Compounds. ChemistrySelect 2020. [DOI: 10.1002/slct.202004440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hefu Liu
- School of Chemistry and Chemical Engineering Shandong University of Technology 266 West Xincun Road Zibo 255000 China
| | - Zhongyi Wang
- School of Chemistry and Chemical Engineering Shandong University of Technology 266 West Xincun Road Zibo 255000 China
| | - Xiangye Li
- School of Chemistry and Chemical Engineering Shandong University of Technology 266 West Xincun Road Zibo 255000 China
| | - Zhengzhen Diao
- School of Chemistry and Chemical Engineering Shandong University of Technology 266 West Xincun Road Zibo 255000 China
| | - Hui Liu
- School of Chemistry and Chemical Engineering Shandong University of Technology 266 West Xincun Road Zibo 255000 China
| | - Fenggang Sun
- School of Chemistry and Chemical Engineering Shandong University of Technology 266 West Xincun Road Zibo 255000 China
| | - Yueyun Li
- School of Chemistry and Chemical Engineering Shandong University of Technology 266 West Xincun Road Zibo 255000 China
| | - Yunhui Dong
- School of Chemistry and Chemical Engineering Shandong University of Technology 266 West Xincun Road Zibo 255000 China
| | - Xinjin Li
- School of Chemistry and Chemical Engineering Shandong University of Technology 266 West Xincun Road Zibo 255000 China
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
- State Key Laboratory of Fluorinated Functional Membrane Materials Shandong Huaxia Shenzhou New Material Co. Ltd. Tangshan town, Huantai County, Zibo 256401 China
| |
Collapse
|
39
|
Jiang X, Wang G, Zheng Z, Yu X, Hong Y, Xia H, Yu C. Autocatalytic Synthesis of Thioesters via Thiocarbonylation of gem-Difluoroalkenes. Org Lett 2020; 22:9762-9766. [PMID: 33285069 DOI: 10.1021/acs.orglett.0c03860] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, we report a new method for the synthesis of acyethanethioates via thiocarbonylation of gem-difluoroalkenes with thiols. This reaction provides a new pathway to prepare thioesters under mild conditions without the use of any additives. Mechanistic studies revealed that in situ generated HF facilitated the C-F bond cleavage in an autocatalytic manner.
Collapse
Affiliation(s)
- Xinpeng Jiang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Guan Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Zicong Zheng
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Xiaohui Yu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Ye Hong
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Haoqi Xia
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Chuanming Yu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| |
Collapse
|
40
|
Yuan K, Feoktistova T, Cheong PHY, Altman RA. Arylation of gem-difluoroalkenes using a Pd/Cu Co-catalytic system that avoids β-fluoride elimination. Chem Sci 2020; 12:1363-1367. [PMID: 34163899 PMCID: PMC8179108 DOI: 10.1039/d0sc05192f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
PdII/CuI co-catalyze an arylation reaction of gem-difluoroalkenes using arylsulfonyl chlorides to deliver α,α-difluorobenzyl products. The reaction proceeds through a β,β-difluoroalkyl-Pd intermediate that typically undergoes unimolecular β-F elimination to deliver monofluorinated alkene products in a net C-F functionalization reaction. However to avoid β-F elimination, we offer the β,β-difluoroalkyl-Pd intermediate an alternate low-energy route involving β-H elimination to ultimately deliver difluorinated products in a net arylation/isomerization sequence. Overall, this reaction enables exploration of new reactivities of unstable fluorinated alkyl-metal species, while also providing new opportunities for transforming readily available fluorinated alkenes into more elaborate substructures.
