1
|
Pawlak M, Pobłocki K, Drzeżdżon J, Jacewicz D. Recent developments in polymer chemistry, medicinal chemistry and electro-optics using Ni and Pd-based catalytic systems. J Mater Chem B 2025; 13:4964-4993. [PMID: 40178355 DOI: 10.1039/d4tb02859g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Catalysis is the fastest and continuously growing field in chemistry. A key component of this process is catalytic systems, which result in increased reaction rates and yields, as well as the ability to tailor the properties of products to the final application. With the development of catalysis, the requirements for catalysts used in these processes have also grown rapidly. Modern catalytic materials should overcome the challenges posed by the modern world of chemistry. They should be durable, and stable, have good catalytic properties, and allow catalytic processes to be carried out under mild and environmentally friendly conditions. In this article, we provide an overview of recent reports on the use of catalytic systems based on nickel and palladium ions in catalytic reactions, leading to functional materials used in the fields of medicinal chemistry, polymer chemistry and electro-optical materials chemistry. Research on the optimization and modification of existing synthetic methods, reports on the synthesis of new functional materials, and articles on new, more efficient catalytic systems that overcome the drawbacks of existing catalysts are described. The presented article reviews current knowledge, providing the newest information from the world of catalysis and synthesis of advanced functional materials, presenting potential directions for further development in these fields.
Collapse
Affiliation(s)
- Marta Pawlak
- Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland.
| | - Kacper Pobłocki
- Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland.
| | - Joanna Drzeżdżon
- Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland.
| | - Dagmara Jacewicz
- Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland.
| |
Collapse
|
2
|
Manhas N, Kumar G, Dhawan S, Makhanya T, Singh P. A Systematic Review of Synthetic and Anticancer and Antimicrobial Activity of Quinazoline/Quinazolin-4-one Analogues. ChemistryOpen 2025:e202400439. [PMID: 39871708 DOI: 10.1002/open.202400439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/25/2024] [Indexed: 01/29/2025] Open
Abstract
Quinazolines/quinazolin-4-ones are significant nitrogen-containing heterocycles that exist in various natural products and synthetic scaffolds with diverse medicinal and pharmacological applications. Researchers across the globe have explored numerous synthetic strategies to develop safer and more potent quinazoline/quinazolinone analogues, particularly for combating cancer and microbial infections. This review systematically examines scholarly efforts toward understanding this scaffold's synthetic pathways and medicinal relevance, emphasizing the role of metal and non-metal catalysts and other reagents in their synthesis. Additionally, the article discusses selected compounds' anticancer and antimicrobial properties, with a brief look into their structure-activity relationships.
Collapse
Affiliation(s)
- Neha Manhas
- Department of Chemistry, Durban University of Technology, ML Sultan Campus, Durban, 4000, South Africa
| | - Gobind Kumar
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, 4000, South Africa
| | - Sanjeev Dhawan
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, 4000, South Africa
| | - Talent Makhanya
- Department of Chemistry, Durban University of Technology, ML Sultan Campus, Durban, 4000, South Africa
| | - Parvesh Singh
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, 4000, South Africa
| |
Collapse
|
3
|
Liu S, Zhang K, Meng Y, Xu J, Chen N. Aryne and CO 2-based formal [2 + 2 + 2] annulation to access tetrahydroisoquinoline-fused benzoxazinones. Org Biomol Chem 2023; 21:6892-6897. [PMID: 37581250 DOI: 10.1039/d3ob01147j] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Tetrahydroisoquinoline and its fused polyheterocycles are prevalent structural motifs found in numerous natural products. In this study, we report a highly efficient and convergent synthetic approach for the construction of tetrahydroisoquinoline-fused polyheterocycles through a three-component formal [2 + 2 + 2] annulation process by combining 3,4-dihydroisoquinolines, CO2, and benzynes. Notably, electron-rich 3,4-dihydroisoquinolines and electron-deficient benzynes exhibit greater reactivity in this annulation. Moreover, this method benefits from the convergent synthesis and the utilization of carbon dioxide, providing a valuable strategy for the facile synthesis of tetrahydroisoquinoline-fused polyheterocycles, with potential applications in the discovery and development of novel organic molecules.
Collapse
Affiliation(s)
- Shiqi Liu
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Kun Zhang
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Yutong Meng
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Jiaxi Xu
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Ning Chen
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| |
Collapse
|
4
|
Mai J, Huang Z, Lv S, Chen Q, Chen R, Xie F, Wang J, Li B. Visible light-induced cascade N-alkylation/amidation reaction of quinazolin-4(3 H)-ones and related N-heterocycles. Org Biomol Chem 2023; 21:2423-2428. [PMID: 36866685 DOI: 10.1039/d2ob02226e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
An efficient and visible light-promoted cascade N-alkylation/amidation of quinazolin-4(3H)-ones with benzyl halides and allyl halides has been described for the first time to provide a convenient access to quinazoline-2,4(1H,3H)-diones. This cascade N-alkylation/amidation reaction shows good functional group tolerance and could also be applied to N-heterocycles such as benzo[d]thiazoles, benzo[d]imidazoles, and quinazolines. Control experiments show that K2CO3 plays an important role in this transformation.
Collapse
Affiliation(s)
- Jiexiong Mai
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, Guangdong Province, P.R. China.
| | - Ziwei Huang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, Guangdong Province, P.R. China.
| | - Shaohuan Lv
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, Guangdong Province, P.R. China.
| | - Quan Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, Guangdong Province, P.R. China.
| | - Rongrong Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, Guangdong Province, P.R. China.
| | - Feng Xie
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, Guangdong Province, P.R. China.
| | - Jun Wang
- Department of Chemistry, Hong Kong Baptist University, Kowloon, Hong Kong, P.R. China
| | - Bin Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, Guangdong Province, P.R. China.
