1
|
Shen LW, Lei SL, Wang HY, Wang X, Lu LM, Wang GW, Jia YQ, Xiang M. Metal-free amination of alkenes based on maleimides. Org Biomol Chem 2025; 23:3865-3869. [PMID: 40114611 DOI: 10.1039/d5ob00201j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
A metal-free amination of alkenes based on maleimides has been developed. This method features mild reaction conditions and broad substrate scope, and aminomaleimides with EWGs have been synthesized in up to 99% yield. The gram-scale reaction and successful derivatization of the products further demonstrate the applicability of this methodology.
Collapse
Affiliation(s)
- Li-Wen Shen
- Department of Chemistry and Chemical Engineering, Zunyi Normal University, Zunyi 563002, China.
| | - Shuang-Ling Lei
- Department of Chemistry and Chemical Engineering, Zunyi Normal University, Zunyi 563002, China.
| | - Hong-Yan Wang
- Department of Chemistry and Chemical Engineering, Zunyi Normal University, Zunyi 563002, China.
| | - Xin Wang
- Department of Chemistry and Chemical Engineering, Zunyi Normal University, Zunyi 563002, China.
| | - Lin-Mu Lu
- Department of Chemistry and Chemical Engineering, Zunyi Normal University, Zunyi 563002, China.
| | - Guang-Wei Wang
- Department of Chemistry and Chemical Engineering, Zunyi Normal University, Zunyi 563002, China.
| | - Yun-Qing Jia
- Department of Chemistry and Chemical Engineering, Zunyi Normal University, Zunyi 563002, China.
| | - Min Xiang
- Department of Chemistry and Chemical Engineering, Zunyi Normal University, Zunyi 563002, China.
| |
Collapse
|
2
|
Li B, Wu Y, Ying L, Zhu W, Yang J, Zhou L, Yi L, Jiang T, Jiang H, Song X, Xue W, Liang G, Huang S, Song Z. Synthesis and Antiosteoporotic Characterization of Diselenyl Maleimides: Discovery of a Potent Agent for the Treatment of Osteoporosis by Targeting RANKL. J Med Chem 2024; 67:17226-17242. [PMID: 39299698 DOI: 10.1021/acs.jmedchem.4c01105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
To discover new osteoclast-targeting antiosteoporosis agents, we identified forty-six diselenyl maleimides, which were efficiently prepared using a novel, simple, and metal-free method at room temperature in a short reaction time. Among them, 3k showed the most marked inhibition of osteoclast differentiation with an IC50 value of 0.36 ± 0.03 μM. Moreover, 3k significantly suppressed RANKL-induced osteoclast formation, bone resorption, and osteoclast-specific genes expression in vitro. Mechanistic studies revealed that 3k remarkably blocked the RANKL-induced mitogen-activated protein kinase (MAPK) and NF-κB signaling pathways. In ovariectomized mice, intragastric administration of 3k significantly alleviated bone loss, exhibiting an effect similar to that of alendronate. Surface plasmon resonance assay and microscale thermophoresis assay results suggested that RANKL might be a potential molecular target for 3k. Collectively, the findings presented above provided a novel candidate for further development of bone antiresorptive drugs that target RANKL.
Collapse
Affiliation(s)
- Bin Li
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, No. 373, Xueyuan West Road, Lucheng District, Wenzhou 325027, PR China
| | - Yao Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Linkun Ying
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Weiwei Zhu
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Jingyi Yang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Lingling Zhou
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Lele Yi
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Tianle Jiang
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, No. 373, Xueyuan West Road, Lucheng District, Wenzhou 325027, PR China
| | - Haofu Jiang
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, No. 373, Xueyuan West Road, Lucheng District, Wenzhou 325027, PR China
| | - Xiangrui Song
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Weiwei Xue
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Guang Liang
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
- School of Pharmacy, Hangzhou Medical College, Hangzhou 311399, Zhejiang, China
| | - Shengbin Huang
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, No. 373, Xueyuan West Road, Lucheng District, Wenzhou 325027, PR China
| | - Zengqiang Song
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| |
Collapse
|
3
|
Acharya SS, Patra S, Maharana R, Dash M, Barad LM, Parida BB. Recent advances in spirocyclization of maleimides via transition-metal catalyzed C-H activation. Org Biomol Chem 2024; 22:2916-2947. [PMID: 38497106 DOI: 10.1039/d3ob01904g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
In recent years, the maleimide scaffold has received a great deal of attention in C-H activation. Several types of products can be constructed using maleimides as a coupling partner. Alkylation, alkenylation, annulation, dehydrogenative annulation and spirocyclization are various reactions shown by maleimides in C-H activation. Thus, the maleimide scaffold has been extensively studied in the last few years in C-H activation owing to its unique reactivity. Among the diverse class of reactions of maleimides, spirocyclization is a less explored reaction. The spirocycles, in particular the spirosuccinimides are interesting candidates in drug discovery and materials chemistry. Therefore the method of spirocyclization of maleimides via C-H activation becomes an important strategy for the synthesis of a diverse array of spirosuccinimides. This review summarizes the reports available in this field from 2015-2023 and also highlights the scopes and prospects of this method.
