1
|
Singh B, Sasmal P, Taites A, Hazra S, Saha J. Aza- ortho-Quinone Methide Promoted Strain-Release-Driven Conversion of Azabicyclo[1.1.0]butanes into Functionalized Azetidines. Org Lett 2024; 26:9558-9563. [PMID: 39453833 DOI: 10.1021/acs.orglett.4c03577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
A strategy for activating azabicyclo[1.1.0]butane (ABB) with in situ generated aza-ortho-quinone methide, promoted by HFIP, is reported. This unified activation, vis-à-vis strain-release-driven N/C3-functionalization, features a new means to prepare functionalized azetidines from ABB. Additionally, the newly installed motif on azetidine nitrogen could be forged into an indoline via Pd-catalyzed hydroamination, leveraging access to medicinally relevant scaffolds.
Collapse
Affiliation(s)
- Bandana Singh
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, Lucknow 226014, India
| | - Pujan Sasmal
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Mohali 160062, India
| | - Aaron Taites
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Mohali 160062, India
| | - Subhadeep Hazra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Mohali 160062, India
| | - Jaideep Saha
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Mohali 160062, India
| |
Collapse
|
2
|
Alvarado M, Loo M, Adler H, Arnall C, Amsden K, Martinez G, Navarro R. Synthesis of 3,3-Disubstituted Allyl Isoindolinones via Pd-Catalyzed Decarboxylative Allylic Alkylation. Tetrahedron Lett 2024; 148:155242. [PMID: 39183729 PMCID: PMC11343487 DOI: 10.1016/j.tetlet.2024.155242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Herein, we report a mild palladium-catalyzed decarboxylative allylic alkylation of allyl ester-substituted isoindolinone substrates to afford a variety of 3,3-disubstituted isoindolinone derivatives. The decarboxylative coupling reaction tolerates a range of functional groups, including ketones and alkenyl halides, and does not require protection of the isoindolinone nitrogen. Additionally, the reaction was found to proceed in near-quantitative yield for most substrates evaluated. Based on the isolation of competing cyclopropane and protonation products, a reaction mechanism is proposed.
Collapse
Affiliation(s)
- Mario Alvarado
- Department of Chemistry, Occidental College, Los Angeles, California 90041, United States
| | - Marisa Loo
- Department of Chemistry, Occidental College, Los Angeles, California 90041, United States
| | - Hanna Adler
- Department of Chemistry, Occidental College, Los Angeles, California 90041, United States
| | - Caroline Arnall
- Department of Chemistry, Occidental College, Los Angeles, California 90041, United States
| | - Katharine Amsden
- Department of Chemistry, Occidental College, Los Angeles, California 90041, United States
| | - Gisela Martinez
- Department of Chemistry, Occidental College, Los Angeles, California 90041, United States
| | - Raul Navarro
- Department of Chemistry, Occidental College, Los Angeles, California 90041, United States
| |
Collapse
|
3
|
Liu L, Luo R, Tong J, Liao J. Iridium-catalysed reductive allylic amination of α,β-unsaturated aldehydes. Org Biomol Chem 2024; 22:585-589. [PMID: 38131265 DOI: 10.1039/d3ob01753b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Allylic amination is a powerful tool for constructing N-allylic amines widely found in bioactive molecules. Generally, allylic alcohols and unsaturated hydrocarbons have been considered for allylic amination reactions to minimize waste production. Herein, we present an iridium-catalysed method for reductive allylic amination of α,β-unsaturated aldehydes with amines to afford N-allylic amines under air conditions. This protocol is demonstrated to provide products from many substrates (41 examples) in moderate-to-excellent yields. This synthetic methodology is also highlighted by the synthesis of drug molecules, optically pure products, as well as scale-up experiments.
Collapse
Affiliation(s)
- Liang Liu
- School of Pharmacy, Gannan Medical University, Ganzhou, 341000, Jiangxi Province, P. R. China.
| | - Renshi Luo
- College of Chemistry and Environmental Engineering, Shaoguan University, Shaoguan, 512005, Guangdong Province, P. R. China
| | - Jinghui Tong
- School of Pharmacy, Gannan Medical University, Ganzhou, 341000, Jiangxi Province, P. R. China.
| | - Jianhua Liao
- School of Pharmacy, Gannan Medical University, Ganzhou, 341000, Jiangxi Province, P. R. China.
| |
Collapse
|
4
|
Huang W, Yang J, Gao K, Wang Z, Huang G, Yao W, Yang J. Construction of Enantioenriched Quaternary C-Cl Oxindoles through Palladium-Catalyzed Asymmetric Allylic Substitution with Chloroenolates. J Org Chem 2023; 88:15298-15310. [PMID: 37831540 DOI: 10.1021/acs.joc.3c01811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
A palladium-catalyzed asymmetric chloroenolate allylation with vinyl benzoxazinanones under mild reaction conditions has been developed, affording a series of optically active 3,3-disubstituted oxindoles exhibiting a chloro-group and a linear aryl amino side chain in good yields with up to 96% ee. Versatile functional group tolerance on the benzene ring has been demonstrated, and the utility of this method was probed by a scale-up synthesis and highlighted by product derivatizations.