| |
Collapse
|
5
|
Zhou Z, Liu X, Ma JG, Cheng P. MOF-Incorporated Binuclear N-Heterocyclic Carbene-Cobalt Catalyst for Efficient Conversion of CO 2 to Formamides. CHEMSUSCHEM 2022; 15:e202201386. [PMID: 35959848 DOI: 10.1002/cssc.202201386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Environmental problem caused by carbon emission is of widespread concern. Involving CO2 as C1 resource into chemical synthesis is one of the most attractive ways for carbon recycling. Herein, the first example of host-guest composites featuring metal-organic framework (MOF)-encapsulated binuclear N-heterocyclic carbene (NHC) complex, Co2 @MIL101, was developed with the molecularly dispersed [Co(IPr)Br]2 (μ-Br)2 (Co2 ) loading in the cage of MIL-101(Cr) via a "ligand-in-dimer-trap" strategy, which was comprehensively investigated through various techniques including synchrotron X-ray absorption, electron microscopy, X-ray diffraction, solid-state nuclear magnetic resonance spectroscopy, and others. The noble-metal-free double-sites catalyst Co2 @MIL101 exhibited promising stability, activity, efficiency, reusability, and substrate adaptability for converting CO2 into various formamides with amines and hydrosilanes and achieved the best performance for one of the most useful formamides, N-methyl-N-phenylformamide (MFA), among the recyclable catalysts at ambient conditions, providing a reliable approach to successfully unify the advantages of both homo- and heterogeneous catalysts. Density functional theory calculations were applied to illustrate the superior activity of the binuclear NHC complex center as double-sites catalyst toward the activation of CO2 .
Collapse
Affiliation(s)
- Zhenzhen Zhou
- Department of Chemistry and Key Laboratory of Advanced, Energy Material Chemistry (MOE), Haihe Laboratory of Sustainable Chemical Transformations (Tianjin), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Xiao Liu
- Department of Chemistry and Key Laboratory of Advanced, Energy Material Chemistry (MOE), Haihe Laboratory of Sustainable Chemical Transformations (Tianjin), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Jian-Gong Ma
- Department of Chemistry and Key Laboratory of Advanced, Energy Material Chemistry (MOE), Haihe Laboratory of Sustainable Chemical Transformations (Tianjin), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Peng Cheng
- Department of Chemistry and Key Laboratory of Advanced, Energy Material Chemistry (MOE), Haihe Laboratory of Sustainable Chemical Transformations (Tianjin), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
6
|
Zhang Y, Liu T, Liu L, Guo H, Zeng H, Bi W, Qiu G, Gao W, Ran X, Yang L, Du G, Zhang L. Palladium-Catalyzed Preparation of N-Substituted Benz[ c, d]indol-2-imines and N-Substituted Amino-1-naphthylamides. J Org Chem 2022; 87:8515-8524. [PMID: 35731803 DOI: 10.1021/acs.joc.2c00620] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Here, we report a novel and facile protocol for the synthesis of benz[c,d]indol-2-imines via palladium-catalyzed C-C and C-N coupling of 8-halo-1-naphthylamines with isocyanides in a single step. The reaction features broad substrate scopes and mild conditions, providing an efficient alternative for the construction of antiproliferative agents and BET bromodomain inhibitors. If 0.1 mL of H2O was added to this reaction, the N-substituted amino-1-naphthylamides could be obtained easily.
Collapse
Affiliation(s)
- Yuan Zhang
- Yunnan Key Laboratory of Wood Adhesive and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China.,College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China
| | - Tongda Liu
- Yunnan Key Laboratory of Wood Adhesive and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China
| | - Li Liu
- Yunnan Key Laboratory of Wood Adhesive and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China
| | - Haiyang Guo
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China
| | - Heyang Zeng
- Yunnan Key Laboratory of Wood Adhesive and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China
| | - Wei Bi
- Yunnan Key Laboratory of Wood Adhesive and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China
| | - Guanyinsheng Qiu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China
| | - Wei Gao
- Yunnan Key Laboratory of Wood Adhesive and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China
| | - Xin Ran
- Yunnan Key Laboratory of Wood Adhesive and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China
| | - Long Yang
- Yunnan Key Laboratory of Wood Adhesive and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China
| | - Guanben Du
- Yunnan Key Laboratory of Wood Adhesive and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China
| | - Lianpeng Zhang
- Yunnan Key Laboratory of Wood Adhesive and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China
| |
Collapse
|
7
|
Wu Y, Feng X, Zhai Q, Wang H, Jiang H, Ren Y. Metal-Organic Framework Surface Functionalization Enhancing the Activity and Stability of Palladium Nanoparticles for Carbon-Halogen Bond Activation. Inorg Chem 2022; 61:6995-7004. [PMID: 35482971 DOI: 10.1021/acs.inorgchem.2c00379] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Supported metal nanocatalyst is one of the efficient tools for organic transformations. However, catalyst deactivation caused by the migration, aggregation, and leaching of active metal species in the reaction process remains challenging. Herein, a metal-organic framework (MOF), MIL-101, was employed to covalently graft the PPh3 ligand on its surface and then supported palladium nanoparticles (Pd NPs), affording Pd/MIL-101-PPh3. A variety of spectral characterizations and DFT calculation reveal that there is an electron-donating effect of the MOF surface PPh3 toward Pd NPs, which markedly boosts the activation of the carbon-halogen bond in aryl halides. Consequently, Pd/MIL-101-PPh3 exhibits excellent activity for the three-component reaction of 2-iodoaniline, CO2, and isocyanide, as well as Suzuki-Miyaura and Heck coupling reactions, far exceeding amino-functionalized Pd/MIL-101-NH2, naked Pd/MIL-101, and other commercial-supported Pd catalysts. Furthermore, Pd/MIL-101-PPh3 can also frustrate the migration, aggregation, and leaching of reactive Pd species in the reaction process due to the molecular fence effect generated by MOF surface functionalization.