Collapse
Affiliation(s)
- Kedong Yuan
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology Tianjin 300384 P. R. China
| | - Taisiia Feoktistova
- Department of Chemistry, Oregon State University 153 Gilbert Hall Corvallis OR USA
| | - Paul Ha-Yeon Cheong
- Department of Chemistry, Oregon State University 153 Gilbert Hall Corvallis OR USA
| | - Ryan A Altman
- Department of Medicinal Chemistry and Molecular Pharmacology, Department of Chemistry, Purdue University West Lafayette IN 47907 USA
| |
Collapse
|
41
|
Brigham CE, Malapit CA, Lalloo N, Sanford MS. Nickel-Catalyzed Decarbonylative Synthesis of Fluoroalkyl Thioethers. ACS Catal 2020; 10:8315-8320. [PMID: 34306801 DOI: 10.1021/acscatal.0c02950] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This report describes the development of a nickel-catalyzed decarbonylative reaction for the synthesis of fluoroalkyl thioethers (RFSR) from the corresponding thioesters. Readily available, inexpensive, and stable fluoroalkyl carboxylic acids (RFCO2H) serve as the fluoroalkyl (RF) source in this transformation. Stoichiometric organometallic studies reveal that RF-S bond-forming reductive elimination is a challenging step in the catalytic cycle. This led to the identification of diphenylphosphinoferrocene as the optimal ligand for this transformation. Ultimately, this method was applied to the construction of diverse fluoroalkyl thioethers (RFSR), with R = both aryl and alkyl.
Collapse
Affiliation(s)
- Conor E. Brigham
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Christian A. Malapit
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Naish Lalloo
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Melanie S. Sanford
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
42
|
Orsi DL, Douglas JT, Sorrentino JP, Altman RA. Cobalt-Catalyzed Selective Unsymmetrical Dioxidation of gem-Difluoroalkenes. J Org Chem 2020; 85:10451-10465. [PMID: 32697905 DOI: 10.1021/acs.joc.0c00415] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
gem-Difluoroalkenes represent valuable synthetic handles for organofluorine chemistry; however, most reactions of this substructure proceed through reactive intermediates prone to eliminate a fluorine atom and generate monofluorinated products. Taking advantage of the distinct reactivity of gem-difluoroalkenes, we present a cobalt-catalyzed regioselective unsymmetrical dioxygenation of gem-difluoroalkenes using phenols and molecular oxygen, which retains both fluorine atoms and provides β-phenoxy-β,β-difluorobenzyl alcohols. Mechanistic studies suggest that the reaction operates through a radical chain process initiated by Co(II)/O2/phenol and quenched by the Co-based catalyst. This mechanism enables the retention of both fluorine atoms, which contrasts most transition-metal-catalyzed reactions of gem-difluoroalkenes that typically involve defluorination.
Collapse
Affiliation(s)
- Douglas L Orsi
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Justin T Douglas
- Molecular Structures Group, Nuclear Magnetic Resonance Laboratory, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Jacob P Sorrentino
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Ryan A Altman
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States.,Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
43
|
Cai Y, Zeng H, Zhu C, Liu C, Liu G, Jiang H. Double allylic defluorinative alkylation of 1,1-bisnucleophiles with (trifluoromethyl)alkenes: construction of all-carbon quaternary centers. Org Chem Front 2020. [DOI: 10.1039/d0qo00121j] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Synthesis of symmetric gem-difluoroalkene substituted products bearing all-carbon quaternary centers via double allylic defluorinative alkylation of 1,1-bisnucleophiles with (trifluoromethyl)alkenes.
Collapse
Affiliation(s)
- Yingying Cai
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Hao Zeng
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Chuanle Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Chi Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Guangying Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| |
Collapse
|
44
|
Liu C, Zeng H, Zhu C, Jiang H. Recent advances in three-component difunctionalization of gem-difluoroalkenes. Chem Commun (Camb) 2020; 56:10442-10452. [DOI: 10.1039/d0cc04318d] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Three-component difunctionalization of gem-difluoroalkenes via the generation and transformation of a α-fluoroalkylated carbanion, a carbon–metal species, a radical, and a carbocation intermediate.