Collapse
Affiliation(s)
- Wen Huang
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, P. R. China
- Advanced Research Institute and School of Pharmaceutical Science, Taizhou University, Jiaojiang 318000, Zhejiang, P. R. China
| | - Jingjie Yang
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, P. R. China
- Advanced Research Institute and School of Pharmaceutical Science, Taizhou University, Jiaojiang 318000, Zhejiang, P. R. China
| | - Kai Gao
- Advanced Research Institute and School of Pharmaceutical Science, Taizhou University, Jiaojiang 318000, Zhejiang, P. R. China
| | - Zhiming Wang
- Advanced Research Institute and School of Pharmaceutical Science, Taizhou University, Jiaojiang 318000, Zhejiang, P. R. China
| | - Guobo Huang
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang 318000, Zhejiang, P. R. China
| | - Weijun Yao
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, P. R. China
| | - Jianguo Yang
- Advanced Research Institute and School of Pharmaceutical Science, Taizhou University, Jiaojiang 318000, Zhejiang, P. R. China
| |
Collapse
|
5
|
Arachchi MK, Schaugaard RN, Schlegel HB, Nguyen HM. Scope and Mechanistic Probe into Asymmetric Synthesis of α-Trisubstituted-α-Tertiary Amines by Rhodium Catalysis. J Am Chem Soc 2023; 145:19642-19654. [PMID: 37651695 PMCID: PMC10581542 DOI: 10.1021/jacs.3c04211] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Asymmetric reactions that convert racemic mixtures into enantioenriched amines are of significant importance due to the prevalence of amines in pharmaceuticals, with about 60% of drug candidates containing tertiary amines. Although transition-metal catalyzed allylic substitution processes have been developed to provide access to enantioenriched α-disubstituted allylic amines, enantioselective synthesis of sterically demanding α-tertiary amines with a tetrasubstituted carbon stereocenter remains a major challenge. Herein, we report a chiral diene-ligated rhodium-catalyzed asymmetric substitution of racemic tertiary allylic trichloroacetimidates with aliphatic secondary amines to afford α-trisubstituted-α-tertiary amines. Mechanistic investigation is conducted using synergistic experimental and computational studies. Density functional theory calculations show that the chiral diene-ligated rhodium promotes the ionization of tertiary allylic substrates to form both anti and syn π-allyl intermediates. The anti π-allyl pathway proceeds through a higher energy than the syn π-allyl pathway. The rate of conversion of the less reactive π-allyl intermediate to the more reactive isomer via π-σ-π interconversion was faster than the rate of nucleophilic attack onto the more reactive intermediate. These data imply that the Curtin-Hammett conditions are met in the amination reaction, leading to dynamic kinetic asymmetric transformation. Computational studies also show that hydrogen bonding interactions between β-oxygen of allylic substrate and amine-NH greatly assist the delivery of amine nucleophile onto more hindered internal carbon of the π-allyl intermediate. The synthetic utility of the current methodology is showcased by efficient preparation of α-trisubstituted-α-tertiary amines featuring pharmaceutically relevant secondary amine cores with good yields and excellent selectivities (branched-linear >99:1, up to 99% enantiomeric excess).
Collapse
Affiliation(s)
- Madhawee K Arachchi
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Richard N Schaugaard
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - H Bernhard Schlegel
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Hien M Nguyen
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
6
|
Lin H, Yang X, Ning W, Huang X, Cao X, Ge Y, Mao B, Wang C, Guo H, Yuan C. Palladium-Catalyzed Asymmetric Cascade Intramolecular Cyclization/Intermolecular Michael Addition Reaction of Allenyl Benzoxazinones with 1-Azadienes. Org Lett 2022; 24:9442-9446. [PMID: 36537815 DOI: 10.1021/acs.orglett.2c03842] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We herein designed and synthesized allenyl benzoxazinones of a novel type, which were then involved in a Pd-catalyzed asymmetric cascade intramolecular cyclization/intermolecular Michael addition reaction with 1-azadienes. A broad range of chiral C2-functionalized quinoline derivatives were afforded in moderate to good yields (up to 93%) with high enantioselectivities (up to 93% ee) in this reaction.
Collapse
Affiliation(s)
- Huawei Lin
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016 Shandong, P. R. China
| | - Xianru Yang
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016 Shandong, P. R. China
| | - Wenyue Ning
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016 Shandong, P. R. China
| | - Xiaofang Huang
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016 Shandong, P. R. China
| | - Xiaoqun Cao
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016 Shandong, P. R. China
| | - Yanqing Ge
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016 Shandong, P. R. China
| | - Biming Mao
- School of Parmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117 Shandong, P. R. China
| | - Chang Wang
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016 Shandong, P. R. China
| | - Hongchao Guo
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Chunhao Yuan
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016 Shandong, P. R. China
| |
Collapse
|
7
|
Dong F, Song X, Yin X, Wang L. Efficient Construction of Tetrahydroquinazolines via HFIP‐Promoted [1,5]‐Hydride Transfer/6‐Endo‐Trig Cyclization. ChemistrySelect 2022. [DOI: 10.1002/slct.202203936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Fengying Dong
- College of Chemistry and Pharmaceutical Sciences Qingdao Agricultural University Qingdao 266109 Shandong P. R. China
| | - Xiaopei Song
- College of Chemistry and Pharmaceutical Sciences Qingdao Agricultural University Qingdao 266109 Shandong P. R. China
| | - Xiangcong Yin
- Hematology Diagnosis Laboratory The Affiliated Hospital of Qingdao University Qingdao 266003 Shandong P. R. China
| | - Liang Wang
- College of Chemistry and Pharmaceutical Sciences Qingdao Agricultural University Qingdao 266109 Shandong P. R. China
| |
Collapse
|
8
|
Recent applications of vinylethylene carbonates in Pd-catalyzed allylic substitution and annulation reactions: Synthesis of multifunctional allylic and cyclic structural motifs. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214526] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
9
|
Stereodivergent Desymmetrization of Simple Dicarboxylates via Branch‐Selective Pd/Cu Catalyzed Allylic Substitution. Chemistry 2022; 28:e202200273. [DOI: 10.1002/chem.202200273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Indexed: 11/07/2022]
|
10
|
Cai L, Zhang H, Wang K, Zhao H. Pd‐Catalyzed Decarboxylative Coupling Between Allyl Carbonates and Vinyl Benzoxazinanones. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Lu‐Yu Cai
- College of Life Science and Bio-engineering Beijing University of Technology Beijing 100124 People's Republic of China
| | - Heng Zhang
- College of Life Science and Bio-engineering Beijing University of Technology Beijing 100124 People's Republic of China
| | - Kuo Wang
- College of Life Science and Bio-engineering Beijing University of Technology Beijing 100124 People's Republic of China
| | - Hong‐Wu Zhao
- College of Life Science and Bio-engineering Beijing University of Technology Beijing 100124 People's Republic of China
| |
Collapse
|
11
|