Collapse
Affiliation(s)
- Yida Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641 Guangdong, P. R. China
| | - Xiao Feng
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641 Guangdong, P. R. China
| | - Qixiang Zhai
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641 Guangdong, P. R. China
| | - Haosen Wang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641 Guangdong, P. R. China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641 Guangdong, P. R. China
| | - Yanwei Ren
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641 Guangdong, P. R. China
| |
Collapse
|
8
|
Gheidari D, Mehrdad M, Maleki S. Recent Advances in Synthesis of Quinazoline‐2,4(
1H,3H
)‐diones: Versatile Building Blocks in
N
‐ Heterocyclic Compounds. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Davood Gheidari
- Department of Chemistry, Faculty of Science University of Guilan Rasht Iran
| | - Morteza Mehrdad
- Department of Chemistry, Faculty of Science University of Guilan Rasht Iran
| | - Saloomeh Maleki
- Department of Chemistry, Faculty of Science University of Shahrood Iran
| |
Collapse
|
9
|
Veltri L, Amuso R, Mancuso R, Gabriele B. Advances in Palladium-Catalyzed Carboxylation Reactions. Molecules 2022; 27:262. [PMID: 35011494 PMCID: PMC8746634 DOI: 10.3390/molecules27010262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 11/16/2022] Open
Abstract
In this short review, we highlight the advancements in the field of palladium-catalyzed carbon dioxide utilization for the synthesis of high value added organic molecules. The review is structured on the basis of the kind of substrate undergoing the Pd-catalyzed carboxylation process. Accordingly, after the introductory section, the main sections of the review will illustrate Pd-catalyzed carboxylation of olefinic substrates, acetylenic substrates, and other substrates (aryl halides and triflates).
Collapse
Affiliation(s)
- Lucia Veltri
- Laboratory of Industrial and Synthetic Organic Chemistry (LISOC), Department of Chemistry and Chemical Technologies, University of Calabria, Via Pietro Bucci 12/C, 87036 Arcavacata di Rende, Italy; (R.A.); (R.M.)
| | | | | | - Bartolo Gabriele
- Laboratory of Industrial and Synthetic Organic Chemistry (LISOC), Department of Chemistry and Chemical Technologies, University of Calabria, Via Pietro Bucci 12/C, 87036 Arcavacata di Rende, Italy; (R.A.); (R.M.)
| |
Collapse
|
10
|
Phakhodee W, Wiriya N, Yamano D, Hongsibsong S, Pattarawarapan M. Synthesis of N3-Substituted Quinazoline-2,4-diones via C-4 Amination-Cyclization of Isatoic Anhydrides. HETEROCYCLES 2022. [DOI: 10.3987/com-22-s(r)10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Liu HW, Wang DL, Jiang NQ, Li HY, Cai ZJ, Ji SJ. Divergent synthesis of α-functionalized amides through selective N-O/C-C or N-O/C-C/C-N cleavage of aza-cyclobutanone oxime esters. Chem Commun (Camb) 2021; 57:9618-9621. [PMID: 34546230 DOI: 10.1039/d1cc03348d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Herein, a novel sequential ring opening reaction of aza-cyclobutanone oxime esters with isocyanides is described. The reaction proceeded smoothly under redox-neutral and mild conditions, leading to a divergent synthesis of α-cyanomethylaminoamides, α-acyloxyamides and α-acylaminoamides. In these transformations, a selective N-O/C-C or N-O/C-C/C-N cleavage was achieved only by changing the iron-catalyst system. Among them, a rare sequential N-O/C-C/C-N cleavage process with a classical Passerini or Ugi multicomponent reaction can be executed in a single step. To the best of our knowledge, this work creates a novel reaction mode of cycloketone oximes and provides new opportunities for reaction design.
Collapse
Affiliation(s)
- Hua-Wei Liu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China.
| | - Dian-Liang Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China.
| | - Nan-Quan Jiang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China.
| | - Hai-Yan Li
- Analysis and Testing Center, Soochow University, Suzhou 215123, China
| | - Zhong-Jian Cai
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China.
| | - Shun-Jun Ji
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China.
| |
Collapse
|
12
|
Mondal S, Ballav T, Biswas K, Ghosh S, Ganesh V. Exploiting the Versatility of Palladium Catalysis: A Modern Toolbox for Cascade Reactions. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Sourav Mondal
- Department of Chemistry Indian Institute of Technology Kharagpur Kharagpur 721 302 West Bengal India
| | - Tamal Ballav
- Department of Chemistry Indian Institute of Technology Kharagpur Kharagpur 721 302 West Bengal India
| | - Krishna Biswas
- Department of Chemistry Indian Institute of Technology Kharagpur Kharagpur 721 302 West Bengal India
| | - Suman Ghosh
- Department of Chemistry Indian Institute of Technology Kharagpur Kharagpur 721 302 West Bengal India
| | - Venkataraman Ganesh
- Department of Chemistry Indian Institute of Technology Kharagpur Kharagpur 721 302 West Bengal India
| |
Collapse
|
13
|
Liu D, Song B, Wang J, Li B, Wang B, Li M, Qin A, Tang BZ. CO 2-Involved and Isocyanide-Based Three-Component Polymerization toward Functional Heterocyclic Polymers with Self-Assembly and Sensing Properties. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Dongming Liu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, SCUT-HKUST Joint Research Institute, AIE Institute, Center for Aggregation-Induced Emission, South China University of Technology (SCUT), Guangzhou 510640, China
| | - Bo Song
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, SCUT-HKUST Joint Research Institute, AIE Institute, Center for Aggregation-Induced Emission, South China University of Technology (SCUT), Guangzhou 510640, China
| | - Jia Wang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, SCUT-HKUST Joint Research Institute, AIE Institute, Center for Aggregation-Induced Emission, South China University of Technology (SCUT), Guangzhou 510640, China
| | - Baoxi Li
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, SCUT-HKUST Joint Research Institute, AIE Institute, Center for Aggregation-Induced Emission, South China University of Technology (SCUT), Guangzhou 510640, China
| | - Bingnan Wang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, SCUT-HKUST Joint Research Institute, AIE Institute, Center for Aggregation-Induced Emission, South China University of Technology (SCUT), Guangzhou 510640, China
| | - Mingzhao Li
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, SCUT-HKUST Joint Research Institute, AIE Institute, Center for Aggregation-Induced Emission, South China University of Technology (SCUT), Guangzhou 510640, China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, SCUT-HKUST Joint Research Institute, AIE Institute, Center for Aggregation-Induced Emission, South China University of Technology (SCUT), Guangzhou 510640, China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, SCUT-HKUST Joint Research Institute, AIE Institute, Center for Aggregation-Induced Emission, South China University of Technology (SCUT), Guangzhou 510640, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, and Department of Chemical and Biological Engineering, The Hong Kong University of Science & Technology (HKUST), Kowloon, Hong Kong 999077, China