Collapse
Affiliation(s)
| | - Sagarika Patra
- Department of Chemistry, Berhampur University, Bhanja Bihar, Odisha-760007, India.
| | - Rojalini Maharana
- Department of Chemistry, Berhampur University, Bhanja Bihar, Odisha-760007, India.
| | - Manaswini Dash
- Department of Chemistry, Berhampur University, Bhanja Bihar, Odisha-760007, India.
| | - Liza Mama Barad
- Department of Chemistry, Berhampur University, Bhanja Bihar, Odisha-760007, India.
| | | |
Collapse
|
4
|
Lai D, Bhattacharjee S, Mandal S, Ghosh S, Sahoo P, Sinha S, Hajra A. Iodine(III)-promoted oxidative carbotrifluoromethylation of maleimides with imidazopyridines and Langlois' reagent. Chem Commun (Camb) 2024; 60:2232-2235. [PMID: 38315091 DOI: 10.1039/d3cc05889a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
A metal-free protocol for oxidative carbotrifluoromethylation of maleimides with imidazopyridines and Langlois' reagent has been developed using (diacetoxyiodo)benzene (PIDA) as an oxidant. This three-component strategy enables one-step construction of 3,4-disubstituted maleimides in good yields with high functional group tolerance. Both experimental and theoretical studies support the proposed radical reaction mechanism.
Collapse
Affiliation(s)
- Dipti Lai
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India.
- ISERC, Visva-Bharati (A Central University), Santiniketan 731235, India
| | - Suvam Bhattacharjee
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India.
| | - Saurodeep Mandal
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India.
| | - Sumit Ghosh
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India.
- ISERC, Visva-Bharati (A Central University), Santiniketan 731235, India
| | - Prithidipa Sahoo
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India.
| | - Subrata Sinha
- ISERC, Visva-Bharati (A Central University), Santiniketan 731235, India
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India.
| |
Collapse
|
5
|
Taheri E, Jafarpour F. Developing a straightforward route toward the synthesis of arylaminomaleimides by palladium-catalyzed arylation of one-pot synthesized aminomaleimides. Org Biomol Chem 2023; 22:169-174. [PMID: 38051284 DOI: 10.1039/d3ob01765f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
3-Aryl-4-aminomaleimides have well-demonstrated applications, such as being used as fluorophores and inhibitors. However, their previous synthesis methods have involved tedious multi-step procedures or methods that need pre-functionalized maleimides and toxic or unstable reagents. Here, a feasible method is developed to synthesize these useful compounds. This includes the one-pot preparation of 3-aminomaleimides, followed by their direct arylation through a palladium-catalyzed Heck reaction with various aryl iodides regioselectively at the β-position of their amine substituents. The results show that this method efficiently exhibits a broad scope.
Collapse
Affiliation(s)
- Elmira Taheri
- School of Chemistry, College of Science, University of Tehran, 14155-6455 Tehran, Iran.
| | - Farnaz Jafarpour
- School of Chemistry, College of Science, University of Tehran, 14155-6455 Tehran, Iran.
| |
Collapse
|
6
|
Wang WK, Bao FY, Wang ST, Zhao SY. Access to 3-Aminomethylated Maleimides via a Phosphine-Catalyzed Aza-Morita-Baylis-Hillman Type Coupling. J Org Chem 2023. [PMID: 37114576 DOI: 10.1021/acs.joc.3c00284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
A designed method for the preparation of 3-aminomethylated maleimides via Morita-Baylis-Hillman (MBH) reaction was developed. This phosphine-catalyzed coupling adopted maleimides and 1,3,5-triazinanes as the substrate, giving a series of 3-aminomethylated maleimide derivatives with a double bond retained on the maleimide ring in 41-90% yield. Acylation, isomerization, and Michael addition of the obtained products demonstrated the synthetic application of the present protocol. The results of control experiments indicated that phosphorus ylide formation and elimination take place during the reaction pathway.
Collapse
Affiliation(s)
- Wen-Kang Wang
- College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, PR China
| | - Fei-Yun Bao
- College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, PR China
| | - Si-Tian Wang
- College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, PR China
| | - Sheng-Yin Zhao
- College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, PR China
| |
Collapse
|
7
|
Mondal S, Bera R, Chowdhury D, Dana S, Baidya M. Redox-Neutral Ruthenium(II)-Catalyzed Enol-Directed Arene C-H Alkylation with Maleimides. Org Lett 2023; 25:70-75. [PMID: 36579895 DOI: 10.1021/acs.orglett.2c03858] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
An enol-assisted regioselective arene C-H alkylation with maleimides is developed under redox-neutral ruthenium(II) catalysis, offering a wide variety of valuable 3-aryl succinimides including amino acid embedded frameworks in good to excellent yields. The products were also aromatized to produce synthetically useful resorcinol-based biaryls. Mechanistic studies support an organometallic pathway with a reversible C-H metalation step for this reaction.
Collapse
Affiliation(s)
- Sudeshna Mondal
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Ratnadeep Bera
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Deepan Chowdhury
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Suman Dana
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Mahiuddin Baidya
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
8
|
Chen Y, Lv M, Zhang Y, Wu Y, Ying L, Tang J, Gong X, Zhou J, Song Z. C-H Diselenation and Monoselenation of Electron-Deficient Alkenes via Radical Coupling at Room Temperature. J Org Chem 2022; 87:16175-16187. [PMID: 36473161 DOI: 10.1021/acs.joc.2c01567] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A new, simple, and metal-free route for the diselenation of maleimides has been first developed employing (bis(trifluoroacetoxy)iodo)benzene (PIFA) at room temperature. The present method is compatible with different functional groups, and various diselenyl maleimides were obtained in moderate to excellent yields. Moreover, this protocol further highlights the unique practical application for the functionalization of biologically relevant molecules and amino acid derivatives. Preliminary mechanism studies suggest that radicals may be involved in this novel transformation. Additionally, this protocol is also applicable for the monoselenation of maleimides by switching the reaction conditions and selenation of other electron-deficient alkenes.