You Y, Li Q, Zhang YP, Zhao JQ, Wang ZH, Yuan WC. Advances in Palladium‐Catalyzed Decarboxylative Cycloadditions of Cyclic Carbonates, Carbamates and Lactones. ChemCatChem 2022. [DOI: 10.1002/cctc.202101887] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yong You
- Chengdu University Innovation Research Center of Chiral Drugs, Institute for Advanced Study 610106 Chengdu CHINA
| | - Qun Li
- Chengdu University of Technology College of Materials and Chemistry & Chmical Engineering Chengdu CHINA
| | - Yan-Ping Zhang
- Chengdu University Innovation Research Center of Chiral Drugs, Institute for Advanced Study 610106 Chengdu CHINA
| | - Jian-Qiang Zhao
- Chengdu University Innovation Research Center of Chiral Drugs, Institute for Advanced Study 610106 Chengdu CHINA
| | - Zhen-Hua Wang
- Chengdu University Innovation Research Center of Chiral Drugs, Institute for Advanced Study 610106 Chengdu CHINA
| | - Wei-Cheng Yuan
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences National Engineering Research Center of Chiral Drugs Renmin South Road Block 4, No. 9 610041 Chengdu CHINA
| |
Collapse
|
12
|
Chen JB, Peng C, Zhou SS, Wang Y, Wang Z, Wang XW. Chiral oxamide–phosphine–palladium catalyzed highly asymmetric allylic amination: carbonyl assistance for high regio- and enantiocontrols. Org Chem Front 2022. [DOI: 10.1039/d2qo00458e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The chiral oxamide–phosphine (COAP) ligands were developed for the palladium-catalyzed asymmetric allylic amination of vinyl benzoxazinones with alkylamines, affording a series of optically active diamines in good yields with high enantioselectivity.
Collapse
Affiliation(s)
- Jun-Bo Chen
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Cheng Peng
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Sheng-Suo Zhou
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Yong Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Zheng Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| | - Xing-Wang Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
13
|
Shi C, Ye L. Asymmetric Construction of 3-Aminoindoline Skeleton Bearing N- α-Quaternary Carbon Center. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202200072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
14
|
Yang XP, Lv HP, Yang HD, Wang BL, Wang XW. Box-copper catalyzed cascade asymmetric amidation for chiral exo-methylene aminoindoline derivatives. Org Biomol Chem 2021; 19:9373-9378. [PMID: 34673876 DOI: 10.1039/d1ob01242h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enantioselective copper-catalyzed cascade inter- and intramolecular amidation was achieved between ethynyl benzoxazinanones and α-halohydroxamates in the presence of an indapybox ligand. The one-pot cascade transformation was triggered by the attack of hydroxamates to dipolar copper-allenylidene intermediates, followed by a nucleophilic annulation reaction. Thus, a series of exo-methylene 3-aminoindoline derivatives were obtained in good yields with high enantioselectivities under mild reaction conditions.
Collapse
Affiliation(s)
- Xiao-Peng Yang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Hao-Peng Lv
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Hao-Di Yang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Bai-Lin Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Xing-Wang Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| |
Collapse
|
15
|
Tian Y, Duan M, Liu J, Fu S, Dong K, Yue H, Hou Y, Zhao Y. Recent Advances in Metal‐Catalyzed Decarboxylative Reactions of Vinyl Benzoxazinanones. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Ye Tian
- School of Pharmaceutical Engineering Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 People's Republic of China
| | - Meibo Duan
- School of Pharmaceutical Engineering Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 People's Republic of China
| | - Jialu Liu
- School of Pharmaceutical Engineering Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 People's Republic of China
| | - Siyu Fu
- School of Pharmaceutical Engineering Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 People's Republic of China
| | - Kuan Dong
- School of Pharmaceutical Engineering Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 People's Republic of China
| | - Hao Yue
- School of Pharmaceutical Engineering Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 People's Republic of China
| | - Yunlei Hou
- School of Pharmaceutical Engineering Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 People's Republic of China
| | - Yanfang Zhao
- School of Pharmaceutical Engineering Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 People's Republic of China
| |
Collapse
|
16
|
Wang K, Wang B, Liu X, Fan H, Liu Y, Li C. Palladium-catalyzed enantioselective linear allylic alkylation of vinyl benzoxazinanones: An inner-sphere mechanism. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63751-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Qin XY, Meng FT, Wang M, Tu SJ, Hao WJ, Wang J, Jiang B. Gold-Catalyzed Skeletal Rearrangement of Alkenes: Regioselective Synthesis of Skeletally Diverse Tricyclic Heterocycles and Mechanistic Investigations. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00753] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xiao-Yan Qin
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Fan-Tao Meng
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Mian Wang
- Medical College, Guangxi University, Nanning 530004, P. R. China
| | - Shu-Jiang Tu
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Wen-Juan Hao
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Jianyi Wang
- Medical College, Guangxi University, Nanning 530004, P. R. China
| | - Bo Jiang
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| |
Collapse
|
18
|
Hang Q, Liu S, Yu L, Sun T, Zhang Y, Mei G, Shi F. Design and Application of
Indole‐Based
Allylic Donors for
Pd‐Catalyzed
Decarboxylative Allylation Reactions
†. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000104] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Qing‐Qing Hang
- School of Chemistry and Materials Science, Jiangsu Normal University Xuzhou Jiangsu 221116 China
| | - Si‐Jia Liu
- School of Chemistry and Materials Science, Jiangsu Normal University Xuzhou Jiangsu 221116 China
| | - Lei Yu
- School of Chemistry and Materials Science, Jiangsu Normal University Xuzhou Jiangsu 221116 China
| | - Ting‐Ting Sun
- School of Chemistry and Materials Science, Jiangsu Normal University Xuzhou Jiangsu 221116 China
| | - Yu‐Chen Zhang
- School of Chemistry and Materials Science, Jiangsu Normal University Xuzhou Jiangsu 221116 China
| | - Guang‐Jian Mei
- School of Chemistry and Materials Science, Jiangsu Normal University Xuzhou Jiangsu 221116 China
| | - Feng Shi
- School of Chemistry and Materials Science, Jiangsu Normal University Xuzhou Jiangsu 221116 China
| |
Collapse
|
19
|
Tucker ZD, Hill HM, Smith AL, Ashfeld BL. Diverting β-Hydride Elimination of a π-Allyl Pd II Carbene Complex for the Assembly of Disubstituted Indolines via a Highly Diastereoselective (4 + 1)-Cycloaddition. Org Lett 2020; 22:6605-6609. [PMID: 32806141 DOI: 10.1021/acs.orglett.0c02374] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A Pd0-catalyzed formal (4 + 1)-cycloaddition approach to 2,3-disubstituted dihydroindoles is described. The diastereoselective formation of dihydroindoles that is highlighted by a carbene migratory insertion/reductive elimination sequence proceeding via a π-allyl PdII-species compliments existing methods of indoline assembly.
