1
|
Bergame CP, Dong C, Bandi S, Schlemper-Scheidt MD, Sutour S, von Reuß SH. Identification and synthesis of 4'- ortho-aminobenzoyl ascarosides as sex pheromones of gonochoristic Caenorhabditis nigoni. Org Biomol Chem 2025; 23:3654-3670. [PMID: 40126449 DOI: 10.1039/d5ob00271k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Using a combination of RP-C18 chromatography, MS and NMR techniques, a new class of homologous modular ascarosides carrying a 4'-ortho-aminobenzoyl moiety was identified from Caenorhabditis nigoni and Caenorhabditis tropicalis. These compounds could not be detected using targeted ascaroside screens based on precursor ion screening for m/z 73.0294 [C3H5O2]-, which highlighted a limitation of the current protocols. Their structure assignment was established by total synthesis of AB-asc-C5 (SMID: abas#9) as a representative example in about 1% yield over 14 steps. To achieve this aim, a new method for the synthesis of orthogonally protected ascarosides has been developed which provides methyl 2-benzoyl-ascaroside as a highly versatile building block for regioselective ascaroside synthesis. Furthermore, a new synthesis for short chain C5 ascarosides was developed that employs selective reduction and Grubbs cross metathesis. The identity of synthetic AB-asc-C5 and the natural product isolated from C. nigoni was established by an NMR mixing experiment. Retention of C. nigoni males by the exclusively female produced AB-asc-C5 suggests a function as a sex pheromone component. Along with the indole ascarosides (icas), the new class of 4'-ortho-aminobenzoyl ascarosides (abas) represents a mechanism to translate bacterial food dependent L-tryptophan availability into species-specific signaling molecules.
Collapse
Affiliation(s)
- Célia P Bergame
- Laboratory for Bioanalytical Chemistry, Institute of Chemistry, University of Neuchatel, Avenue de Bellevaux 51, CH-2000 Neuchatel, Switzerland.
| | - Chuanfu Dong
- Max Planck Institute for Chemical Ecology (MPICE), Department of Bioorganic Chemistry, Hans-Knoell Strasse 8, D-07745 Jena, Germany
| | - Siva Bandi
- Laboratory for Bioanalytical Chemistry, Institute of Chemistry, University of Neuchatel, Avenue de Bellevaux 51, CH-2000 Neuchatel, Switzerland.
| | - Marie-Désirée Schlemper-Scheidt
- Laboratory for Bioanalytical Chemistry, Institute of Chemistry, University of Neuchatel, Avenue de Bellevaux 51, CH-2000 Neuchatel, Switzerland.
| | - Sylvain Sutour
- Neuchatel Platform of Analytical Chemistry (NPAC), University of Neuchatel, Avenue de Bellevaux 51, CH-2000 Neuchatel, Switzerland
| | - Stephan H von Reuß
- Laboratory for Bioanalytical Chemistry, Institute of Chemistry, University of Neuchatel, Avenue de Bellevaux 51, CH-2000 Neuchatel, Switzerland.
- Max Planck Institute for Chemical Ecology (MPICE), Department of Bioorganic Chemistry, Hans-Knoell Strasse 8, D-07745 Jena, Germany
- Neuchatel Platform of Analytical Chemistry (NPAC), University of Neuchatel, Avenue de Bellevaux 51, CH-2000 Neuchatel, Switzerland
| |
Collapse
|
2
|
Kuo CY, Tay RJ, Lin HC, Juan SC, Vidal-Diez de Ulzurrun G, Chang YC, Hoki J, Schroeder FC, Hsueh YP. The nematode-trapping fungus Arthrobotrys oligospora detects prey pheromones via G protein-coupled receptors. Nat Microbiol 2024; 9:1738-1751. [PMID: 38649409 PMCID: PMC11724650 DOI: 10.1038/s41564-024-01679-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 03/20/2024] [Indexed: 04/25/2024]
Abstract
The ability to sense prey-derived cues is essential for predatory lifestyles. Under low-nutrient conditions, Arthrobotrys oligospora and other nematode-trapping fungi develop dedicated structures for nematode capture when exposed to nematode-derived cues, including a conserved family of pheromones, the ascarosides. A. oligospora senses ascarosides via conserved MAPK and cAMP-PKA pathways; however, the upstream receptors remain unknown. Here, using genomic, transcriptomic and functional analyses, we identified two families of G protein-coupled receptors (GPCRs) involved in sensing distinct nematode-derived cues. GPCRs homologous to yeast glucose receptors are required for ascaroside sensing, whereas Pth11-like GPCRs contribute to ascaroside-independent nematode sensing. Both GPCR classes activate conserved cAMP-PKA signalling to trigger trap development. This work demonstrates that predatory fungi use multiple GPCRs to sense several distinct nematode-derived cues for prey recognition and to enable a switch to a predatory lifestyle. Identification of these receptors reveals the molecular mechanisms of cross-kingdom communication via conserved pheromones also sensed by plants and animals.