Collapse
Affiliation(s)
- Yao Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Mengxia Lv
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yuxin Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yao Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Linkun Ying
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jielin Tang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiangnan Gong
- Analytical and Testing Center, Chongqing University, Chongqing 401331, China
| | - Jianmin Zhou
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zengqiang Song
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
9
|
Organocatalytic Enantioselective Michael Reaction of Aminomaleimides with Nitroolefins Catalyzed by Takemoto's Catalyst. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227787. [PMID: 36431888 PMCID: PMC9696348 DOI: 10.3390/molecules27227787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022]
Abstract
Known as electrophiles, maleimides are often used as acceptors in Michael additions to produce succinimides. However, reactions with maleimides as nucleophiles for enantioselective functionalization are only rarely performed. In this paper, a series of bifunctional Takemoto's catalysts were used to organocatalyze the enantioselective Michael reaction of aminomaleimides with nitroolefins. The resulting products were obtained in good yields (76-86%) with up to 94% enantiomer excess (ee). The catalyst type and the substrate scope were broadened using this methodology.
Collapse
|
10
|
Duan B, Wu Y, Gao Y, Ying L, Tang J, Hu S, Zhao Q, Song Z. Regioselective peri-C-H selenylation of aromatic compounds with weakly coordinating ketone groups. Chem Commun (Camb) 2022; 58:11555-11558. [PMID: 36165048 DOI: 10.1039/d2cc04030a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel and versatile method for peri-C-H selenylation of aromatic compounds bearing ketone groups, including chromones, xanthones, acridinones, quinolinones and naphthoquinones with diselenides under Ru(II) catalysis is presented. Various chromones and diselenides are applicable for this transformation, affording 5-selenyl chromones in a highly regioselective manner in good to excellent yields. This transformation is easy to scale up and the desired products can be further modified. Most importantly, this transformation allows the late-stage selenylation of bioactive compounds. Mechanistic studies show that radicals may be involved in this novel transformation.
Collapse
Affiliation(s)
- Bingbing Duan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Yao Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Yi Gao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Linkun Ying
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Jielin Tang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Shiyu Hu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Qiuhua Zhao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China.
| | - Zengqiang Song
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
11
|
Beletskaya IP, Ananikov VP. Transition-Metal-Catalyzed C–S, C–Se, and C–Te Bond Formations via Cross-Coupling and Atom-Economic Addition Reactions. Achievements and Challenges. Chem Rev 2022; 122:16110-16293. [DOI: 10.1021/acs.chemrev.1c00836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Irina P. Beletskaya
- Chemistry Department, Lomonosov Moscow State University, Vorob’evy gory, Moscow 119899, Russia
| | - Valentine P. Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia
| |
Collapse
|
12
|
He Y, Hou S, Hu J. Copper acetate - Iodine co-mediated thiolation of 2-arylpyridines with thiophenol. Tetrahedron 2022. [DOI: 10.1016/j.tet.2021.132552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Ma C, Xie J, Zeng X, Wei Z, Wei Y. Radical-mediated carboselenation of terminal alkynes under mild conditions. Org Chem Front 2022. [DOI: 10.1039/d2qo01024k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal-free radical carboselenation of terminal alkynes is developed for the synthesis of (E)-γ-seleno-substituted allyl nitriles with excellent regioselectivity and stereoselectivity.
Collapse
Affiliation(s)
- Chixiao Ma
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, P.R. China
| | - Jingli Xie
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, P.R. China
| | - Xianghua Zeng
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, P.R. China
- Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| | - Zheyu Wei
- Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| | - Yongge Wei
- Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| |
Collapse
|
14
|
Morajkar RV, Fatrekar AP, Mohanty A, Vernekar AA. A review on the role of transition metals in selenylation reactions. Curr Org Synth 2021; 19:366-392. [PMID: 34544346 DOI: 10.2174/1570179418666210920150142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 11/22/2022]
Abstract
Organoselenium chemistry has emerged as a distinctive area of research with tremendous utility in the synthesis of biologically and pharmaceutically active molecules. Significant synthetic approaches have been made for the construction of C-Se bonds which find use in other organic transformations. This review focuses on the versatility of transition metal-mediated selenylation reactions, providing insights into various synthetic pathways and mechanistic details. Further, this review aims to offer a broad perspective for designing efficient and novel catalysts to incorporate organoselenium moiety into the inert C-H bonds.