Collapse
Affiliation(s)
- Zachary D Tucker
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Harrison M Hill
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Andrew L Smith
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Brandon L Ashfeld
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
20
|
Hua TB, Xiao C, Yang QQ, Chen JR. Recent advances in asymmetric synthesis of 2-substituted indoline derivatives. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.07.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
21
|
Xu W, Yao H, Zhang X, Peng C, Li L, Zhang Y, Qian S, Yang L, Wang Z. K2CO3 Promoted Cascade Reaction for the Preparation of 1H-Imidazol-4- yl-1-amine Derivatives. LETT ORG CHEM 2020. [DOI: 10.2174/1570178616666190226144620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:
A K2CO3 promoted efficient one pot two-step method for the preparation of 1H-imidazol-4-
yl-1-amine derivatives has been developed. A series of second amines with an imidazole group were
obtained with 56%-91% yields by the K2CO3 promoted amination of acetates and nitrogen deprotection
of the imidazole process.
Collapse
Affiliation(s)
- Wei Xu
- Department of Pharmaceutics Engineering, Xihua University, Chengdu, 610039, China
| | - Hao Yao
- Department of Chemistry, Xihua University, Chengdu, 610039, China
| | - Xing Zhang
- Department of Chemistry, Xihua University, Chengdu, 610039, China
| | - Changjiang Peng
- Department of Chemistry, Xihua University, Chengdu, 610039, China
| | - Ling Li
- Department of Pharmaceutics Engineering, Xihua University, Chengdu, 610039, China
| | - Yuanyuan Zhang
- Department of Chemistry, Xihua University, Chengdu, 610039, China
| | - Shan Qian
- Department of Pharmaceutics Engineering, Xihua University, Chengdu, 610039, China
| | - Lingling Yang
- Department of Pharmaceutics Engineering, Xihua University, Chengdu, 610039, China
| | - Zhouyu Wang
- Department of Chemistry, Xihua University, Chengdu, 610039, China
| |
Collapse
|
22
|
Taily IM, Saha D, Banerjee P. Palladium-catalyzed regio- and stereoselective access to allyl ureas/carbamates: facile synthesis of imidazolidinones and oxazepinones. Org Biomol Chem 2020; 18:6564-6570. [PMID: 32789352 DOI: 10.1039/d0ob01514h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Typically, transition metal catalysis enforces the stereodefined outcome of a reaction. Here we disclose the palladium-catalyzed regio- and stereoselective access to allylic ureas/carbamates and their further exploitation to diverse cyclic structures under operationally simple reaction conditions. This protocol features palladium-catalyzed decarboxylative amidation of highly modular VECs with good to excellent yield, minimal waste production, wide substrate scope, and low catalyst loading. In follow-up chemistry, we demonstrated the debenzylation of vinylic imidazolidinones to N-hydroxycyclic ureas and regioselective derivatization towards the facile synthesis of halohydrins and oxiranes under mild reaction conditions in good to excellent yields.
Collapse
Affiliation(s)
- Irshad Maajid Taily
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India.
| | - Debarshi Saha
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India.
| | - Prabal Banerjee
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India.