Collapse
Affiliation(s)
- Chih-Yen Kuo
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Rebecca J Tay
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Hung-Che Lin
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Sheng-Chian Juan
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | | | - Yu-Chu Chang
- Department of Biochemistry and Molecular Cell Biology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jason Hoki
- Boyce Thompson Institute, Cornell University, Ithaca, NY, USA
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Frank C Schroeder
- Boyce Thompson Institute, Cornell University, Ithaca, NY, USA
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Yen-Ping Hsueh
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan.
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
3
|
Reilly DK, Schwarz EM, Muirhead CS, Robidoux AN, Narayan A, Doma MK, Sternberg PW, Srinivasan J. Transcriptomic profiling of sex-specific olfactory neurons reveals subset-specific receptor expression in Caenorhabditis elegans. Genetics 2023; 223:iyad026. [PMID: 36801937 PMCID: PMC10319972 DOI: 10.1093/genetics/iyad026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 12/23/2022] [Accepted: 02/13/2023] [Indexed: 02/20/2023] Open
Abstract
The nematode Caenorhabditis elegans utilizes chemosensation to navigate an ever-changing environment for its survival. A class of secreted small-molecule pheromones, termed ascarosides, play an important role in olfactory perception by affecting biological functions ranging from development to behavior. The ascaroside #8 (ascr#8) mediates sex-specific behaviors, driving avoidance in hermaphrodites and attraction in males. Males sense ascr#8 via the ciliated male-specific cephalic sensory (CEM) neurons, which exhibit radial symmetry along dorsal-ventral and left-right axes. Calcium imaging studies suggest a complex neural coding mechanism that translates stochastic physiological responses in these neurons to reliable behavioral outputs. To test the hypothesis that neurophysiological complexity arises from differential expression of genes, we performed cell-specific transcriptomic profiling; this revealed between 18 and 62 genes with at least twofold higher expression in a specific CEM neuron subtype vs both other CEM neurons and adult males. These included two G protein-coupled receptor (GPCR) genes, srw-97 and dmsr-12, that were specifically expressed in nonoverlapping subsets of CEM neurons and whose expression was confirmed by GFP reporter analysis. Single CRISPR-Cas9 knockouts of either srw-97 or dmsr-12 resulted in partial defects, while a double knockout of both srw-97 and dmsr-12 completely abolished the attractive response to ascr#8. Together, our results suggest that the evolutionarily distinct GPCRs SRW-97 and DMSR-12 act nonredundantly in discrete olfactory neurons to facilitate male-specific sensation of ascr#8.
Collapse
Affiliation(s)
- Douglas K Reilly
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01605, USA
| | - Erich M Schwarz
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Caroline S Muirhead
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01605, USA
| | - Annalise N Robidoux
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01605, USA
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA 01605, USA
| | - Anusha Narayan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Meenakshi K Doma
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Paul W Sternberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jagan Srinivasan
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01605, USA
- Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA 01605, USA
| |
Collapse
|
4
|
Yang B, Wang J, Zheng X, Wang X. Nematode Pheromones: Structures and Functions. Molecules 2023; 28:2409. [PMID: 36903652 PMCID: PMC10005090 DOI: 10.3390/molecules28052409] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023] Open
Abstract
Pheromones are chemical signals secreted by one individual that can affect the behaviors of other individuals within the same species. Ascaroside is an evolutionarily conserved family of nematode pheromones that play an integral role in the development, lifespan, propagation, and stress response of nematodes. Their general structure comprises the dideoxysugar ascarylose and fatty-acid-like side chains. Ascarosides can vary structurally and functionally according to the lengths of their side chains and how they are derivatized with different moieties. In this review, we mainly describe the chemical structures of ascarosides and their different effects on the development, mating, and aggregation of nematodes, as well as how they are synthesized and regulated. In addition, we discuss their influences on other species in various aspects. This review provides a reference for the functions and structures of ascarosides and enables their better application.