Collapse
Affiliation(s)
- Rasmi V Morajkar
- Inorganic and Physical Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Adyar, Chennai-600020. India
| | - Adarsh P Fatrekar
- Inorganic and Physical Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Adyar, Chennai-600020. India
| | - Abhijeet Mohanty
- Inorganic and Physical Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Adyar, Chennai-600020. India
| | - Amit A Vernekar
- Inorganic and Physical Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Adyar, Chennai-600020. India
| |
Collapse
|
15
|
Kumar A, Prabhu KR. Rhodium(iii)-catalyzed [5+1] annulation of 2-alkenylphenols with maleimides: access to highly functionalized spirocyclic skeletons. Chem Commun (Camb) 2021; 57:8194-8197. [PMID: 34313254 DOI: 10.1039/d1cc01758f] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A new edition of [5+1] annulation reaction of maleimides with 2-alkenylphenols has been discovered under a Rh(iii)-catalytic system. The process leads to an efficient synthesis of valued spirocyclic scaffolds bearing an oxygen-containing spiro carbon in a single step and shows a broad substrate scope with good functional group tolerance. The synthetic utility has been exemplified by synthesizing highly functionalized 2,2-disubstituted-2H-chromene skeletons and a gram-scale synthesis with a low catalyst loading.
Collapse
Affiliation(s)
- Anil Kumar
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India.
| | | |
Collapse
|
16
|
Wu G, Yao Y, Zhang W. An MeSeSO 3Na reagent for oxidative aminoselenomethylation of maleimides. Org Chem Front 2021. [DOI: 10.1039/d1qo01252e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we describe the design and synthesis of an MeSeSO3Na reagent, which proved to be a versatile selenomethylation reagent for copper-catalyzed aminoselenomethylation of maleimides.
Collapse
Affiliation(s)
- Ge Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, People's Republic of China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Yujing Yao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, People's Republic of China
| | - Wenliang Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, People's Republic of China
| |
Collapse
|
17
|
Chowdhury D, Dana S, Maity S, Baidya M. Ruthenium-Catalyzed Site-Selective C–H Bond Activation/Annulation Cascade toward Dibenzoazepinone Skeletons. Org Lett 2020; 22:6760-6764. [DOI: 10.1021/acs.orglett.0c02228] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Deepan Chowdhury
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Suman Dana
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Subhankar Maity
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Mahiuddin Baidya
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
18
|
Wu P, Cheng TJ, Lin HX, Xu H, Dai HX. Copper-mediated C H thiolation of (hetero)arenes using weakly coordinating directing group. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
19
|
Upadhyay A, Batabyal M, Kanika, Kumar S. Organoseleniums: Generated and Exploited in Oxidative Reactions. CHEM LETT 2020. [DOI: 10.1246/cl.200015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Aditya Upadhyay
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-pass Road, Bhauri, Bhopal 462066, Madhya Pradesh India
| | - Monojit Batabyal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-pass Road, Bhauri, Bhopal 462066, Madhya Pradesh India
| | - Kanika
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-pass Road, Bhauri, Bhopal 462066, Madhya Pradesh India
| | - Sangit Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-pass Road, Bhauri, Bhopal 462066, Madhya Pradesh India
| |
Collapse
|
20
|
Grandhi GS, Dana S, Mandal A, Baidya M. Copper-Catalyzed 8-Aminoquinoline-Directed Oxidative C–H/N–H Coupling for N-Arylation of Sulfoximines. Org Lett 2020; 22:2606-2610. [DOI: 10.1021/acs.orglett.0c00545] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Gowri Sankar Grandhi
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| | - Suman Dana
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| | - Anup Mandal
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| | - Mahiuddin Baidya
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| |
Collapse
|
21
|
Dana S, Dey P, Patil SA, Baidya M. Enhancing Ru(II)-Catalysis with Visible-Light-Mediated Dye-Sensitized TiO 2 Photocatalysis for Oxidative C-H Olefination of Arene Carboxylic Acids at Room Temperature. Chem Asian J 2020; 15:564-567. [PMID: 32003942 DOI: 10.1002/asia.201901718] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/08/2020] [Indexed: 11/12/2022]
Abstract
Erythrosine B sensitized TiO2 photocatalysis has been combined with Ru(II)-catalysis to accomplish an oxidative olefination/annulation of benzoic acids with activated olefins under mild conditions that tolerates useful functionalities, such as halides, free hydroxy, acetamido, etc. The morphology of the photocatalyst is unaffected during the reaction and it can be reused. Mechanistic studies favor the involvement of a photo-induced single electron transfer process.
Collapse
Affiliation(s)
- Suman Dana
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600 036, Tamil Nadu, India
| | - Purusattam Dey
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600 036, Tamil Nadu, India
| | - Siddappa A Patil
- Centre for Nano and Material Sciences, Jain University, Ramanagara District, 562112, Bangalore Rural Karnataka, India
| | - Mahiuddin Baidya
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600 036, Tamil Nadu, India
| |
Collapse
|
22
|
Shi S, Ma Y, Zhou J, Li J, Chen L, Wu G. Copper-Catalyzed Oxidative Thioamination of Maleimides with Amines and Bunte Salts. Org Lett 2020; 22:1863-1867. [DOI: 10.1021/acs.orglett.0c00207] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shanshan Shi
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, People’s Republic of China
| | - Yunfei Ma
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, People’s Republic of China
| | - Jun Zhou
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, People’s Republic of China
| | - Jia Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, People’s Republic of China
| | - Luya Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, People’s Republic of China
| | - Ge Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, People’s Republic of China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| |
Collapse
|
23
|
Vivek Kumar S, Banerjee S, Punniyamurthy T. Transition metal-catalyzed coupling of heterocyclic alkenes via C–H functionalization: recent trends and applications. Org Chem Front 2020. [DOI: 10.1039/d0qo00279h] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Heterocyclic alkenes and their derivatives are an important class of reactive feedstock and valuable synthons. This review highlights the transition-metal-catalyzed coupling of heterocyclic alkenes via a C–H functionalization strategy.