| |
Collapse
|
23
|
Hu L, Cai A, Wu Z, Kleij AW, Huang G. A Mechanistic Analysis of the Palladium‐Catalyzed Formation of Branched Allylic Amines Reveals the Origin of the Regio‐ and Enantioselectivity through a Unique Inner‐Sphere Pathway. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907375] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lingfei Hu
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences Tianjin University Tianjin 300072 P. R. China
| | - Aijie Cai
- Institute of Chemical Research of Catalonia (ICIQ) the Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
| | - Zhenzhen Wu
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences Tianjin University Tianjin 300072 P. R. China
| | - Arjan W. Kleij
- Institute of Chemical Research of Catalonia (ICIQ) the Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
- Catalan Institute of Research and Advanced Studies (ICREA) Pg. Lluís Companys 23 08010 Barcelona Spain
| | - Genping Huang
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences Tianjin University Tianjin 300072 P. R. China
| |
Collapse
|
24
|
Hu L, Cai A, Wu Z, Kleij AW, Huang G. A Mechanistic Analysis of the Palladium‐Catalyzed Formation of Branched Allylic Amines Reveals the Origin of the Regio‐ and Enantioselectivity through a Unique Inner‐Sphere Pathway. Angew Chem Int Ed Engl 2019; 58:14694-14702. [DOI: 10.1002/anie.201907375] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/16/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Lingfei Hu
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences Tianjin University Tianjin 300072 P. R. China
| | - Aijie Cai
- Institute of Chemical Research of Catalonia (ICIQ) the Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
| | - Zhenzhen Wu
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences Tianjin University Tianjin 300072 P. R. China
| | - Arjan W. Kleij
- Institute of Chemical Research of Catalonia (ICIQ) the Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
- Catalan Institute of Research and Advanced Studies (ICREA) Pg. Lluís Companys 23 08010 Barcelona Spain
| | - Genping Huang
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences Tianjin University Tianjin 300072 P. R. China
| |
Collapse
|
25
|
Wang Y, Xiong Q, Lu L, Zhang Q, Wang Y, Lan Y, Xiao W. Inverse‐Electron‐Demand Palladium‐Catalyzed Asymmetric [4+2] Cycloadditions Enabled by Chiral P,S‐Ligand and Hydrogen Bonding. Angew Chem Int Ed Engl 2019; 58:11013-11017. [DOI: 10.1002/anie.201905993] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Ya‐Ni Wang
- CCNU-uOttawa Joint Research CentreKey Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal University 152 Luoyu Road Wuhan Hubei 430079 China
| | - Qin Xiong
- College of Chemistry and Molecular EngineeringZhengzhou University Zhengzhou 450001 China
| | - Liang‐Qiu Lu
- CCNU-uOttawa Joint Research CentreKey Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal University 152 Luoyu Road Wuhan Hubei 430079 China
| | - Qun‐Liang Zhang
- CCNU-uOttawa Joint Research CentreKey Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal University 152 Luoyu Road Wuhan Hubei 430079 China
| | - Ying Wang
- CCNU-uOttawa Joint Research CentreKey Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal University 152 Luoyu Road Wuhan Hubei 430079 China
| | - Yu Lan
- College of Chemistry and Molecular EngineeringZhengzhou University Zhengzhou 450001 China
| | - Wen‐Jing Xiao
- CCNU-uOttawa Joint Research CentreKey Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal University 152 Luoyu Road Wuhan Hubei 430079 China
- Key Lab of Functional Molecular Engineering of Guangdong ProvinceSouth China University of Technology Guangdong 510006 China
| |
Collapse
|
26
|
Suo JJ, Du J, Jiang YJ, Chen D, Ding CH, Hou XL. Diastereo- and enantioselective palladium-catalyzed dearomative [4 + 2] cycloaddition of 3-nitroindoles. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.04.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Zhao H, Ding W, Guo J, Wang L, Song X, Fan X, Tang Z, Wu H, Bi X. Formal [4+2] Cycloaddition of Vinyl Benzoxazinones with Oxazol‐5‐(4
H
)‐Ones for Diastereoselective Construction of 3,4‐Disubstituted Dihydro‐2(1
H
)‐Quinolinones. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900560] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Hong‐Wu Zhao
- College of Life Science and Bio-engineering Beijing University of Technology Beijing 100124 People's Republic of China
| | - Wan‐Qiu Ding
- College of Life Science and Bio-engineering Beijing University of Technology Beijing 100124 People's Republic of China
| | - Jia‐Ming Guo
- College of Life Science and Bio-engineering Beijing University of Technology Beijing 100124 People's Republic of China
| | - Li‐Ru Wang
- College of Life Science and Bio-engineering Beijing University of Technology Beijing 100124 People's Republic of China
| | - Xiu‐Qing Song
- College of Life Science and Bio-engineering Beijing University of Technology Beijing 100124 People's Republic of China
| | - Xiao‐Zu Fan
- College of Life Science and Bio-engineering Beijing University of Technology Beijing 100124 People's Republic of China
| | - Zhe Tang
- College of Life Science and Bio-engineering Beijing University of Technology Beijing 100124 People's Republic of China
| | - Hui‐Hui Wu
- College of Life Science and Bio-engineering Beijing University of Technology Beijing 100124 People's Republic of China
| | - Xiao‐Fan Bi
- College of Life Science and Bio-engineering Beijing University of Technology Beijing 100124 People's Republic of China
| |
Collapse
|
28
|
Wang Y, Xiong Q, Lu L, Zhang Q, Wang Y, Lan Y, Xiao W. Inverse‐Electron‐Demand Palladium‐Catalyzed Asymmetric [4+2] Cycloadditions Enabled by Chiral P,S‐Ligand and Hydrogen Bonding. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905993] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ya‐Ni Wang
- CCNU-uOttawa Joint Research CentreKey Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal University 152 Luoyu Road Wuhan Hubei 430079 China
| | - Qin Xiong
- College of Chemistry and Molecular EngineeringZhengzhou University Zhengzhou 450001 China
| | - Liang‐Qiu Lu
- CCNU-uOttawa Joint Research CentreKey Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal University 152 Luoyu Road Wuhan Hubei 430079 China
| | - Qun‐Liang Zhang
- CCNU-uOttawa Joint Research CentreKey Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal University 152 Luoyu Road Wuhan Hubei 430079 China
| | - Ying Wang
- CCNU-uOttawa Joint Research CentreKey Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal University 152 Luoyu Road Wuhan Hubei 430079 China
| | - Yu Lan
- College of Chemistry and Molecular EngineeringZhengzhou University Zhengzhou 450001 China
| | - Wen‐Jing Xiao
- CCNU-uOttawa Joint Research CentreKey Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal University 152 Luoyu Road Wuhan Hubei 430079 China
- Key Lab of Functional Molecular Engineering of Guangdong ProvinceSouth China University of Technology Guangdong 510006 China
| |
Collapse
|
29
|
Sun BB, Hu QX, Hu JM, Yu JQ, Jia J, Wang XW. Asymmetric [4+2] cycloaddition of azlactones with dipolar copper–allenylidene intermediates for chiral 3,4-dhydroquinolin-2-one derivatives. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.06.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
30
|
Pal K, Sontakke GS, Volla CMR. Rh(II)-Catalyzed Highly Diastereoselective Cascade Transannulation of N-Sulfonyl-1,2,3-triazoles and Vinyl Benzoxazinanones. Org Lett 2019; 21:3716-3720. [DOI: 10.1021/acs.orglett.9b01174] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Kuntal Pal
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Geetanjali S. Sontakke
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Chandra M. R. Volla
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| |
Collapse
|
31
|
Li Z, Zheng J, Li C, Wu W, Jiang H. Palladium-Catalyzed Three-Component Coupling Reaction of Allyl Carboxylates, Norbornenes and Diboronates Involving Sequential Olefins Insertion and Borylation Reaction. CHINESE J CHEM 2019. [DOI: 10.1002/cjoc.201800536] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zun Li
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering; South China University of Technology; Guangzhou Guangdong 510640 China
| | - Jia Zheng
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering; South China University of Technology; Guangzhou Guangdong 510640 China
| | - Chunsheng Li
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering; South China University of Technology; Guangzhou Guangdong 510640 China
| | - Wanqing Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering; South China University of Technology; Guangzhou Guangdong 510640 China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering; South China University of Technology; Guangzhou Guangdong 510640 China
| |
Collapse
|
32
|
Sun M, Wan X, Zhou SJ, Mei GJ, Shi F. Iridium and a Brønsted acid cooperatively catalyzed chemodivergent and stereoselective reactions of vinyl benzoxazinones with azlactones. Chem Commun (Camb) 2019; 55:1283-1286. [DOI: 10.1039/c8cc08962k] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Under cooperative catalysis of iridium and a Brønsted acid, different C4-substituted azlactones react with vinyl benzoxazinones via a formal [4+2] cycloaddition or substitution reaction in a chemo- and stereoselective mode.