Collapse
Affiliation(s)
| | | | | | - Xin Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| |
Collapse
|
5
|
Kurisawa N, Iwasaki A, Teranuma K, Dan S, Toyoshima C, Hashimoto M, Suenaga K. Structural Determination, Total Synthesis, and Biological Activity of Iezoside, a Highly Potent Ca 2+-ATPase Inhibitor from the Marine Cyanobacterium Leptochromothrix valpauliae. J Am Chem Soc 2022; 144:11019-11032. [DOI: 10.1021/jacs.2c04459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Naoaki Kurisawa
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Arihiro Iwasaki
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Kazuya Teranuma
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Shingo Dan
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Chikashi Toyoshima
- Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Masaru Hashimoto
- Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8561, Japan
| | - Kiyotake Suenaga
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
6
|
Halder S, Addanki RB, Moktan S, Kancharla PK. Glycosyl o-[1-( p-MeO-Phenyl)vinyl]benzoates (PMPVB) as Easily Accessible, Stable, and Reactive Glycosyl Donors for O-, S-, and C-Glycosylations under Brønsted Acid Catalysis. J Org Chem 2022; 87:7033-7055. [PMID: 35559689 DOI: 10.1021/acs.joc.2c00093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Methods suitable for the synthesis of both O- and S-glycosylations are relatively rare because commonly used promoters like halonium sources or gold catalysts are incompatible with thiols as nucleophiles. Here, we present (p-MeO)phenylvinylbenzoates (PMPVB) as easily accessible, stable, and reactive alkene-based glycosyl donors that can be activated with catalytic amounts of a Brønsted acid. This activation protocol not only allows us to synthesize O-glycosides but also can successfully provide S- and C-linked glycosides. The armed and disarmed donors lead to product formation in 5 min, showcasing the high reactivity of the donors. Competitive experiments show that the PMPVB donors are much more reactive than the corresponding PVB donors even under NIS/TMSOTf conditions, whereas PVB donors are not reactive enough to be efficiently activated under Brønsted acid conditions. The potential of the catalytic glycosylation protocol has also been showcased by synthesizing trisaccharides. The Brønsted acid activation of PMPVB donors also allows access to C-glycosides in a stereoselective fashion. The easy accessibility of the donor aglycon on a multigram scale in just two steps makes the PMPVB donors highly attractive alternatives.
Collapse
Affiliation(s)
- Suvendu Halder
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Rupa Bai Addanki
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Sangay Moktan
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Pavan K Kancharla
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
7
|
Banday JS, Ahmed A, Mukherjee D. Iodine Catalysed Tandem Stereoselective Acetalation‐Glycosylation of Reducing Sugars Using Acetals/Ketals: Application in the Synthesis of Orthogonally Protected Nucleosides. ChemistrySelect 2022. [DOI: 10.1002/slct.202201132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Junaid Shafi Banday
- Natural Products and Medicinal Chemistry Division CSIR Indian Institute of Integrative Medicine Canal Road Jammu 180001 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Ajaz Ahmed
- Natural Products and Medicinal Chemistry Division CSIR Indian Institute of Integrative Medicine Canal Road Jammu 180001 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Debaraj Mukherjee
- Natural Products and Medicinal Chemistry Division CSIR Indian Institute of Integrative Medicine Canal Road Jammu 180001 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
8
|
Mukherji A, Addanki RB, Halder S, Kancharla PK. Sterically Strained Brønsted Pair Catalysis by Bulky Pyridinium Salts: Direct Stereoselective Synthesis of 2-Deoxy and 2,6-Dideoxy-β-thioglycosides from Glycals. J Org Chem 2021; 86:17226-17243. [PMID: 34794312 DOI: 10.1021/acs.joc.1c02305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A sterically strained ionic Brønsted pair complex obtained from a sterically bulky base 2,4,6-tri-tert-butylpyridine and hydrochloric acid imbues unusual reactivity to the anionic chloride. The complete shielding of the cationic [N-H]+ by the bulky ortho-tert-butyl groups weakens the possible hydrogen-bonding interactions with the chloride anion, and the [N-H]+···Cl- distance is unusually longer (3.10 Å). This results in strained/frustrated electrostatic interactions between the ion-pair, thus infusing an increased reactivity in both of the ions, which results in the activation of a third molecule like thiol via hydrogen-bonding. This intriguing weak interaction-based reactivity has been utilized to develop an organocatalytic synthesis of 2-deoxy-β-thioglycosides from glycals. While the 1H NMR studies showcase the diamagnetic activation of thiols in the presence of the catalyst, the electron paramagnetic resonance (EPR) studies reveal the generation of a radical species that suggests a possible frustrated radical pair catalysis. Besides, IR spectroscopic studies explain the intriguing influence of size/charge density of the anion on the solvation-insusceptible, cationic [TTBPyH]+ and on the observed reactivity.
Collapse
Affiliation(s)
- Ananya Mukherji
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Rupa Bai Addanki
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Suvendu Halder
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Pavan K Kancharla
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
9
|
Chen SA, Lin HC, Schroeder FC, Hsueh YP. Prey sensing and response in a nematode-trapping fungus is governed by the MAPK pheromone response pathway. Genetics 2021; 217:5995318. [PMID: 33724405 DOI: 10.1093/genetics/iyaa008] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/02/2020] [Indexed: 12/19/2022] Open
Abstract
Detection of surrounding organisms in the environment plays a major role in the evolution of interspecies interactions, such as predator-prey relationships. Nematode-trapping fungi (NTF) are predators that develop specialized trap structures to capture, kill, and consume nematodes when food sources are limited. Despite the identification of various factors that induce trap morphogenesis, the mechanisms underlying the differentiation process have remained largely unclear. Here, we demonstrate that the highly conserved pheromone-response MAPK pathway is essential for sensing ascarosides, a conserved molecular signature of nemaotdes, and is required for the predatory lifestyle switch in the NTF Arthrobotrys oligospora. Gene deletion of STE7 (MAPKK) and FUS3 (MAPK) abolished nematode-induced trap morphogenesis and conidiation and impaired the growth of hyphae. The conserved transcription factor Ste12 acting downstream of the pheromone-response pathway also plays a vital role in the predation of A. oligospora. Transcriptional profiling of a ste12 mutant identified a small subset of genes with diverse functions that are Ste12 dependent and could trigger trap differentiation. Our work has revealed that A. oligospora perceives and interprets the ascarosides produced by nematodes via the conserved pheromone signaling pathway in fungi, providing molecular insights into the mechanisms of communication between a fungal predator and its nematode prey.