Collapse
|
24
|
Sahoo H, Ramakrishna I, Mandal A, Baidya M. Atom Transfer Oxidative Radical Cascade of Aryl Alkynoates towards 1,1-Dichalcogenide Olefins. Chem Asian J 2019; 14:4549-4552. [PMID: 31264795 DOI: 10.1002/asia.201900820] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/01/2019] [Indexed: 11/11/2022]
Abstract
An oxidative trifunctionalization of aryl alkynoates has been devised via the chalcogenide radical triggered intramolecular 1,4-aryl migration/decarboxylation cascade to prepare 1,1-dichalcogenide tetrasubstituted alkenes in high yields (up to 98 %). This operationally simple reaction proceeds under metal-free conditions, can be executed on gram scale, and highlights formal 1,1-difunctionalization of alkynes. Synthetic potential of this protocol was demonstrated through a twofold cascade rearrangement to access highly conjugated tetra-selenylated alkenes along with a cross-dehydrogenative annulation to prepare fluorene derivative.
Collapse
Affiliation(s)
- Harekrishna Sahoo
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600 036, Tamil Nadu, India
| | - Isai Ramakrishna
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600 036, Tamil Nadu, India
| | - Anup Mandal
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600 036, Tamil Nadu, India
| | - Mahiuddin Baidya
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600 036, Tamil Nadu, India
| |
Collapse
|
25
|
Rampon DS, Luz EQ, Lima DB, Balaguez RA, Schneider PH, Alves D. Transition metal catalysed direct selanylation of arenes and heteroarenes. Dalton Trans 2019; 48:9851-9905. [PMID: 31120472 DOI: 10.1039/c9dt00473d] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transition metal catalysed C-H functionalization has reached an exciting level of sophistication, and, today, it represents a paradigm shift from the standard logic of synthetic chemistry. The direct conversion of C-H bonds into C-heteroatoms remains, however, a critical challenge. Nowadays, there is a great demand in general synthetic chemistry in, for example, the materials science for the development of straightforward C-Se bond formation, in order to fulfil the practical requirements. In this sense, this review summarizes recent outstanding advances in the C-Se bond formation through transition metal-catalysed direct selanylation, providing new insights into their mechanistic aspects and disclosing effective synthetic routes with high atom economy. In addition, this review intends to show the growing opportunities to construct complex chemical scaffolds containing selenium atoms.
Collapse
Affiliation(s)
- Daniel S Rampon
- Laboratório de Polímeros e Catálise - LAPOCA - Universidade Federal do Paraná, P.O. Box 19032, 81531-980, Curitiba-PR, Brazil.
| | - Eduardo Q Luz
- Laboratório de Polímeros e Catálise - LAPOCA - Universidade Federal do Paraná, P.O. Box 19032, 81531-980, Curitiba-PR, Brazil.
| | - David B Lima
- Laboratório de Polímeros e Catálise - LAPOCA - Universidade Federal do Paraná, P.O. Box 19032, 81531-980, Curitiba-PR, Brazil.
| | - Renata A Balaguez
- Laboratório de Síntese Orgânica Limpa, LASOL, CCQFA, Universidade Federal de Pelotas, UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil.
| | - Paulo Henrique Schneider
- Instituto de Química, Universidade Federal do Rio Grande do Sul (UFRGS), PO Box 15003, 91501-970 Porto Alegre, RS, Brazil
| | - Diego Alves
- Laboratório de Síntese Orgânica Limpa, LASOL, CCQFA, Universidade Federal de Pelotas, UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil.
| |
Collapse
|
26
|
Gu L, Fang X, Weng Z, Song Y, Ma W. Ligand-Free Palladium(II)-Catalyzed ortho
-C-H Chalcogenations of N
-Arylsulfonamide via Weak Coordination. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900050] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Linghui Gu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province; Sichuan Industrial Institute of Antibiotics; Chengdu University; 610052 Chengdu People's Republic of China
| | - Xinyue Fang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province; Sichuan Industrial Institute of Antibiotics; Chengdu University; 610052 Chengdu People's Republic of China
| | - Zhengyun Weng
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province; Sichuan Industrial Institute of Antibiotics; Chengdu University; 610052 Chengdu People's Republic of China
| | - Yupin Song
- College of Engineering; Shijiazhuang University; P. R. China
| | - Wenbo Ma
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province; Sichuan Industrial Institute of Antibiotics; Chengdu University; 610052 Chengdu People's Republic of China
| |
Collapse
|
27
|
Gao X, Tang L, Huang L, Huang ZS, Ma Y, Wu G. Oxidative Aminoarylselenation of Maleimides via Copper-Catalyzed Four-Component Cross-Coupling. Org Lett 2019; 21:745-748. [DOI: 10.1021/acs.orglett.8b03980] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xue Gao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, People’s Republic of China
| | - Liyang Tang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, People’s Republic of China
| | - Lehao Huang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, People’s Republic of China
| | - Zu-Sheng Huang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, People’s Republic of China
| | - Yunfei Ma
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, People’s Republic of China
| | - Ge Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, People’s Republic of China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| |
Collapse
|
28
|
Sahoo H, Grandhi GS, Ramakrishna I, Baidya M. Metal-free switchable ortho/ipso-cyclization of N-aryl alkynamides: divergent synthesis of 3-selenyl quinolin-2-ones and azaspiro[4,5]trienones. Org Biomol Chem 2019; 17:10163-10166. [DOI: 10.1039/c9ob02177a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A selenium radical triggered switchable ortho/ipso-cyclization cascade of N-aryl alkynamides has been devised under metal-free conditions to access 3-selenyl quinolin-2-ones and 3-selenospiro[4,5]trienones in high yields (up to 98%).