Collapse
Affiliation(s)
- Meng Sun
- School of Chemistry and Materials Science
- Jiangsu Normal University
- Xuzhou
- China
| | - Xiao Wan
- School of Chemistry and Materials Science
- Jiangsu Normal University
- Xuzhou
- China
| | - Si-Jia Zhou
- School of Chemistry and Materials Science
- Jiangsu Normal University
- Xuzhou
- China
| | - Guang-Jian Mei
- School of Chemistry and Materials Science
- Jiangsu Normal University
- Xuzhou
- China
| | - Feng Shi
- School of Chemistry and Materials Science
- Jiangsu Normal University
- Xuzhou
- China
| |
Collapse
|
33
|
Hao J, Xu Y, Xu Z, Zhang Z, Yang W. Pd-Catalyzed Three-Component Domino Reaction of Vinyl Benzoxazinanones for Regioselective and Stereoselective Synthesis of Allylic Sulfone-Containing Amino Acid Derivatives. Org Lett 2018; 20:7888-7892. [DOI: 10.1021/acs.orglett.8b03440] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jiping Hao
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing, China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Yi Xu
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhongliang Xu
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhiqiang Zhang
- University of Science and Technology Liaoning, Anshan 114051, China
| | - Weibo Yang
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing, China
- University of Science and Technology Liaoning, Anshan 114051, China
| |
Collapse
|
34
|
Zhao HW, Feng NN, Guo JM, Du J, Ding WQ, Wang LR, Song XQ. Diastereoselective and Enantioselective Synthesis of Barbiturate-Fused Spirotetrahydroquinolines via Chiral Palladium(0)/Ligand Complex Catalyzed [4 + 2] Cycloaddition of Vinyl Benzoxazinanones with Barbiturate-Based Olefins. J Org Chem 2018; 83:9291-9299. [PMID: 30019580 DOI: 10.1021/acs.joc.8b01268] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Under the catalysis of chiral palladium(0)/ligand complex, the [4 + 2] cycloaddition between vinyl benzoxazinanones and barbiturate-based olefins proceeded readily and provided barbiturate-fused spirotetrahydroquinolines in up to 96% chemical yield with up to >99:1 dr and 97% ee. The absolute configuration of barbiturate-fused spirotetrahydroquinolines was clearly identified by X-ray single crystal structure analysis. The reaction mechanism was proposed to shed light on the enantioselective formation of barbiturate-fused spirotetrahydroquinolines.
Collapse
Affiliation(s)
- Hong-Wu Zhao
- College of Life Science and Bio-engineering , Beijing University of Technology , No.100 Pingleyuan, Chaoyang District , Beijing 100124 , P. R. China
| | - Ning-Ning Feng
- College of Life Science and Bio-engineering , Beijing University of Technology , No.100 Pingleyuan, Chaoyang District , Beijing 100124 , P. R. China
| | - Jia-Ming Guo
- College of Life Science and Bio-engineering , Beijing University of Technology , No.100 Pingleyuan, Chaoyang District , Beijing 100124 , P. R. China
| | - Juan Du
- College of Life Science and Bio-engineering , Beijing University of Technology , No.100 Pingleyuan, Chaoyang District , Beijing 100124 , P. R. China
| | - Wan-Qiu Ding
- College of Life Science and Bio-engineering , Beijing University of Technology , No.100 Pingleyuan, Chaoyang District , Beijing 100124 , P. R. China
| | - Li-Ru Wang
- College of Life Science and Bio-engineering , Beijing University of Technology , No.100 Pingleyuan, Chaoyang District , Beijing 100124 , P. R. China
| | - Xiu-Qing Song
- College of Life Science and Bio-engineering , Beijing University of Technology , No.100 Pingleyuan, Chaoyang District , Beijing 100124 , P. R. China
| |
Collapse
|
35
|
Wang YN, Lu LQ, Xiao WJ. Non-Bonding Interactions Enable the Selective Formation of Branched Products in Palladium-Catalyzed Allylic Substitution Reactions. Chem Asian J 2018; 13:2174-2183. [DOI: 10.1002/asia.201800496] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/17/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Ya-Ni Wang
- CCNU-uOttawa Joint Research Centre; Key Laboratory of Pesticide & Chemical Biology; Ministry of Education; College of Chemistry; Central China Normal University; 152 Luoyu Road Wuhan Hubei 430079 P. R. China
| | - Liang-Qiu Lu
- CCNU-uOttawa Joint Research Centre; Key Laboratory of Pesticide & Chemical Biology; Ministry of Education; College of Chemistry; Central China Normal University; 152 Luoyu Road Wuhan Hubei 430079 P. R. China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation; Lanzhou Institute of Chemical Physics (LICP); Chinese Academy of Sciences; Lanzhou 730000 P. R. China
| | - Wen-Jing Xiao
- CCNU-uOttawa Joint Research Centre; Key Laboratory of Pesticide & Chemical Biology; Ministry of Education; College of Chemistry; Central China Normal University; 152 Luoyu Road Wuhan Hubei 430079 P. R. China
| |
Collapse
|
36
|
Lu B, Feng B, Ye H, Chen JR, Xiao WJ. Pd/Phosphoramidite Thioether Complex-Catalyzed Asymmetric N-Allylic Alkylation of Hydrazones with Allylic Acetates. Org Lett 2018; 20:3473-3476. [PMID: 29847945 DOI: 10.1021/acs.orglett.8b01226] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A general and efficient Pd/phosphoramidite thioether complex-catalyzed asymmetric N-allylic alkylation of hydrazones with allylic acetates has been developed for the first time. The reaction allows for the preparation of various valuable N-substituted hydrazones with generally good yields and excellent enantioselectivities. Minor structural modification of the ligand resulted in opposite enantiomers, enabling enantiodivergent synthesis of products by the same catalytic system.