Collapse
Affiliation(s)
- Sheng-An Chen
- Institute of Molecular Biology, Academia Sinica, Nangang, Taipei 11529, Taiwan
| | - Hung-Che Lin
- Institute of Molecular Biology, Academia Sinica, Nangang, Taipei 11529, Taiwan
| | - Frank C Schroeder
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA.,Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Yen-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, Nangang, Taipei 11529, Taiwan
| |
Collapse
|
10
|
Upadhyaya K, Bagul RS, Crich D. Influence of Configuration at the 4- and 6-Positions on the Conformation and Anomeric Reactivity and Selectivity of 7-Deoxyheptopyranosyl Donors: Discovery of a Highly Equatorially Selective l- glycero-d- gluco-Heptopyranosyl Donor. J Org Chem 2021; 86:12199-12225. [PMID: 34343001 DOI: 10.1021/acs.joc.1c01535] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The preparation of four per-O-benzyl-d- or l-glycero-d-galacto and d- or l-glycero-d-gluco heptopyranosyl sulfoxides and the influence of their side-chain conformations on reactivity and stereoselectivity in glycosylation reactions are described. The side-chain conformation in these donors is determined by the relative configuration of its point of attachment to the pyranoside ring and the two flanking centers in agreement with a recent model. In the d- and l-glycero-d-galacto glycosyl donors, the d-glycero-d-galacto isomer with the more electron-withdrawing trans,gauche conformation of its side chain was the more equatorially selective isomer. In the d- and l-glycero-d-gluco glycosyl donors, the l-glycero-d-gluco isomer with the least disarming gauche,gauche side-chain conformation was the most equatorially selective donor. Variable temperature NMR studies, while supporting the formation of intermediate glycosyl triflates at -80 °C in all cases, were inconclusive owing to a change in the decomposition mechanism with the change in configuration. It is suggested that the equatorial selectivity of the l-glycero-d-gluco isomer arises from H-bonding between the glycosyl acceptor and O6 of the donor, which is poised to deliver the acceptor antiperiplanar to the glycosyl triflate, resulting in a high degree of SN2 character in the displacement reaction.
Collapse
Affiliation(s)
- Kapil Upadhyaya
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States
| | - Rahul S Bagul
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States.,Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - David Crich
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States.,Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States.,Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, Georgia 30602, United States
| |
Collapse
|
11
|
Yu Y, Zhang YK, Manohar M, Artyukhin AB, Kumari A, Tenjo-Castano FJ, Nguyen H, Routray P, Choe A, Klessig DF, Schroeder FC. Nematode Signaling Molecules Are Extensively Metabolized by Animals, Plants, and Microorganisms. ACS Chem Biol 2021; 16:1050-1058. [PMID: 34019369 DOI: 10.1021/acschembio.1c00217] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Many bacterivorous and parasitic nematodes secrete signaling molecules called ascarosides that play a central role regulating their behavior and development. Combining stable-isotope labeling and mass spectrometry-based comparative metabolomics, here we show that ascarosides are taken up from the environment and metabolized by a wide range of phyla, including plants, fungi, bacteria, and mammals, as well as nematodes. In most tested eukaryotes and some bacteria, ascarosides are metabolized into derivatives with shortened fatty acid side chains, analogous to ascaroside biosynthesis in nematodes. In plants and C. elegans, labeled ascarosides were additionally integrated into larger, modular metabolites, and use of different ascaroside stereoisomers revealed the stereospecificity of their biosynthesis. The finding that nematodes extensively metabolize ascarosides taken up from the environment suggests that pheromone editing may play a role in conspecific and interspecific interactions. Moreover, our results indicate that plants, animals, and microorganisms may interact with associated nematodes via manipulation of ascaroside signaling.