| |
Collapse
|
14
|
Xu P, Zhu YM, Liu XY, Zhou XZ, Wang SY, Ji SJ. Mn(III)-mediated radical reaction of 2-isocyano-6-alkenyl(alkynyl)benzonitriles with arylboronic acids: Synthesis of pyrroloisoquinoline derivatives. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.03.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Zhu Y, Zhang W, Li H, Xu X, Ji S. Palladium Catalyzed Ring Expansion Reaction of Isoxazolones with Isocyanides: Synthesis of 1,3‐Oxazin‐6‐One Derivatives. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yi‐Ming Zhu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 People's Republic of China
| | - Wan Zhang
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 People's Republic of China
| | - Hongkun Li
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 People's Republic of China
| | - Xiao‐Ping Xu
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 People's Republic of China
| | - Shun‐Jun Ji
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 People's Republic of China
| |
Collapse
|
16
|
Shiri M, Farajinia-Lehi N, Salehi P, Tanbakouchian Z. Transition Metal and Inner Transition Metal Catalyzed Amide Derivatives Formation through Isocyanide Chemistry. SYNTHESIS-STUTTGART 2020. [DOI: 10.1055/s-0040-1707357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractThe synthesis of amides is a substantial research area in organic chemistry because of their ubiquitous presence in natural products and bioactive molecules. The use of easily accessible isocyanides as amidoyl (carbamoyl) synthons in cross-coupling reactions using transition metal and inner transition metöal catalysts is a current trend in this area. Isocyanides, owing to their coordination ability as a ligand and inherent electronic properties for reactions with various partners, have expanded the potential application of these transformations for the preparation of novel synthetic molecules and pharmaceutical candidates. This review gives an overview of the achievements in isocyanide-based transition metal and inner transition metal catalyzed amide formation and discusses highlights of the proposed distinct mechanisms.1 Introduction2 Synthesis of Arenecarboxamides3 Synthesis of Alkanamides4 Synthesis of Cyclic Amides5 Formation of Alkynamides6 Formation of Acrylamide-like Molecules7 Formation of Ureas and Carbamates8 Conclusion
Collapse
Affiliation(s)
- Morteza Shiri
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University
- Department of R&D, Pakshoo Industrial Group, Second Alley
| | | | - Parvin Salehi
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University
| | - Zahra Tanbakouchian
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University
| |
Collapse
|
17
|
Collet JW, Roose TR, Weijers B, Maes BUW, Ruijter E, Orru RVA. Recent Advances in Palladium-Catalyzed Isocyanide Insertions. Molecules 2020; 25:E4906. [PMID: 33114013 PMCID: PMC7660339 DOI: 10.3390/molecules25214906] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/17/2022] Open
Abstract
Isocyanides have long been known as versatile chemical reagents in organic synthesis. Their ambivalent nature also allows them to function as a CO-substitute in palladium-catalyzed cross couplings. Over the past decades, isocyanides have emerged as practical and versatile C1 building blocks, whose inherent N-substitution allows for the rapid incorporation of nitrogeneous fragments in a wide variety of products. Recent developments in palladium catalyzed isocyanide insertion reactions have significantly expanded the scope and applicability of these imidoylative cross-couplings. This review highlights the advances made in this field over the past eight years.
Collapse
Affiliation(s)
- Jurriën W. Collet
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (J.W.C.); (T.R.R.); (B.W.)
- Organic Synthesis, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Thomas R. Roose
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (J.W.C.); (T.R.R.); (B.W.)
| | - Bram Weijers
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (J.W.C.); (T.R.R.); (B.W.)
| | - Bert U. W. Maes
- Organic Synthesis, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Eelco Ruijter
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (J.W.C.); (T.R.R.); (B.W.)
| | - Romano V. A. Orru
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (J.W.C.); (T.R.R.); (B.W.)
- Organic Chemistry, Aachen-Maastricht Institute for Biobased Materials, Maastricht University, Urmonderlaan 22, 6167 RD Geleen, The Netherlands
| |
Collapse
|
18
|
Dey TK, Basu P, Riyajuddin S, Biswas S, Khan A, Ghosh K, Islam SM. In Situ Carbonylative Synthesis of Aromatic Esters and Formation of Quinazoline‐2,4(1H,3H)‐diones by Chemical Fixation of CO
2
in Assistance of Polymer‐Supported Palladium Catalyst. ChemistrySelect 2020. [DOI: 10.1002/slct.202002256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Tusar Kanto Dey
- Department of Chemistry University of Kalyani Kalyani Nadia 741235 West Bengal India
| | - Priyanka Basu
- Department of Chemistry University of Kalyani Kalyani Nadia 741235 West Bengal India
| | - Sk. Riyajuddin
- Institute of Nano Science and Technology Mohali Punjab 160062 India
| | - Surajit Biswas
- Department of Chemistry University of Kalyani Kalyani Nadia 741235 West Bengal India
| | - Aslam Khan
- King Abdullah Institute for Nanotechnology King Saud University Riyadh 11451 Saudi Arabia
| | - Kaushik Ghosh
- Institute of Nano Science and Technology Mohali Punjab 160062 India
| | - Sk. Manirul Islam
- Department of Chemistry University of Kalyani Kalyani Nadia 741235 West Bengal India
| |
Collapse
|
19
|
Wang C, Wu L, Xu W, He F, Qu J, Chen Y. Palladium-Catalyzed Secondary Benzylic Imidoylative Reactions. Org Lett 2020; 22:6954-6959. [PMID: 32808530 DOI: 10.1021/acs.orglett.0c02515] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Reported herein is a palladium-catalyzed secondary benzylic imidoylative Negishi reaction leveraging the sterically bulky aromatic isocyanides as the imine source. This method allows the facile access of alkyl-, (hetero)aryl-, and alkynylzinc reagents to afford various α-substituted phenylacetone products under mild acidic hydrolysis, which are ubiquitous motifs in many pharmaceuticals and biologically active compounds. The diastereoselective reduction of imine can be accomplished to provide the expedient conversion of secondary benzylic halide into α-substituted phenethylamine derivatives with high atom economy.