Collapse
Affiliation(s)
- Chi Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Hao Zeng
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Chuanle Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| |
Collapse
|
45
|
Zubkov MO, Kosobokov MD, Levin VV, Kokorekin VA, Korlyukov AA, Hu J, Dilman AD. A novel photoredox-active group for the generation of fluorinated radicals from difluorostyrenes. Chem Sci 2019; 11:737-741. [PMID: 34123046 PMCID: PMC8146146 DOI: 10.1039/c9sc04643g] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A 4-tetrafluoropyridinylthio group was suggested as a new photoredox-active moiety. The group can be directly installed on difluorostyrenes in a single step by the thiolene click reaction. It proceeds upon visible light catalysis with 9-phenylacridine providing various difluorinated sulfides as radical precursors. Single electron reduction of the C–S bond with the formation of fluoroalkyl radicals is enabled by the electron-poor azine ring. The intermediate difluorinated sulfides were involved in a series of photoredox reactions with silyl enol ethers, alkenes, nitrones and an alkenyl trifluoroborate. A new photoredox-active group was applied for the generation of fluorinated radicals from difluorostyrenes under blue light irradiation.![]()
Collapse
Affiliation(s)
- Mikhail O Zubkov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences 47 Leninsky prosp. 119991 Moscow Russia .,Higher Chemical College, D. Mendeleev University of Chemical Technology of Russia 9 Miusskaya sq. 125047 Moscow Russia
| | - Mikhail D Kosobokov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences 47 Leninsky prosp. 119991 Moscow Russia
| | - Vitalij V Levin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences 47 Leninsky prosp. 119991 Moscow Russia
| | - Vladimir A Kokorekin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences 47 Leninsky prosp. 119991 Moscow Russia .,I. M. Sechenov First Moscow State Medical University 8-2 Trubetskaya st. 119991 Moscow Russia
| | - Alexander A Korlyukov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences 28 Vavilova st. 119991 Moscow Russia.,Pirogov Russian National Research Medical University 1 Ostrovitianov st. 117997 Moscow Russia
| | - Jinbo Hu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Ling-Ling Road 200032 Shanghai China
| | - Alexander D Dilman
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences 47 Leninsky prosp. 119991 Moscow Russia
| |
Collapse
|
46
|
Orsi DL, Yadav MR, Altman RA. Organocatalytic Strategy for Hydrophenolation of Gem-Difluoroalkenes. Tetrahedron 2019; 75:4325-4336. [PMID: 32103843 DOI: 10.1016/j.tet.2019.04.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Gem-difluoroalkenes are an easily accessed fluorinated functional group, and a useful intermediate for elaborating into more complex fluorinated compounds. Currently, most functionalization reactions of gem-difluoroalkenes, with or without a transition metal-based catalyst system, involve the addition or removal of a fluorine atom to generate trifluorinated or monofluorinated products, respectively. In contrast, we present a complementary "fluorine-retentive" reaction that exploits an organocatalytic strategy to add phenols across gem-difluoroalkenes to deliver β,β-difluorophenethyl arylethers. The products are produced in good to moderate yields and selectivities, thus providing a range of compounds that are underrepresented in the synthetic and medicinal chemistry literature.
Collapse
Affiliation(s)
- Douglas L Orsi
- The University of Kansas, Department of Medicinal Chemistry, Lawrence, KS 66045
| | - M Ramu Yadav
- The University of Kansas, Department of Medicinal Chemistry, Lawrence, KS 66045
| | - Ryan A Altman
- The University of Kansas, Department of Medicinal Chemistry, Lawrence, KS 66045
| |
Collapse
|
47
|
Zhang QQ, Chen SY, Lin E, Wang H, Li Q. Regio- and Stereoselective Alkenylation of Allenoates with gem-Difluoroalkenes: Facile Access to Fluorinated 1,4-Enynes Bearing an All-Carbon Quaternary Center. Org Lett 2019; 21:3123-3126. [DOI: 10.1021/acs.orglett.9b00775] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Qi-Qi Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Shi-Yong Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - E Lin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Honggen Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Qingjiang Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| |
Collapse
|
48
|
Zhen L, Fan H, Wang X, Jiang L. Synthesis of Thiocarbamoyl Fluorides and Isothiocyanates Using CF 3SiMe 3 and Elemental Sulfur or AgSCF 3 and KBr with Amines. Org Lett 2019; 21:2106-2110. [PMID: 30855147 DOI: 10.1021/acs.orglett.9b00383] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Reactions of thiocarbonyl fluoride derived from cheap, readily available, and widely used CF3SiMe3, elemental sulfur, and KF with secondary amines and primary amines at room temperature in THF provided a wide variety of thiocarbamoyl fluorides and isothiocyanates in moderate to excellent yields, respectively. The two reactions show broad substrate scope and good functional group tolerance. Moreover, AgSCF3 reacts with secondary/primary amines under KBr at room temperature, affording quantitative thiocarbamoyl fluorides/isothiocyanates, which feature late-stage application.