Collapse
Affiliation(s)
- Yan Yu
- Boyce Thompson Institute, Cornell University, Ithaca, New York 14853, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Ying K. Zhang
- Boyce Thompson Institute, Cornell University, Ithaca, New York 14853, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Murli Manohar
- Boyce Thompson Institute, Cornell University, Ithaca, New York 14853, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Alexander B. Artyukhin
- Chemistry Department, College of Environmental Science and Forestry, State University of New York, Syracuse, New York 13210, United States
| | - Anshu Kumari
- Boyce Thompson Institute, Cornell University, Ithaca, New York 14853, United States
| | | | - Hung Nguyen
- Holoclara, Inc., Pasadena, California 91101, United States
| | - Pratyush Routray
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Andrea Choe
- Holoclara, Inc., Pasadena, California 91101, United States
| | - Daniel F. Klessig
- Boyce Thompson Institute, Cornell University, Ithaca, New York 14853, United States
| | - Frank C. Schroeder
- Boyce Thompson Institute, Cornell University, Ithaca, New York 14853, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
12
|
Abstract
For the first 25 years after the landmark 1974 paper that launched the field, most C. elegans biologists were content to think of their subjects as solitary creatures. C. elegans presented no shortage of fascinating biological problems, but some of the features that led Brenner to settle on this species-in particular, its free-living, self-fertilizing lifestyle-also seemed to reduce its potential for interesting social behavior. That perspective soon changed, with the last two decades bringing remarkable progress in identifying and understanding the complex interactions between worms. The growing appreciation that C. elegans behavior can only be meaningfully understood in the context of its ecology and evolution ensures that the coming years will see similarly exciting progress.
Collapse
Affiliation(s)
- Douglas S Portman
- Departments of Biomedical Genetics, Neuroscience, and Biology, Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY, USA
| |
Collapse
|
13
|
Curtis BJ, Kim LJ, Wrobel CJJ, Eagan JM, Smith RA, Burch JE, Le HH, Artyukhin AB, Nelson HM, Schroeder FC. Identification of Uric Acid Gluconucleoside-Ascaroside Conjugates in Caenorhabditis elegans by Combining Synthesis and MicroED. Org Lett 2020; 22:6724-6728. [PMID: 32820938 PMCID: PMC7526323 DOI: 10.1021/acs.orglett.0c02038] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Few nucleoside-derived natural products have been identified from animals, despite the ubiquity of nucleosides in living organisms. Here, we use a combination of synthesis and the emerging electron microscopy technique microcrystal electron diffraction to determine the structures of several N3-(β-glucopyranosyl)uric acid derivatives in Caenorhabditis elegans. These noncanonical gluconucleosides further integrate an ascaroside moiety, for which we present a shortened synthetic route. The production of a phosphorylated gluconucleoside is influenced by evolutionarily conserved insulin signaling.
Collapse
Affiliation(s)
- Brian J Curtis
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Lee Joon Kim
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Chester J J Wrobel
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - James M Eagan
- Ascribe Bioscience, Ithaca, New York 14853, United States
| | - Rubin A Smith
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Jessica E Burch
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Henry H Le
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Alexander B Artyukhin
- Chemistry Department, College of Environmental Science and Forestry, State University of New York, Syracuse, New York 13210, United States
| | - Hosea M Nelson
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Frank C Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
14
|
Abstract
Caenorhabditis elegans secretes a complex cocktail of small chemicals collectively called ascaroside pheromones which serves as a chemical language for intra-species communication. Subsets of ascarosides have been shown to mediate a broad spectrum of C. elegans behavior and development, such as gender-specific attraction, repulsion, aggregation, olfactory plasticity, and dauer formation. Recent studies show that specific components of ascarosides elicit a rapid avoidance response that allows animals to avoid predators and escape from unfavorable conditions. Moreover, this avoidance behavior is modulated by external conditions, internal states, and previous experience, indicating that pheromone avoidance behavior is highly plastic. In this review, we describe molecular and circuit mechanisms underlying plasticity in pheromone avoidance behavior which pave a way to better understanding circuit mechanisms underlying behavioral plasticity in higher animals, including humans.
Collapse
Affiliation(s)
- YongJin Cheon
- Department of Brain and Cognitive Sciences, DGIST, Daegu, Republic of Korea
| | - Hyeonjeong Hwang
- Department of Brain and Cognitive Sciences, DGIST, Daegu, Republic of Korea
| | - Kyuhyung Kim
- Department of Brain and Cognitive Sciences, DGIST, Daegu, Republic of Korea.,Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| |
Collapse
|
15
|
Faghih N, Bhar S, Zhou Y, Dar AR, Mai K, Bailey LS, Basso KB, Butcher RA. A Large Family of Enzymes Responsible for the Modular Architecture of Nematode Pheromones. J Am Chem Soc 2020; 142:13645-13650. [PMID: 32702987 DOI: 10.1021/jacs.0c04223] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The nematode Caenorhabditis elegans produces a broad family of pheromones, known as the ascarosides, that are modified with a variety of groups derived from primary metabolism. These modifications are essential for the diverse activities of the ascarosides in development and various behaviors, including attraction, aggregation, avoidance, and foraging. The mechanism by which these different groups are added to the ascarosides is poorly understood. Here, we identify a family of over 30 enzymes, which are homologous to mammalian carboxylesterase (CES) enzymes, and show that a number of these enzymes are responsible for the selective addition of specific modifications to the ascarosides. Through stable isotope feeding experiments, we demonstrate the in vivo activity of the CES-like enzymes and provide direct evidence that the acyl-CoA synthetase ACS-7, which was previously implicated in the attachment of certain modifications to the ascarosides in C. elegans, instead activates the side chains of certain ascarosides for shortening through β-oxidation. Our data provide a key to the combinatorial logic that gives rise to different modified ascarosides, which should greatly facilitate the exploration of the specific biological functions of these pheromones in the worm.