Collapse
Affiliation(s)
- Chenglong Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Licheng Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Wentao Xu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Feng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jingping Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yifeng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
20
|
Yao T, Wang B, He D, Zhang X, Li X, Fang R. Ligand-Controlled Palladium-Catalyzed Chemoselective Multicomponent Reaction of Olefin-Tethered Aryl Halides, Isocyanides, and Carboxylic Acids: Diversified Synthesis of Imides. Org Lett 2020; 22:6784-6789. [DOI: 10.1021/acs.orglett.0c02297] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Tuanli Yao
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Bo Wang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Dan He
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Xiaofei Zhang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Xiang Li
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Ran Fang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
21
|
Chen D, Yang M, Li J, Cui P, Su L, Shan Y, You J, Rojsitthisak P, Liu JB, Qiu G. Palladium-Catalyzed Cycloaddition of Alkynylimines, Double Isocyanides, and H 2O/KOAc. J Org Chem 2020; 85:6441-6449. [PMID: 32321251 DOI: 10.1021/acs.joc.0c00323] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In this work, a palladium-catalyzed cyclization of alkynylimines and double isocyanides is described. This facile procedure is efficient for synthesizing various 4-amidyl-2-aminopyrroles. Mechanism investigation indicates that a four-membered ring-fused pyrrole species is a key intermediate and the reaction involves [4 + 1] cycloaddition, protonation, nucleophilic addition, 1,4-addition of isocyanide, and rearomatization. Interestingly, the linear dipyrrole derivative is found to be an appropriate fluoride ion probe with a remarkable emission change, which could serve as a potential candidate for optoelectronic conjugated materials.
Collapse
Affiliation(s)
- Dianpeng Chen
- Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Min Yang
- Department of Forensic Science, Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Jianming Li
- Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Peiying Cui
- Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Lei Su
- Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Yingying Shan
- Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Jinmao You
- Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Pornchai Rojsitthisak
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phayathai Road, Patumwan, Bangkok 10330, Thailand
| | - Jin-Biao Liu
- School of Metallurgical and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Guanyinsheng Qiu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China
| |
Collapse
|
22
|
Palladium-catalyzed regioselective cascade reaction of carbon dioxide, amines and allenes for the synthesis of functionalized carbamates. Sci China Chem 2020. [DOI: 10.1007/s11426-019-9679-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
23
|
Kianmehr E, Falahat MR, Tanbakouchian A, Mahdavi M. Copper-Mediated Direct Cyanatation of Benzamides: A New Approach to the Synthesis of Quinazolinediones. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Ebrahim Kianmehr
- School of Chemistry; College of Science; University of Tehran; Tehran Iran
| | | | | | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center; Endocrinology and Metabolism Clinical Sciences Institute; Tehran University of Medical Sciences; Tehran Iran
| |
Collapse
|
24
|
Dolai M, Saha U, Biswas S, Chatterjee S, Suresh Kumar G. DNA intercalative trinuclear Cu( ii) complex with new trans axial nitrato ligation as an efficient catalyst for atmospheric CO 2 fixation to epoxides. CrystEngComm 2020. [DOI: 10.1039/d0ce01152e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A trinuclear octahedral CuII complex was synthesized and structurally characterized by single crystal X-ray diffraction studies and behaved as a catalyst for CO2 fixation to epoxide and as a DNA binder.
Collapse
Affiliation(s)
- Malay Dolai
- Department of Chemistry
- Prabhat Kumar College
- India
| | - Urmila Saha
- Organic and Medicinal Chemistry Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata 700 032
- India
| | | | - Sabyasachi Chatterjee
- Organic and Medicinal Chemistry Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata 700 032
- India
| | - Gopinatha Suresh Kumar
- Organic and Medicinal Chemistry Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata 700 032
- India
| |
Collapse
|
25
|
Chen X, Qiu G, Liu R, Chen D, Chen Z. Divergent oriented synthesis (DOS) of aza-heterocyclic amides through palladium-catalyzed ketenimination of 2-iodo-N-(propa-1,2-dien-1-yl)anilines. Org Chem Front 2020. [DOI: 10.1039/c9qo01451a] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A palladium-catalyzed tandem reaction of N-(2-iodophenyl)-4-methyl-N-(propa-1,2-dien-1-yl)benzenesulfonamide with isocyanide is described to divergently produce aza-heterocyclic amides.
Collapse
Affiliation(s)
- Xiaoyan Chen
- Key Laboratory of Functional Small Organic Molecules
- Ministry of Education and College of Chemistry & Chemical Engineering
- Jiangxi Normal University
- Nanchang
- P. R. China
| | - Guanyinsheng Qiu
- College of Biological
- Chemical Sciences and Engineering
- Jiaxing University
- Jiaxing 314001
- China
| | - Renzhi Liu
- College of Biological
- Chemical Sciences and Engineering
- Jiaxing University
- Jiaxing 314001
- China
| | - Dianpeng Chen
- Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
- China
| | - Zhiyuan Chen
- Key Laboratory of Functional Small Organic Molecules
- Ministry of Education and College of Chemistry & Chemical Engineering
- Jiangxi Normal University
- Nanchang
- P. R. China
| |
Collapse
|
26
|
Biswas S, Khatun R, Dolai M, Haque Biswas I, Haque N, Sengupta M, Islam MS, Islam SM. Catalytic formation of N3-substituted quinazoline-2,4(1H,3H)-diones by Pd(ii)EN@GO composite and its mechanistic investigations through DFT calculations. NEW J CHEM 2020. [DOI: 10.1039/c9nj04288a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Modified GO based palladium composite was synthesized for catalytic synthesis of N3-substituted ouinazoline-2,4(1H,3H)-diones and the mechanistic route was theoretically investigated.