Collapse
Affiliation(s)
- Bin Lu
- CCNU-uOttawa Joint Research Centre, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry , Central China Normal University , 152 Luoyu Road , Wuhan , Hubei 430079 , China
| | - Bin Feng
- CCNU-uOttawa Joint Research Centre, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry , Central China Normal University , 152 Luoyu Road , Wuhan , Hubei 430079 , China
| | - Hui Ye
- CCNU-uOttawa Joint Research Centre, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry , Central China Normal University , 152 Luoyu Road , Wuhan , Hubei 430079 , China.,Hubei Key Laboratory of Processing and Application of Catalytic Materials , Huanggang Normal University , Huanggang , Hubei 438000 , China
| | - Jia-Rong Chen
- CCNU-uOttawa Joint Research Centre, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry , Central China Normal University , 152 Luoyu Road , Wuhan , Hubei 430079 , China
| | - Wen-Jing Xiao
- CCNU-uOttawa Joint Research Centre, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry , Central China Normal University , 152 Luoyu Road , Wuhan , Hubei 430079 , China.,Hubei Key Laboratory of Processing and Application of Catalytic Materials , Huanggang Normal University , Huanggang , Hubei 438000 , China
| |
Collapse
|
37
|
Li TR, Zhang MM, Wang BC, Lu LQ, Xiao WJ. Synthesis of 3,3′-Biindoles through a Copper-Catalyzed Friedel–Crafts Propargylation/Hydroamination/Aromatization Sequence. Org Lett 2018; 20:3237-3240. [DOI: 10.1021/acs.orglett.8b01100] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Tian-Ren Li
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Mao-Mao Zhang
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Bao-Cheng Wang
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Liang-Qiu Lu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Wen-Jing Xiao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
- Hubei Key Laboratory for Processing and Application of Catalytic Materials, Huanggang Normal College, Huanggang 438000, China
| |
Collapse
|
38
|
Wang C, Li Y, Wu Y, Wang Q, Shi W, Yuan C, Zhou L, Xiao Y, Guo H. Enantioselective Construction of Tetrahydroquinazoline Motifs via Palladium-Catalyzed [4 + 2] Cycloaddition of Vinyl Benzoxazinones with Sulfamate-Derived Cyclic Imines. Org Lett 2018; 20:2880-2883. [DOI: 10.1021/acs.orglett.8b00905] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Chang Wang
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Yan Li
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Yang Wu
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Qijun Wang
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Wangyu Shi
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Chunhao Yuan
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Leijie Zhou
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Yumei Xiao
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Hongchao Guo
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
39
|
Das P, Gondo S, Nagender P, Uno H, Tokunaga E, Shibata N. Access to benzo-fused nine-membered heterocyclic alkenes with a trifluoromethyl carbinol moiety via a double decarboxylative formal ring-expansion process under palladium catalysis. Chem Sci 2018; 9:3276-3281. [PMID: 29732106 PMCID: PMC5915791 DOI: 10.1039/c7sc05447e] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 02/17/2018] [Indexed: 12/31/2022] Open
Abstract
Direct access to pharmaceutically attractive benzo-fused nine-membered heterocyclic alkenes 3 with a trifluoromethyl carbinol moiety was achieved via a palladium-catalyzed double-decarboxylative formal ring-expansion process from six-membered trifluoromethyl benzo[d][1,3]oxazinones 1 to nine-membered trifluoromethyl benzo[c][1,5]oxazonines 3 in the presence of vinylethylene carbonates 2. Generation of a Pd-π-allyl zwitterionic intermediate was proposed in the catalytic cycle. The trifluoromethyl group in the benzoxazinanones 1 plays an important role throughout the transformation. Diastereoselective chemical transformations of products 3 were also demonstrated.
Collapse
Affiliation(s)
- Pulakesh Das
- Department of Nanopharmaceutical Sciences , Department of Life Science and Applied Chemistry , Nagoya Institute of Technology , Gokiso, Showa-ku , Nagoya 466-8555 , Japan .
| | - Satoshi Gondo
- Department of Nanopharmaceutical Sciences , Department of Life Science and Applied Chemistry , Nagoya Institute of Technology , Gokiso, Showa-ku , Nagoya 466-8555 , Japan .
| | - Punna Nagender
- Department of Nanopharmaceutical Sciences , Department of Life Science and Applied Chemistry , Nagoya Institute of Technology , Gokiso, Showa-ku , Nagoya 466-8555 , Japan .
| | - Hiroto Uno
- Department of Nanopharmaceutical Sciences , Department of Life Science and Applied Chemistry , Nagoya Institute of Technology , Gokiso, Showa-ku , Nagoya 466-8555 , Japan .
| | - Etsuko Tokunaga
- Department of Nanopharmaceutical Sciences , Department of Life Science and Applied Chemistry , Nagoya Institute of Technology , Gokiso, Showa-ku , Nagoya 466-8555 , Japan .