Collapse
Affiliation(s)
- Nasser Faghih
- Department of Chemistry, University of Florida, Gainesville, Florida, United States
| | - Subhradeep Bhar
- Department of Chemistry, University of Florida, Gainesville, Florida, United States
| | - Yue Zhou
- Department of Chemistry, University of Florida, Gainesville, Florida, United States
| | - Abdul Rouf Dar
- Department of Chemistry, University of Florida, Gainesville, Florida, United States
| | - Kevin Mai
- Department of Chemistry, University of Florida, Gainesville, Florida, United States
| | - Laura S Bailey
- Department of Chemistry, University of Florida, Gainesville, Florida, United States
| | - Kari B Basso
- Department of Chemistry, University of Florida, Gainesville, Florida, United States
| | - Rebecca A Butcher
- Department of Chemistry, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
16
|
Ning S, Zhang L, Ma J, Chen L, Zeng G, Yang C, Zhou Y, Guo X, Deng X. Modular and scalable synthesis of nematode pheromone ascarosides: implications in eliciting plant defense response. Org Biomol Chem 2020; 18:4956-4961. [PMID: 32579656 DOI: 10.1039/d0ob00652a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly efficient and modular synthesis of nematode pheromone ascarosides was developed, which highlights a 4-step scalable synthesis of the common intermediate 10 in 23% yield from commercially available l-rhamnose by using orthoesterification/benzylation/orthoester rearrangement as the key step. Six diverse ascarosides were synthesized accordingly. Notably, biological investigations revealed that ascr#1 and ascr#18 treatment resulted in enhanced callose accumulation in Arabidopsis leaves. And ascr#18 also increased the expression of defense-related genes such as PR1, PDF1.2, LOX2 and AOS, which might contribute to the enhanced plant defense responses. This study not only allows a facile access to 1-O, 2-O, and 4-O substituted ascarosides, but also provides valuable insights into their biological activities in inducing plant defense response, as well as their mode of action.
Collapse
Affiliation(s)
- Shuai Ning
- Xiangya School of Pharmaceutical Science, Central South University, Changsha, Hunan 410013, China.
| | - Lei Zhang
- College of Plant Science and Technology, State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Jinjin Ma
- Xiangya School of Pharmaceutical Science, Central South University, Changsha, Hunan 410013, China.
| | - Lan Chen
- Xiangya School of Pharmaceutical Science, Central South University, Changsha, Hunan 410013, China.
| | - Guangyao Zeng
- Xiangya School of Pharmaceutical Science, Central South University, Changsha, Hunan 410013, China.
| | - Chao Yang
- College of Plant Science and Technology, State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Yingjun Zhou
- Xiangya School of Pharmaceutical Science, Central South University, Changsha, Hunan 410013, China.
| | - Xiaoli Guo
- College of Plant Science and Technology, State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Xu Deng
- Xiangya School of Pharmaceutical Science, Central South University, Changsha, Hunan 410013, China.
| |
Collapse
|
17
|
Yang CT, Vidal-Diez de Ulzurrun G, Gonçalves AP, Lin HC, Chang CW, Huang TY, Chen SA, Lai CK, Tsai IJ, Schroeder FC, Stajich JE, Hsueh YP. Natural diversity in the predatory behavior facilitates the establishment of a robust model strain for nematode-trapping fungi. Proc Natl Acad Sci U S A 2020; 117:6762-6770. [PMID: 32161129 PMCID: PMC7104180 DOI: 10.1073/pnas.1919726117] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Nematode-trapping fungi (NTF) are a group of specialized microbial predators that consume nematodes when food sources are limited. Predation is initiated when conserved nematode ascaroside pheromones are sensed, followed by the development of complex trapping devices. To gain insights into the coevolution of this interkingdom predator-prey relationship, we investigated natural populations of nematodes and NTF that we found to be ubiquitous in soils. Arthrobotrys species were sympatric with various nematode species and behaved as generalist predators. The ability to sense prey among wild isolates of Arthrobotrys oligospora varied greatly, as determined by the number of traps after exposure to Caenorhabditis elegans While some strains were highly sensitive to C. elegans and the nematode pheromone ascarosides, others responded only weakly. Furthermore, strains that were highly sensitive to the nematode prey also developed traps faster. The polymorphic nature of trap formation correlated with competency in prey killing, as well as with the phylogeny of A. oligospora natural strains, calculated after assembly and annotation of the genomes of 20 isolates. A chromosome-level genome assembly and annotation were established for one of the most sensitive wild isolates, and deletion of the only G-protein β-subunit-encoding gene of A. oligospora nearly abolished trap formation. In summary, our study establishes a highly responsive A. oligospora wild isolate as a model strain for the study of fungus-nematode interactions and demonstrates that trap formation is a fitness character in generalist predators of the nematode-trapping fungus family.