Collapse
Affiliation(s)
- Harekrishna Sahoo
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai – 600036
- India
| | - Gowri Sankar Grandhi
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai – 600036
- India
| | - Isai Ramakrishna
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai – 600036
- India
| | - Mahiuddin Baidya
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai – 600036
- India
| |
Collapse
|
29
|
Jakubczyk M, Mkrtchyan S, Madura ID, Marek PH, Iaroshenko VO. Copper-catalyzed direct C–H arylselenation of 4-nitro-pyrazoles and other heterocycles with selenium powder and aryl iodides. Access to unsymmetrical heteroaryl selenides. RSC Adv 2019; 9:25368-25376. [PMID: 35530113 PMCID: PMC9070035 DOI: 10.1039/c9ra05004c] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 01/09/2020] [Accepted: 08/01/2019] [Indexed: 12/12/2022] Open
Abstract
A one-pot, Cu-catalyzed direct C–H arylselenation protocol using elemental Se and aryl iodides was developed for nitro-substituted, N-alkylated pyrazoles, imidazoles and other heterocycles including 4H-chromen-4-one. This general and concise method allows one to obtain a large number of unsymmetrical heteroaryl selenides bearing a variety of substituents. The presence of the nitro group was confirmed to be essential for the C–H activation and can also be used for further functionalisation and manipulation. Several examples of heteroannulated benzoselenazines were also synthesized using the developed synthetic protocol. In this work, we elaborated a general and straightforward method which permits the rapid assembly of unsymmetrical heteroaryl-aryl selenides containing 4-nitropyrazole, 4-nitroimidazole and a few other heterocyclic scaffolds.![]()
Collapse
Affiliation(s)
- Michał Jakubczyk
- Laboratory of Homogeneous Catalysis and Molecular Design at the Centre of Molecular and Macromolecular Studies
- Polish Academy of Sciences
- PL-90-363 Łodź
- Poland
| | - Satenik Mkrtchyan
- Laboratory of Homogeneous Catalysis and Molecular Design at the Centre of Molecular and Macromolecular Studies
- Polish Academy of Sciences
- PL-90-363 Łodź
- Poland
| | - Izabela D. Madura
- Department of Inorganic Chemistry
- Faculty of Chemistry
- Warsaw University of Technology
- Warsaw
- Poland
| | - Paulina H. Marek
- Department of Inorganic Chemistry
- Faculty of Chemistry
- Warsaw University of Technology
- Warsaw
- Poland
| | - Viktor O. Iaroshenko
- Laboratory of Homogeneous Catalysis and Molecular Design at the Centre of Molecular and Macromolecular Studies
- Polish Academy of Sciences
- PL-90-363 Łodź
- Poland
| |
Collapse
|
30
|
Ma W, Weng Z, Fang X, Gu L, Song Y, Ackermann L. Ruthenium-Catalyzed C-H Selenylations of Benzamides. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801532] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Wenbo Ma
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province; Sichuan Industrial Institute of Antibiotics; Chengdu University; 610052 People's Republic of China
| | - Zhengyun Weng
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province; Sichuan Industrial Institute of Antibiotics; Chengdu University; 610052 People's Republic of China
| | - Xinyue Fang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province; Sichuan Industrial Institute of Antibiotics; Chengdu University; 610052 People's Republic of China
| | - Linghui Gu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province; Sichuan Industrial Institute of Antibiotics; Chengdu University; 610052 People's Republic of China
| | - Yupin Song
- College of Engineering; Shijiazhuang University; P. R. China
| | - Lutz Ackermann
- Institut fuer Organische und Biomolekulare Chemie; Georg-August-Universität; Göttingen Germany
| |
Collapse
|
31
|
Ding C, Yu Y, Yu Q, Xie Z, Zhou Y, Zhou J, Liang G, Song Z. NIS/TBHP Induced Regioselective Selenation of (Hetero)Arenes
via
Direct C−H Functionalization. ChemCatChem 2018. [DOI: 10.1002/cctc.201801548] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chaochao Ding
- Chemical Biology Research Center, School of Pharmaceutical SciencesWenzhou Medical University Wenzhou Zhejiang 325035 China
| | - Yuanzu Yu
- Chemical Biology Research Center, School of Pharmaceutical SciencesWenzhou Medical University Wenzhou Zhejiang 325035 China
| | - Qiongli Yu
- Chemical Biology Research Center, School of Pharmaceutical SciencesWenzhou Medical University Wenzhou Zhejiang 325035 China
| | - Zixin Xie
- Chemical Biology Research Center, School of Pharmaceutical SciencesWenzhou Medical University Wenzhou Zhejiang 325035 China
| | - Yan Zhou
- Chemical Biology Research Center, School of Pharmaceutical SciencesWenzhou Medical University Wenzhou Zhejiang 325035 China
| | - Jianmin Zhou
- Chemical Biology Research Center, School of Pharmaceutical SciencesWenzhou Medical University Wenzhou Zhejiang 325035 China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical SciencesWenzhou Medical University Wenzhou Zhejiang 325035 China
| | - Zengqiang Song
- Chemical Biology Research Center, School of Pharmaceutical SciencesWenzhou Medical University Wenzhou Zhejiang 325035 China
| |
Collapse
|
32
|
|
33
|
Sahoo H, Singh S, Baidya M. Radical Cascade Reaction of Aryl Alkynoates at Room Temperature: Synthesis of Fully Substituted α,β-Unsaturated Acids with Chalcogen Functionality. Org Lett 2018; 20:3678-3681. [DOI: 10.1021/acs.orglett.8b01474] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Harekrishna Sahoo
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Saibal Singh
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Mahiuddin Baidya
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
34
|