Collapse
Affiliation(s)
- Long Zhen
- School of Chemistry and Molecular Engineering , East China Normal University , 500 Dongchuan Road , Shanghai 200241 , China
| | - Hui Fan
- School of Chemistry and Molecular Engineering , East China Normal University , 500 Dongchuan Road , Shanghai 200241 , China
| | - Xiaoji Wang
- School of life Science , Jiangxi Science and Technology Normal University , Nanchang , 330013 , China
| | - Liqin Jiang
- School of Chemistry and Molecular Engineering , East China Normal University , 500 Dongchuan Road , Shanghai 200241 , China
| |
Collapse
|
49
|
Peng Y, Zhang X, Qi X, He Q, Zhang B, Hao J, Yang C. Metal-Free Access to (E/Z
)-α-Fluorovinyl Phosphorus Compounds from gem
-Difluorostyrenes. European J Org Chem 2019. [DOI: 10.1002/ejoc.201801602] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yingyuan Peng
- Department of Chemistry; Innovative Drug Research Center; Shanghai University; Shangda Road 99 200436 Shanghai China
| | - Xiaofei Zhang
- State Key Laboratory of Drug Research; Shanghai Institute of Materia Medica; Chinese Academy of Sciences; 555 Zu Chong Zhi Road 201203 Shanghai China
| | - Xueyu Qi
- State Key Laboratory of Drug Research; Shanghai Institute of Materia Medica; Chinese Academy of Sciences; 555 Zu Chong Zhi Road 201203 Shanghai China
| | - Qian He
- State Key Laboratory of Drug Research; Shanghai Institute of Materia Medica; Chinese Academy of Sciences; 555 Zu Chong Zhi Road 201203 Shanghai China
| | - Bin Zhang
- Department of Chemistry; Innovative Drug Research Center; Shanghai University; Shangda Road 99 200436 Shanghai China
| | - Jian Hao
- Department of Chemistry; Innovative Drug Research Center; Shanghai University; Shangda Road 99 200436 Shanghai China
| | - Chunhao Yang
- State Key Laboratory of Drug Research; Shanghai Institute of Materia Medica; Chinese Academy of Sciences; 555 Zu Chong Zhi Road 201203 Shanghai China
| |
Collapse
|
50
|
Hu J, Yang Y, Lou Z, Ni C, Hu J. Fluoro-Hydroxylation of gem
-Difluoroalkenes: Synthesis of 18
O-labeled α-CF3
Alcohols. CHINESE J CHEM 2018. [DOI: 10.1002/cjoc.201800426] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Jingyu Hu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences; 345 Lingling Lu, Shanghai 200032 China
| | - Yide Yang
- School of Physical Science and Technology, ShanghaiTech University; 100 Haike Road, Shanghai 201210 China
| | - Zhengzhao Lou
- School of Physical Science and Technology, ShanghaiTech University; 100 Haike Road, Shanghai 201210 China
| | - Chuanfa Ni
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences; 345 Lingling Lu, Shanghai 200032 China
| | - Jinbo Hu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences; 345 Lingling Lu, Shanghai 200032 China
- School of Physical Science and Technology, ShanghaiTech University; 100 Haike Road, Shanghai 201210 China
| |
Collapse
|