Collapse
Affiliation(s)
- Ching-Ting Yang
- Institute of Molecular Biology, Academia Sinica, Nangang, Taipei 115, Taiwan
| | | | - A Pedro Gonçalves
- Institute of Molecular Biology, Academia Sinica, Nangang, Taipei 115, Taiwan
| | - Hung-Che Lin
- Institute of Molecular Biology, Academia Sinica, Nangang, Taipei 115, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 106, Taiwan
| | - Ching-Wen Chang
- Institute of Molecular Biology, Academia Sinica, Nangang, Taipei 115, Taiwan
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 106, Taiwan
| | - Tsung-Yu Huang
- Institute of Molecular Biology, Academia Sinica, Nangang, Taipei 115, Taiwan
| | - Sheng-An Chen
- Institute of Molecular Biology, Academia Sinica, Nangang, Taipei 115, Taiwan
| | - Cheng-Kuo Lai
- Biodiversity Research Center, Academia Sinica, Nangang, Taipei 115, Taiwan
| | - Isheng J Tsai
- Biodiversity Research Center, Academia Sinica, Nangang, Taipei 115, Taiwan
| | - Frank C Schroeder
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521
| | - Yen-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, Nangang, Taipei 115, Taiwan;
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 106, Taiwan
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
18
|
Zhang YK, Reilly DK, Yu J, Srinivasan J, Schroeder FC. Photoaffinity probes for nematode pheromone receptor identification. Org Biomol Chem 2019; 18:36-40. [PMID: 31781713 PMCID: PMC6961461 DOI: 10.1039/c9ob02099c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Identification of pheromone receptors plays a central role for uncovering signaling pathways that underlie chemical communication in animals. Here, we describe the synthesis and bioactivity of photoaffinity probes for the ascaroside ascr#8, a sex-pheromone of the model nematode, Caenorhabditis elegans. Structure-activity studies guided incorporation of alkyne- and diazirine-moieties and revealed that addition of functionality in the sidechain of ascr#8 was well tolerated, whereas modifications to the ascarylose moiety resulted in loss of biological activity. Our study will guide future probe design and provides a basis for pheromone receptor identification via photoaffinity labeling in C. elegans.
Collapse
Affiliation(s)
- Ying K Zhang
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA.
| | | | | | | | | |
Collapse
|
19
|
Selection and gene flow shape niche-associated variation in pheromone response. Nat Ecol Evol 2019; 3:1455-1463. [PMID: 31548647 PMCID: PMC6764921 DOI: 10.1038/s41559-019-0982-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 08/14/2019] [Indexed: 11/18/2022]
Abstract
From quorum sensing in bacteria to pheromone signaling in social insects, chemical communication mediates interactions among individuals in a local population. In Caenorhabditis elegans, ascaroside pheromones can dictate local population density, in which high levels of pheromones inhibit the reproductive maturation of individuals. Little is known about how natural genetic diversity affects the pheromone responses of individuals from diverse habitats. Here, we show that a niche-associated variation in pheromone receptor genes contributes to natural differences in pheromone responses. We identified putative loss-of-function deletions that impair duplicated pheromone receptor genes (srg-36 and srg-37), which were shown previously to be lost in population-dense laboratory cultures. A common natural deletion in srg-37 arose recently from a single ancestral population that spread throughout the world and underlies reduced pheromone sensitivity across the global C. elegans population. We found that many local populations harbor individuals with wild-type or a deletion allele of srg-37, suggesting that balancing selection has maintained the recent variation in this pheromone receptor gene. The two srg-37 genotypes are associated with niche diversity underlying boom-and-bust population dynamics. We hypothesize that human activities likely contributed to the gene flow and balancing selection of srg-37 variation through facilitating migration of species and providing favorable niche for recently arose srg-37 deletion.
Collapse
|
20
|
Ascaroside Pheromones: Chemical Biology and Pleiotropic Neuronal Functions. Int J Mol Sci 2019; 20:ijms20163898. [PMID: 31405082 PMCID: PMC6719183 DOI: 10.3390/ijms20163898] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/1970] [Revised: 07/26/2019] [Accepted: 08/07/2019] [Indexed: 12/21/2022] Open
Abstract
Pheromones are neuronal signals that stimulate conspecific individuals to react to environmental stressors or stimuli. Research on the ascaroside (ascr) pheromones in Caenorhabditis elegans and other nematodes has made great progress since ascr#1 was first isolated and biochemically defined in 2005. In this review, we highlight the current research on the structural diversity, biosynthesis, and pleiotropic neuronal functions of ascr pheromones and their implications in animal physiology. Experimental evidence suggests that ascr biosynthesis starts with conjugation of ascarylose to very long-chain fatty acids that are then processed via peroxisomal β-oxidation to yield diverse ascr pheromones. We also discuss the concentration and stage-dependent pleiotropic neuronal functions of ascr pheromones. These functions include dauer induction, lifespan extension, repulsion, aggregation, mating, foraging and detoxification, among others. These roles are carried out in coordination with three G protein-coupled receptors that function as putative pheromone receptors: SRBC-64/66, SRG-36/37, and DAF-37/38. Pheromone sensing is transmitted in sensory neurons via DAF-16-regulated glutamatergic neurotransmitters. Neuronal peroxisomal fatty acid β-oxidation has important cell-autonomous functions in the regulation of neuroendocrine signaling, including neuroprotection. In the future, translation of our knowledge of nematode ascr pheromones to higher animals might be beneficial, as ascr#1 has some anti-inflammatory effects in mice. To this end, we propose the establishment of pheromics (pheromone omics) as a new subset of integrated disciplinary research area within chemical ecology for system-wide investigation of animal pheromones.