Collapse
Affiliation(s)
- Surajit Biswas
- Department of Chemistry
- University of Kalyani
- Nadia 741235
- India
| | - Resmin Khatun
- Department of Chemistry
- University of Kalyani
- Nadia 741235
- India
| | - Malay Dolai
- Department of Chemistry
- Prabhat Kumar College
- Purba Medinipur 721401
- India
| | | | - Najirul Haque
- Department of Chemistry
- University of Kalyani
- Nadia 741235
- India
| | - Manideepa Sengupta
- Department of Chemistry
- University of Kalyani
- Nadia 741235
- India
- Refinery Technology Division
| | | | | |
Collapse
|
27
|
Fixation of CO2 in structurally diverse quinazoline-2,4(1H,3H)-diones under ambient conditions. J CO2 UTIL 2019. [DOI: 10.1016/j.jcou.2019.07.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
28
|
Li M, Fang S, Zheng J, Jiang H, Wu W. Direct Assembly of Polysubstituted Propiolamidinates via Palladium-Catalyzed Multicomponent Reaction of Isocyanides. Org Lett 2019; 21:8439-8443. [DOI: 10.1021/acs.orglett.9b03201] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Meng Li
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Songjia Fang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jia Zheng
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wanqing Wu
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
29
|
Xu P, Zhu Y, Li X, Wang F, Wang S, Ji S. Copper‐Catalyzed Reaction of Aryl Isocyanides with Active Methylene Isocyanides and Arylsulfonothioates: Synthesis of Sulfur‐Containing Trisubstituted Imidazoles. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900904] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Pei Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and TechnologySoochow University Suzhou 215123 People's Republic of China
| | - Yi‐Ming Zhu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and TechnologySoochow University Suzhou 215123 People's Republic of China
| | - Xing‐Jia Li
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and TechnologySoochow University Suzhou 215123 People's Republic of China
| | - Fei Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and TechnologySoochow University Suzhou 215123 People's Republic of China
| | - Shun‐Yi Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and TechnologySoochow University Suzhou 215123 People's Republic of China
| | - Shun‐Jun Ji
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and TechnologySoochow University Suzhou 215123 People's Republic of China
| |
Collapse
|
30
|
Zhu YM, Xu P, Wang SY, Ji SJ. Palladium Catalyzed Insertion Reaction of Isocyanides with 3-Arylisoxazol-5(4H)-ones: Synthesis of 4-Aminomethylidene Isoxazolone Derivates. J Org Chem 2019; 84:11007-11013. [DOI: 10.1021/acs.joc.9b01585] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yi-Ming Zhu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - Pei Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - Shun-Yi Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - Shun-Jun Ji
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
31
|
Recent Advances in the Chemical Fixation of Carbon Dioxide: A Green Route to Carbonylated Heterocycle Synthesis. Catalysts 2019. [DOI: 10.3390/catal9060511] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Carbon dioxide produced by human activities is one of the main contributions responsible for the greenhouse effect, which is modifying the Earth’s climate. Therefore, post-combustion CO2 capture and its conversion into high value-added chemicals are integral parts of today’s green industry. On the other hand, carbon dioxide is a ubiquitous, cheap, abundant, non-toxic, non-flammable and renewable C1 source. Among CO2 usages, this review aims to summarize and discuss the advances in the reaction of CO2, in the synthesis of cyclic carbonates, carbamates, and ureas appeared in the literature since 2017.
Collapse
|
32
|
Wang MR, Deng L, Liu GC, Wen L, Wang JG, Huang KB, Tang HT, Pan YM. Porous Organic Polymer-Derived Nanopalladium Catalysts for Chemoselective Synthesis of Antitumor Benzofuro[2,3- b]pyrazine from 2-Bromophenol and Isonitriles. Org Lett 2019; 21:4929-4932. [PMID: 31082239 DOI: 10.1021/acs.orglett.9b01230] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
An efficient strategy for the synthesis of benzofuro[2,3- b]pyrazines was developed. These tricyclic scaffolds were formed through a multistep cascade sequence, which includes double insertion of isonitriles and chemoselective bicyclization. In this reaction, a nanopalladium was used as a recyclable catalyst. Product 3w exhibited excellent anticancer activity toward T-24 (IC50 = 12.5 ± 0.9 μM) and HeLa (IC50 = 14.7 ± 1.6 μM) cells. We also explored the action mechanism of 3w on T-24 cells.
Collapse
Affiliation(s)
- Mao-Rui Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , People's Republic of China
| | - Li Deng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , People's Republic of China
| | - Guo-Chen Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , People's Republic of China
| | - Ling Wen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , People's Republic of China
| | - Jin-Ge Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , People's Republic of China
| | - Ke-Bin Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , People's Republic of China
| | - Hai-Tao Tang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , People's Republic of China
| | - Ying-Ming Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , People's Republic of China
| |
Collapse
|
33
|
Dechert-Schmitt AM, Garnsey MR, Wisniewska HM, Murray JI, Lee T, Kung DW, Sach N, Blackmond DG. Highly Modular Synthesis of 1,2-Diketones via Multicomponent Coupling Reactions of Isocyanides as CO Equivalents. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00581] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
| | - Michelle R. Garnsey
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Hanna M. Wisniewska
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - James I. Murray
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
| | - Taegyo Lee
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Daniel W. Kung
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Neal Sach
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Donna G. Blackmond
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
| |
Collapse
|
34
|
Ren ZL, He P, Lu WT, Sun M, Ding MW. Synthesis of iminoisoindolinones via a cascade of the three-component Ugi reaction, palladium catalyzed isocyanide insertion, hydroxylation and an unexpected rearrangement reaction. Org Biomol Chem 2019; 16:6322-6331. [PMID: 30131989 DOI: 10.1039/c8ob01728j] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A robust ligand-free palladium-catalyzed cascade reaction for the synthesis of diversely substituted iminoisoindolinones has been developed. The cascade reaction involves isocyanide insertion into Ugi-3CR adducts, accompanied by unexpected hydroxylation and rearrangement.
Collapse
Affiliation(s)
- Zhi-Lin Ren
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, Central China Normal University, Wuhan, 430079, P. R. China.
| | | | | | | | | |
Collapse
|
35
|
Xu P, Zhu YM, Wang F, Wang SY, Ji SJ. Mn(III)-Mediated Cascade Cyclization of 3-Isocyano-[1,1'-biphenyl]-2-carbonitrile with Arylboronic Acid: Construction of Pyrrolopyridine Derivatives. Org Lett 2019; 21:683-686. [PMID: 30633536 DOI: 10.1021/acs.orglett.8b03868] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A Mn(III) mediated cascade cyclization of new designed multifunctionalized 3-isocyano-[1,1'-biphenyl]-2-carbonitrile with arylboronic acid to construct pyrrolopyridine derivatives is developed. A series of pyrroloporidine compounds have been constructed through the formation of two new C-C bonds and one C-N bond via a radical pathway.