Sattar M, Shareef M, Patidar K, Kumar S. Copper-Catalyzed 8-Aminoquinoline Assisted Aryl Chalcogenation of Ferroceneamide with Aryl Disulfides, Diselenides, and Ditellurides. J Org Chem 2018; 83:8241-8249. [DOI: 10.1021/acs.joc.8b00974] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Moh. Sattar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri Bhopal, Madhya Pradesh 462066, India
| | - Muhammed Shareef
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri Bhopal, Madhya Pradesh 462066, India
| | - Krishna Patidar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri Bhopal, Madhya Pradesh 462066, India
| | - Sangit Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri Bhopal, Madhya Pradesh 462066, India
| |
Collapse
|
35
|
Mandal A, Dana S, Chowdhury D, Baidya M. RuII
-Catalyzed Annulative Coupling of Benzoic Acids with Vinyl Sulfone via Weak Carboxylate-Assisted C−H Bond Activation. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800176] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Anup Mandal
- Department of Chemistry; Indian Institute of Technology Madras; Chennai 600 036 Tamil Nadu India
| | - Suman Dana
- Department of Chemistry; Indian Institute of Technology Madras; Chennai 600 036 Tamil Nadu India
| | - Deepan Chowdhury
- Department of Chemistry; Indian Institute of Technology Madras; Chennai 600 036 Tamil Nadu India
| | - Mahiuddin Baidya
- Department of Chemistry; Indian Institute of Technology Madras; Chennai 600 036 Tamil Nadu India
| |
Collapse
|
36
|
Liu Q, Lv X, Li N, Pan X, Zhu J, Zhu X. Copolymerization of Phenylselenide-Substituted Maleimide with Styrene and Its Oxidative Elimination Behavior. Polymers (Basel) 2018; 10:E321. [PMID: 30966356 PMCID: PMC6415178 DOI: 10.3390/polym10030321] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/09/2018] [Accepted: 03/10/2018] [Indexed: 02/02/2023] Open
Abstract
Selenium-containing monomer monophenyl maleimide selenide (MSM) was synthesized and copolymerized with styrene (St) using reversible addition-fragmentation chain transfer (RAFT) polymerization. Copolymers with controlled molecular weight and narrow molecular weight distribution were obtained. The structure of the copolymer was characterized by nuclear magnetic resonance, matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrum, Fourier transform infrared spectroscopy (FT-IR) and Ultraviolet⁻visible spectroscopy (UV-vis) spectroscopy. The copolymer can be oxidized by H₂O₂ to form carbon-carbon double bonds within the main chain due to the unique sensitivity of selenide groups in the presence of oxidants. Such structure changing resulted in an interesting concentration-related photoluminescence emission enhancement.
Collapse
Affiliation(s)
- Qian Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Xinghua Lv
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Na Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Xiangqiang Pan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Jian Zhu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Xiulin Zhu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| |
Collapse
|
37
|
Zhang G, Jia F, Gooßen LJ. Regioselective C−H Alkylation via Carboxylate‐Directed Hydroarylation in Water. Chemistry 2018; 24:4537-4541. [DOI: 10.1002/chem.201800757] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Guodong Zhang
- Evonic Chair of Organic ChemistryRuhr-Universität Bochum Universitätsstr. 150 44801 Bochum Germany
| | - Fan Jia
- Evonic Chair of Organic ChemistryRuhr-Universität Bochum Universitätsstr. 150 44801 Bochum Germany
| | - Lukas J. Gooßen
- Evonic Chair of Organic ChemistryRuhr-Universität Bochum Universitätsstr. 150 44801 Bochum Germany
| |
Collapse
|
38
|
Yang ZH, Tan HR, Zhu JN, Zheng J, Zhao SY. Regioselective Silver-Catalyzed Carbon-Phosphorus Difunctionalization of Maleimides: One-Step Construction of Phosphonylated Indolylmaleimides and Pyrrolylmaleimides. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201701431] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Zhen-Hua Yang
- Department of Chemistry; Donghua University; No. 2999 North Renmin Road Shanghai 201620 People's Republic of China
| | - Hong-Ru Tan
- Department of Chemistry; Donghua University; No. 2999 North Renmin Road Shanghai 201620 People's Republic of China
| | - Jia-Nan Zhu
- Department of Chemistry; Donghua University; No. 2999 North Renmin Road Shanghai 201620 People's Republic of China
| | - Jian Zheng
- Department of Chemistry; Donghua University; No. 2999 North Renmin Road Shanghai 201620 People's Republic of China
| | - Sheng-Yin Zhao
- Department of Chemistry; Donghua University; No. 2999 North Renmin Road Shanghai 201620 People's Republic of China
- State Key Laboratory of Bioorganic & Natural Products Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; Shanghai 200032 People's Republic of China
| |
Collapse
|
39
|
Dana S, Mandal A, Sahoo H, Mallik S, Grandhi GS, Baidya M. Ru(II)-Catalyzed Oxidative Heck-Type Olefination of Aromatic Carboxylic Acids with Styrenes through Carboxylate-Assisted C-H Bond Activation. Org Lett 2018; 20:716-719. [PMID: 29341627 DOI: 10.1021/acs.orglett.7b03852] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A straightforward synthesis of 2-styrylbenzoic acids from aryl carboxylic acids is disclosed through a carboxylate-assisted coupling under Ru(II) catalysis. This protocol is simple and exhibits broad scope with high tolerance of common organic functional groups, providing good to excellent yields of diverse olefinated products. The efficacy of this protocol has been showcased through sequential syntheses of isochromanone, isocoumarin, and formal synthesis of anacardic acid derivative in good yields.