Collapse
|
21
|
Butcher RA. Natural products as chemical tools to dissect complex biology in C. elegans. Curr Opin Chem Biol 2019; 50:138-144. [PMID: 31102973 DOI: 10.1016/j.cbpa.2019.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/22/2019] [Accepted: 03/05/2019] [Indexed: 12/18/2022]
Abstract
The search for novel pheromones, hormones, and other types of natural products in the nematode Caenorhabditis elegans has accelerated over the last 10-15 years. Many of these natural products perturb fundamental processes such as developmental progression, metabolism, reproductive and somatic aging, and various behaviors and have thus become essential tools for probing these processes, which are difficult to study in higher organisms. Furthermore, given the similarity between C. elegans and parasitic nematodes, these natural products could potentially be used to manipulate the development and behavior of parasitic nematodes and target the infections caused by them.
Collapse
Affiliation(s)
- Rebecca A Butcher
- Department of Chemistry, University of Florida, Gainesville, FL 32611, United States.
| |
Collapse
|
22
|
The C. elegans intestine: organogenesis, digestion, and physiology. Cell Tissue Res 2019; 377:383-396. [DOI: 10.1007/s00441-019-03036-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 04/12/2019] [Indexed: 12/16/2022]
|
23
|
Dong C, Reilly DK, Bergame C, Dolke F, Srinivasan J, von Reuss SH. Comparative Ascaroside Profiling of Caenorhabditis Exometabolomes Reveals Species-Specific (ω) and (ω - 2)-Hydroxylation Downstream of Peroxisomal β-Oxidation. J Org Chem 2018; 83:7109-7120. [PMID: 29480728 DOI: 10.1021/acs.joc.8b00094] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chemical communication in nematodes such as the model organism Caenorhabditis elegans is modulated by a variety of glycosides based on the dideoxysugar l-ascarylose. Comparative ascaroside profiling of nematode exometabolome extracts using a GC-EIMS screen reveals that several basic components including ascr#1 (asc-C7), ascr#2 (asc-C6-MK), ascr#3 (asc-ΔC9), ascr#5 (asc-ωC3), and ascr#10 (asc-C9) are highly conserved among the Caenorhabditis. Three novel side chain hydroxylated ascaroside derivatives were exclusively detected in the distantly related C. nigoni and C. afra. Molecular structures of these species-specific putative signaling molecules were elucidated by NMR spectroscopy and confirmed by total synthesis and chemical correlations. Biological activities were evaluated using attraction assays. The identification of (ω)- and (ω - 2)-hydroxyacyl ascarosides demonstrates how GC-EIMS-based ascaroside profiling facilitates the detection of novel ascaroside components and exemplifies how species-specific hydroxylation of ascaroside aglycones downstream of peroxisomal β-oxidation increases the structural diversity of this highly conserved class of nematode signaling molecules.
Collapse
Affiliation(s)
- Chuanfu Dong
- Department of Bioorganic Chemistry , Max Planck Institute for Chemical Ecology , Hans-Knoell Strasse 8 , D-07745 Jena , Germany.,Department for Integrative Evolutionary Biology , Max Planck Institute for Developmental Biology , Max-Planck-Ring 9 , D-72076 Tübingen , Germany
| | - Douglas K Reilly
- Department of Biology and Biotechnology , Worcester Polytechnic Institute , 60 Prescott Street , Worcester , Massachusetts 01605 , United States
| | - Célia Bergame
- Laboratory of Bioanalytical Chemistry , University of Neuchatel , Avenue de Bellevaux 51 , CH-2000 Neuchâtel , Switzerland
| | - Franziska Dolke
- Department of Bioorganic Chemistry , Max Planck Institute for Chemical Ecology , Hans-Knoell Strasse 8 , D-07745 Jena , Germany
| | - Jagan Srinivasan
- Department of Biology and Biotechnology , Worcester Polytechnic Institute , 60 Prescott Street , Worcester , Massachusetts 01605 , United States
| | - Stephan H von Reuss
- Department of Bioorganic Chemistry , Max Planck Institute for Chemical Ecology , Hans-Knoell Strasse 8 , D-07745 Jena , Germany.,Laboratory of Bioanalytical Chemistry , University of Neuchatel , Avenue de Bellevaux 51 , CH-2000 Neuchâtel , Switzerland
| |
Collapse
|