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences , Department of Life Science and Applied Chemistry , Nagoya Institute of Technology , Gokiso, Showa-ku , Nagoya 466-8555 , Japan .
- Institute of Advanced Fluorine-Containing Materials , Zhejiang Normal University , 688 Yingbin Avenue , 321004 Jinhua , China
| |
Collapse
|
40
|
Li TR, Wang YN, Xiao WJ, Lu LQ. Transition-metal-catalyzed cyclization reactions using vinyl and ethynyl benzoxazinones as dipole precursors. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.02.081] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
41
|
Duan S, Cheng B, Duan X, Bao B, Li Y, Zhai H. Synthesis of cis-5,5a,6,10b-Tetrahydroindeno[2,1-b]indoles through Palladium-Catalyzed Decarboxylative Coupling of Vinyl Benzoxazinanones with Arynes. Org Lett 2018; 20:1417-1420. [PMID: 29461841 DOI: 10.1021/acs.orglett.8b00192] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A novel palladium-catalyzed decarboxylative coupling reaction of vinyl benzoxazinanones with arynes which may feature an intramolecular nucleophilic attack of an amino group at the central carbon of π-allylpalladium intermediate has been developed. The cis-5,5a,6,10b-tetrahydroindeno[2,1-b]indoles were generated in moderate to good yields. One key to the success of the present reaction was to achieve comparable rates for the palladium-catalyzed decarboxylation and aryne formation steps.
Collapse
Affiliation(s)
- Shengguo Duan
- The State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University , Lanzhou 730000, China
| | - Bin Cheng
- The State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University , Lanzhou 730000, China
| | - Xiaoguang Duan
- The State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University , Lanzhou 730000, China
| | - Bian Bao
- The State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University , Lanzhou 730000, China
| | - Yun Li
- The State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University , Lanzhou 730000, China
| | - Hongbin Zhai
- The State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University , Lanzhou 730000, China.,Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University , Shenzhen 518055, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300071, China
| |
Collapse
|
42
|
Spielmann K, Lee AVD, de Figueiredo RM, Campagne JM. Diastereoselective Palladium-Catalyzed (3 + 2)-Cycloadditions from Cyclic Imines and Vinyl Aziridines. Org Lett 2018; 20:1444-1447. [DOI: 10.1021/acs.orglett.8b00228] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kim Spielmann
- Institut
Charles Gerhardt Montpellier (ICGM), UMR 5253, Univ Montpellier, CNRS, ENSCM - Ecole Nationale Supérieure de Chimie, 8 Rue de l’Ecole Normale, Montpellier 34296 Cedex 5, France
| | - Arie van der Lee
- X-ray
structures analysis, Institut Européen des Membranes (IEM), UMR 5632, Univ Montpellier, CNRS - Place Eugène Bataillon, Montpellier 34095 Cedex 5, France
| | - Renata Marcia de Figueiredo
- Institut
Charles Gerhardt Montpellier (ICGM), UMR 5253, Univ Montpellier, CNRS, ENSCM - Ecole Nationale Supérieure de Chimie, 8 Rue de l’Ecole Normale, Montpellier 34296 Cedex 5, France
| | - Jean-Marc Campagne
- Institut
Charles Gerhardt Montpellier (ICGM), UMR 5253, Univ Montpellier, CNRS, ENSCM - Ecole Nationale Supérieure de Chimie, 8 Rue de l’Ecole Normale, Montpellier 34296 Cedex 5, France
| |
Collapse
|
43
|
Wang BC, Wang YN, Zhang MM, Xiao WJ, Lu LQ. Copper-catalyzed decarboxylative cyclization via tandem C–P and C–N bond formation: access to 2-phosphorylmethyl indoles. Chem Commun (Camb) 2018. [DOI: 10.1039/c8cc00739j] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A copper-catalyzed decarboxylative cyclization of ethynyl benzoxazinanones with P(O)H compounds has been developed for the synthesis of 2-phosphorylmethyl indoles.
Collapse
Affiliation(s)
- Bao-Cheng Wang
- CCNU-uOttawa Joint Research Centre
- Key Laboratory of Pesticide & Chemical Biology
- Ministry of Education
- College of Chemistry
- Central China Normal University
| | - Ya-Ni Wang
- CCNU-uOttawa Joint Research Centre
- Key Laboratory of Pesticide & Chemical Biology
- Ministry of Education
- College of Chemistry
- Central China Normal University
| | - Mao-Mao Zhang
- CCNU-uOttawa Joint Research Centre
- Key Laboratory of Pesticide & Chemical Biology
- Ministry of Education
- College of Chemistry
- Central China Normal University
| | - Wen-Jing Xiao
- CCNU-uOttawa Joint Research Centre
- Key Laboratory of Pesticide & Chemical Biology
- Ministry of Education
- College of Chemistry
- Central China Normal University
| | - Liang-Qiu Lu
- CCNU-uOttawa Joint Research Centre
- Key Laboratory of Pesticide & Chemical Biology
- Ministry of Education
- College of Chemistry
- Central China Normal University
| |
Collapse
|
44
|
Li MM, Wei Y, Liu J, Chen HW, Lu LQ, Xiao WJ. Sequential Visible-Light Photoactivation and Palladium Catalysis Enabling Enantioselective [4+2] Cycloadditions. J Am Chem Soc 2017; 139:14707-14713. [DOI: 10.1021/jacs.7b08310] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Miao-Miao Li
- Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, People’s Republic of China
| | - Yi Wei
- Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, People’s Republic of China
| | - Jie Liu
- Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, People’s Republic of China
| | - Hong-Wei Chen
- Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, People’s Republic of China
| | - Liang-Qiu Lu
- Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, People’s Republic of China
- State Key Laboratory for Oxo Synthesis and Selective
Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, People’s Republic of China
| | - Wen-Jing Xiao
- Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, People’s Republic of China
| |
Collapse
|