Collapse
Affiliation(s)
- Suman Dana
- Department of Chemistry, Indian Institute of Technology Madras , Chennai 600036, Tamil Nadu, India
| | - Anup Mandal
- Department of Chemistry, Indian Institute of Technology Madras , Chennai 600036, Tamil Nadu, India
| | - Harekrishna Sahoo
- Department of Chemistry, Indian Institute of Technology Madras , Chennai 600036, Tamil Nadu, India
| | - Sumitava Mallik
- Department of Chemistry, Indian Institute of Technology Madras , Chennai 600036, Tamil Nadu, India
| | - Gowri Sankar Grandhi
- Department of Chemistry, Indian Institute of Technology Madras , Chennai 600036, Tamil Nadu, India
| | - Mahiuddin Baidya
- Department of Chemistry, Indian Institute of Technology Madras , Chennai 600036, Tamil Nadu, India
| |
Collapse
|
40
|
Yang ZH, Tan HR, An YL, Zhao YW, Lin HP, Zhao SY. Three-Component Coupling Reactions of Maleimides, Thiols, and Amines: One-Step Construction of 3,4-Heteroatom-functionalized Maleimides by Copper-Catalyzed C(sp
2
)−H Thioamination. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700955] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhen-Hua Yang
- Department of Chemistry; Donghua University; No. 2999 North Renmin Road Shanghai 201620 People's Republic of China
| | - Hong-Ru Tan
- Department of Chemistry; Donghua University; No. 2999 North Renmin Road Shanghai 201620 People's Republic of China
| | - Yu-Long An
- Department of Chemistry; Donghua University; No. 2999 North Renmin Road Shanghai 201620 People's Republic of China
| | - Yu-Wei Zhao
- Department of Chemistry; Donghua University; No. 2999 North Renmin Road Shanghai 201620 People's Republic of China
| | - Hao-Peng Lin
- Department of Chemistry; Donghua University; No. 2999 North Renmin Road Shanghai 201620 People's Republic of China
| | - Sheng-Yin Zhao
- Department of Chemistry; Donghua University; No. 2999 North Renmin Road Shanghai 201620 People's Republic of China
- State Key Laboratory of Bioorganic & Natural Products Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; Shanghai 200032 People's Republic of China
| |
Collapse
|
41
|
Singh BK, Bairy G, Jana R. A General Copper/Manganese Cocatalyzed C-H Selenation of Arenes, Heteroarenes, and Alkenes under Air. ChemistrySelect 2017. [DOI: 10.1002/slct.201701758] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Bijaya Kumar Singh
- Organic and Medicinal Chemistry Division; CSIR-Indian Institute of Chemical Biology; 4 Raja S. C. Mullick Road, Jadavpur Kolkata- 700032, West Bengal India
- Academy of Scientific and Innovative Research (AcSIR); Kolkata- 700032, West Bengal India
| | - Gurupada Bairy
- Organic and Medicinal Chemistry Division; CSIR-Indian Institute of Chemical Biology; 4 Raja S. C. Mullick Road, Jadavpur Kolkata- 700032, West Bengal India
- Academy of Scientific and Innovative Research (AcSIR); Kolkata- 700032, West Bengal India
| | - Ranjan Jana
- Organic and Medicinal Chemistry Division; CSIR-Indian Institute of Chemical Biology; 4 Raja S. C. Mullick Road, Jadavpur Kolkata- 700032, West Bengal India
- Academy of Scientific and Innovative Research (AcSIR); Kolkata- 700032, West Bengal India
| |
Collapse
|
42
|
Mandal A, Sahoo H, Dana S, Baidya M. Ruthenium(II)-Catalyzed Hydroarylation of Maleimides Using Carboxylic Acids as a Traceless Directing Group. Org Lett 2017; 19:4138-4141. [DOI: 10.1021/acs.orglett.7b01964] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Anup Mandal
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| | - Harekrishna Sahoo
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| | - Suman Dana
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| | - Mahiuddin Baidya
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| |
Collapse
|