Collapse
Affiliation(s)
- Pei Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology , Soochow University , Suzhou 215123 , China
| | - Yi-Ming Zhu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology , Soochow University , Suzhou 215123 , China
| | - Fei Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology , Soochow University , Suzhou 215123 , China
| | - Shun-Yi Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology , Soochow University , Suzhou 215123 , China
| | - Shun-Jun Ji
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology , Soochow University , Suzhou 215123 , China
| |
Collapse
|
36
|
Wang F, Wei TQ, Xu P, Wang SY, Ji SJ. Mn(III)-mediated radical cascade reaction of boronic acids with isocyanides: Synthesis of diimide derivatives. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2018.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
37
|
Wang S, Xi C. Recent advances in nucleophile-triggered CO2-incorporated cyclization leading to heterocycles. Chem Soc Rev 2019; 48:382-404. [DOI: 10.1039/c8cs00281a] [Citation(s) in RCA: 207] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
CO2, as a sustainable, feasible, abundant one-carbon synthon, has been utilized in carboxylative cyclization, carbonylative cyclization, and reductive cyclization.
Collapse
Affiliation(s)
- Sheng Wang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Chanjuan Xi
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| |
Collapse
|
38
|
Biswas IH, Biswas S, Islam MS, Riyajuddin S, Sarkar P, Ghosh K, Islam SM. Catalytic synthesis of benzimidazoles and organic carbamates using a polymer supported zinc catalyst through CO2 fixation. NEW J CHEM 2019. [DOI: 10.1039/c9nj03015h] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Zinc metal is attached to the organically modified polystyrene and the obtained catalyst is well characterized. The catalyst is very efficient for the formation of benzimidazoles and organic carbamates through carbon dioxide fixation.
Collapse
Affiliation(s)
| | - Surajit Biswas
- Department of Chemistry
- University of Kalyani
- Kalyani, Nadia 741235
- India
| | - Md Sarikul Islam
- Department of Chemistry
- University of Kalyani
- Kalyani, Nadia 741235
- India
| | | | - Priyanka Sarkar
- Department of Chemistry
- University of Kalyani
- Kalyani, Nadia 741235
- India
| | | | - Sk Manirul Islam
- Department of Chemistry
- University of Kalyani
- Kalyani, Nadia 741235
- India
| |
Collapse
|
39
|
Wang F, Xu P, Liu BB, Wang SY, Ji SJ. Pd-Catalyzed multicomponent reaction of sulfonyl azides, primary amines and methyl α-isocyanoacetates: highly efficient synthesis of tetrasubstituted imidazolone derivatives. Org Chem Front 2019. [DOI: 10.1039/c9qo01122f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A highly efficient Pd-catalyzed multicomponent reaction of sulfonyl azides, primary amines and methyl α-isocyanoacetates was developed.
Collapse
Affiliation(s)
- Fei Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science & Collaborative Innovation Centre of Suzhou Nano Science and Technology
- Soochow University
- Suzhou
| | - Pei Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science & Collaborative Innovation Centre of Suzhou Nano Science and Technology
- Soochow University
- Suzhou
| | - Bei-Bei Liu
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science & Collaborative Innovation Centre of Suzhou Nano Science and Technology
- Soochow University
- Suzhou
| | - Shun-Yi Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science & Collaborative Innovation Centre of Suzhou Nano Science and Technology
- Soochow University
- Suzhou
| | - Shun-Jun Ji
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science & Collaborative Innovation Centre of Suzhou Nano Science and Technology
- Soochow University
- Suzhou
| |
Collapse
|
40
|
Fang Y, Liu C, Wang F, Ding R, Wang SY, Ji SJ. A radical-chain reaction of isocyanides with selenosulfonates and water: facile synthesis of selenocarbamates under metal-free conditions. Org Chem Front 2019. [DOI: 10.1039/c8qo01364k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A facile synthesis of secondary selenocarbamates through metal-free multicomponent reactions of isocyanides, selenosulfonates and water is reported here. The reaction is easy to handle and proceeds smoothly under mild conditions.
Collapse
Affiliation(s)
- Yi Fang
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science & Collaborative Innovation Centre of Suzhou Nano Science and Technology
- Soochow University
- Suzhou
| | - Can Liu
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science & Collaborative Innovation Centre of Suzhou Nano Science and Technology
- Soochow University
- Suzhou
| | - Fei Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science & Collaborative Innovation Centre of Suzhou Nano Science and Technology
- Soochow University
- Suzhou
| | - Rao Ding
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science & Collaborative Innovation Centre of Suzhou Nano Science and Technology
- Soochow University
- Suzhou
| | - Shun-Yi Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science & Collaborative Innovation Centre of Suzhou Nano Science and Technology
- Soochow University
- Suzhou
| | - Shun-Jun Ji
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science & Collaborative Innovation Centre of Suzhou Nano Science and Technology
- Soochow University
- Suzhou
| |
Collapse
|
41
|
Duangjan C, Rukachaisirikul V, Saithong S, Kaeobamrung J. Copper-catalyzed domino reaction of carbodiimides and benzoic acid derivatives for the synthesis of quinazolinediones. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.08.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
42
|
Zhang R, Gu ZY, Wang SY, Ji SJ. Co(II)/Ag(I) Synergistically Catalyzed Monoinsertion Reaction of Isocyanide to Terminal Alkynes with H2O: Synthesis of Alkynamide Derivatives. Org Lett 2018; 20:5510-5514. [DOI: 10.1021/acs.orglett.8b02516] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Rong Zhang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Zheng-Yang Gu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Shun-Yi Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Shun-Jun Ji
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| |
Collapse
|
43
|
Ravi O, Ramaraju A, Sridhar B, Bathula SR. Copper-Catalyzed Domino C−C Bond Cleavage of 2,3-Unsubstituted Indoles/Indolines and Oxindoles via
Oxidation and Directed Insertion of 2-Aminopyridines: Direct Access to Quinazolinediones. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800536] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Owk Ravi
- Organic Synthesis and Process Chemistry Division; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 India
- Academy of Scientific and Innovative Research; New Delhi 110001 India
| | - Andhavaram Ramaraju
- Organic Synthesis and Process Chemistry Division; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 India
| | - Balasubramanian Sridhar
- X-ray Crystallography Division; CSIR-Indian Institute of Chemical Technology, Tarnaka; Hyderabad 500007 India
| | - Surendar Reddy Bathula
- Organic Synthesis and Process Chemistry Division; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 India
- Academy of Scientific and Innovative Research; New Delhi 110001 India
| |
Collapse
|
44
|
Zhang L, Li J, Hu Z, Dong J, Zhang XM, Xu X. Silver-Catalyzed Isocyanide Insertion into N−H Bond of Ammonia: [5+1] Annulation to Quinazoline Derivatives. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201701623] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Lingjuan Zhang
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science; Shanxi Normal University; Linfen People's Republic of China 041004
| | - Juanjuan Li
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science; Shanxi Normal University; Linfen People's Republic of China 041004
| | - Zhongyan Hu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science; Shandong Normal University; Jinan 250014 People's Republic of China
| | - Jinhuan Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science; Shandong Normal University; Jinan 250014 People's Republic of China
| | - Xian-Ming Zhang
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science; Shanxi Normal University; Linfen People's Republic of China 041004
| | - Xianxiu Xu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science; Shandong Normal University; Jinan 250014 People's Republic of China
| |
Collapse
|
45
|
Wang L, Sun W, Liu C. Recent Advances in Homogeneous Carbonylation Using CO2as CO Surrogate. CHINESE J CHEM 2018. [DOI: 10.1002/cjoc.201700746] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Lu Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation; Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP); Chinese Academy of Sciences, Lanzhou Gansu 730000 China
| | - Wei Sun
- State Key Laboratory for Oxo Synthesis and Selective Oxidation; Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP); Chinese Academy of Sciences, Lanzhou Gansu 730000 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Chao Liu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation; Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP); Chinese Academy of Sciences, Lanzhou Gansu 730000 China
| |
Collapse
|
46
|
Xiong W, Yan D, Qi C, Jiang H. Palladium-Catalyzed Four-Component Cascade Reaction for the Synthesis of Highly Functionalized Acyclic O,O-Acetals. Org Lett 2018; 20:672-675. [PMID: 29338256 DOI: 10.1021/acs.orglett.7b03808] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A palladium-catalyzed four-component cascade reaction of carbon dioxide, amines, allenyl ethers, and aryl iodides has been developed for the first time. The novel reaction allows simultaneous construction of three different new bonds (C-N, C-O, and C-C) in a single step, affording an efficient method for the synthesis of a variety of highly functionalized acyclic O,O-acetals. Excellent chemo- and regioselectivity, wide substrate scope, and good functional group tolerance are features of the method.
Collapse
Affiliation(s)
- Wenfang Xiong
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology , Guangzhou 510640, P. R. China
| | - Donghao Yan
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology , Guangzhou 510640, P. R. China
| | - Chaorong Qi
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology , Guangzhou 510640, P. R. China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology , Guangzhou 510640, P. R. China
| |
Collapse
|
47
|
Song J, Liu Q, Liu H, Jiang X. Recent Advances in Palladium-Catalyzed Carboxylation with CO2. European J Org Chem 2018. [DOI: 10.1002/ejoc.201701436] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jian Song
- School of Chemistry and Chemical Engineering; Shandong University of Technology; 266 West Xincun Road 255049 Zibo P. R. China
| | - Qing Liu
- School of Chemistry and Chemical Engineering; Shandong University of Technology; 266 West Xincun Road 255049 Zibo P. R. China
| | - Hui Liu
- School of Chemistry and Chemical Engineering; Shandong University of Technology; 266 West Xincun Road 255049 Zibo P. R. China
| | - Xuefeng Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes; Department of Chemistry; East China Normal University; 200062 Shanghai P. R. China
| |
Collapse
|
48
|
Xiong W, Qi C, Cheng R, Zhang H, Wang L, Yan D, Jiang H. A four-component coupling reaction of carbon dioxide, amines, cyclic ethers and 3-triflyloxybenzynes for the synthesis of functionalized carbamates. Chem Commun (Camb) 2018; 54:5835-5838. [DOI: 10.1039/c8cc01732h] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel four-component coupling reaction of carbon dioxide, amines, cyclic ethers and 3-triflyloxybenzynes for the synthesis of functionalized carbamates has been developed for the first time.
Collapse
Affiliation(s)
- Wenfang Xiong
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Chaorong Qi
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Ruixiang Cheng
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Hao Zhang
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Lu Wang
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Donghao Yan
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Huanfeng Jiang
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| |
Collapse
|
49
|
Zhang WZ, Li H, Zeng Y, Tao X, Lu X. Palladium-Catalyzed Cyclization Reaction of o
-Haloanilines, CO2
and Isocyanides: Access to Quinazoline-2,4(1H
,3H
)-diones. CHINESE J CHEM 2017. [DOI: 10.1002/cjoc.201700581] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Wen-Zhen Zhang
- State Key Laboratory of Fine Chemicals; Dalian University of Technology; Dalian Liaoning 116024 China
| | - Honglin Li
- State Key Laboratory of Fine Chemicals; Dalian University of Technology; Dalian Liaoning 116024 China
| | - Yang Zeng
- State Key Laboratory of Fine Chemicals; Dalian University of Technology; Dalian Liaoning 116024 China
| | - Xueyan Tao
- State Key Laboratory of Fine Chemicals; Dalian University of Technology; Dalian Liaoning 116024 China
| | - Xiaobing Lu
- State Key Laboratory of Fine Chemicals; Dalian University of Technology; Dalian Liaoning 116024 China
| |
Collapse
|
50
|
Zhang WZ, Zhang N, Sun YQ, Ding YW, Lu XB. Palladium-Catalyzed Cyclization Reaction of o-Iodoanilines, CO2, and CO: Access to Isatoic Anhydrides. ACS Catal 2017. [DOI: 10.1021/acscatal.7b03000] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wen-Zhen Zhang
- State Key Laboratory of Fine
Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Ning Zhang
- State Key Laboratory of Fine
Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yu-Qian Sun
- State Key Laboratory of Fine
Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yu-Wei Ding
- State Key Laboratory of Fine
Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Xiao-Bing Lu
- State Key Laboratory of Fine
Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|