1
|
Campos PRO, Alberto EE. Pnictogen and Chalcogen Salts as Alkylating Agents. CHEM REC 2024; 24:e202400139. [PMID: 39548904 DOI: 10.1002/tcr.202400139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/19/2024] [Indexed: 11/18/2024]
Abstract
Alkylation reactions and their products are considered crucial in various contexts. Synthetically, the alkylation of a nucleophile is usually promoted using hazardous alkyl halides. Here, we aim to highlight the potential of pnictogen (ammonium or phosphonium) and chalcogen salts (sulfonium, selenonium, and telluronium) to function as alkylating agents. These compounds can be considered as non-volatile electrophilic alkyl reservoirs. We will center our discussion on the strategies developed in recent years to expand the synthetic utility of these salts in terms of transferable alkyl groups, substrate scope, and product selectivity.
Collapse
Affiliation(s)
- Philipe Raphael O Campos
- Department of Chemistry, Universidade Federal de Minas Gerais (UFMG), 31.270-901, Belo Horizonte, MG, Brazil
| | - Eduardo E Alberto
- Department of Chemistry, Universidade Federal de Minas Gerais (UFMG), 31.270-901, Belo Horizonte, MG, Brazil
| |
Collapse
|
2
|
Zeng X. The Strategies Towards Electrochemical Generation of Aryl Radicals. Chemistry 2024; 30:e202402220. [PMID: 39012680 DOI: 10.1002/chem.202402220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/17/2024]
Abstract
The advancement in electrochemical techniques has unlocked a new path for achieving unprecedented oxidations and reductions of aryl radical precursors in a controlled and selective manner. This approach facilitates the construction of aromatic carbon-carbon and carbon-heteroatom bonds. In light of the green merits and the growing importance of this technique in aryl radical chemistry, this review aims to provide an overview of the recent advance in the electrochemical generation of aryl radicals organized by the aryl radical precursor type, with a focus on the substrate scope, limitation, and underlying mechanism, thereby inspiring future work on electrochemical aryl radical generation.
Collapse
Affiliation(s)
- Xiaobao Zeng
- School of Pharmacy and Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, Nantong, 226019, People's Republic of China
| |
Collapse
|
3
|
Hann JL, Lyall CL, Kociok-Köhn G, Faverio C, Pantoş GD, Lewis SE. Unusual Regio- and Chemoselectivity in Oxidation of Pyrroles and Indoles Enabled by a Thianthrenium Salt Intermediate. Angew Chem Int Ed Engl 2024; 63:e202405057. [PMID: 38830180 DOI: 10.1002/anie.202405057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/05/2024]
Abstract
A dearomative oxidation of pyrroles to Δ3-pyrrol-2-ones is described, which employs a sulfoxide as oxidant, in conjunction with a carboxylic acid anhydride and a Brønsted acid additive. 3-substituted pyrroles undergo regioselective oxidation to give the product isomer in which oxygen has been introduced at the more hindered position. Regioselectivity is rationalized by a proposed mechanism that proceeds by initial thianthrenium introduction at the less-hindered pyrrole α-position, followed by distal attack of an oxygen nucleophile and subsequent elimination of thianthrene. The same reaction conditions are also able to effect a chemoselective oxidation of indoles to indolin-3-ones and additionally of indolin-3-ones to 2-hydroxyindolin-3-ones. Here again, the regio- and chemoselectivities are rationalized through the intermediacy of a thianthrenium salt.
Collapse
Affiliation(s)
- Jodie L Hann
- Department of Chemistry, University of Bath, Bath, BA2 7AY, United Kingdom
| | - Catherine L Lyall
- Research Facilities, University of Bath, Bath, BA2 7AY, United Kingdom
| | | | - Chiara Faverio
- Department of Chemistry, University of Bath, Bath, BA2 7AY, United Kingdom
| | - G Dan Pantoş
- Department of Chemistry, University of Bath, Bath, BA2 7AY, United Kingdom
| | - Simon E Lewis
- Department of Chemistry, University of Bath, Bath, BA2 7AY, United Kingdom
- Institute of Sustainability and Climate Change, University of Bath, Bath, BA2 7AY, United Kingdom
| |
Collapse
|
4
|
Michiyuki T, Homölle SL, Pandit NK, Ackermann L. Electrocatalytic Formal C(sp 2)-H Alkylations via Nickel-Catalyzed Cross-Electrophile Coupling with Versatile Arylsulfonium Salts. Angew Chem Int Ed Engl 2024; 63:e202401198. [PMID: 38695843 DOI: 10.1002/anie.202401198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Indexed: 06/15/2024]
Abstract
Producing sp3-hybridized carbon-enriched molecules is of particular interest due to their high success rate in clinical trials. The installation of aliphatic chains onto aromatic scaffolds was accomplished by nickel-catalyzed C(sp2)-C(sp3) cross-electrophile coupling with arylsulfonium salts. Thus, simple non-prefunctionalized arenes could be alkylated through the formation of aryldibenzothiophenium salts. The reaction employs an electrochemical approach to avoid potentially hazardous chemical redox agents, and importantly, the one-pot alkylation proved also viable, highlighting the robustness of our approach.
Collapse
Affiliation(s)
- Takuya Michiyuki
- Wöhler Research Institute for Sustainable Chemistry, Tammannstraße 2, 37077, Göttingen, Germany
| | - Simon L Homölle
- Wöhler Research Institute for Sustainable Chemistry, Tammannstraße 2, 37077, Göttingen, Germany
| | - Neeraj K Pandit
- Wöhler Research Institute for Sustainable Chemistry, Tammannstraße 2, 37077, Göttingen, Germany
| | - Lutz Ackermann
- Wöhler Research Institute for Sustainable Chemistry, Tammannstraße 2, 37077, Göttingen, Germany
| |
Collapse
|
5
|
Hu X, Qiao Z, Zhang L, Zhao J, Liu YZ, Zhang J, Ma X. One-pot cascade synthesis of dibenzothiophene-based heterobiaryls from dibenzothiophene-5-oxide. Org Biomol Chem 2023; 21:9123-9127. [PMID: 37947448 DOI: 10.1039/d3ob01468a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
A sulfoxide directed C-H metalation/boration/B2Pin2 mediated reduction/Suzuki coupling process to synthesize 4-substituted dibenzothiophene (DBT) in one-pot from dibenzothiophene-5-oxide (DBTO) was developed. A variety of DBT-based heterobiaryls were prepared in satisfactory to good yields. A mechanism was proposed. The application of this methodology was demonstrated by synthesizing a luminescent material.
Collapse
Affiliation(s)
- Xiaofang Hu
- Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, People's Republic of China.
- College of Foundation, Shanxi Agricultural University, 030800 Taigu, Shanxi, People's Republic of China.
| | - Zeen Qiao
- Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Li Zhang
- Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jinzhong Zhao
- College of Foundation, Shanxi Agricultural University, 030800 Taigu, Shanxi, People's Republic of China.
| | - Ya-Zhou Liu
- Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, People's Republic of China.
| | - Jiangang Zhang
- College of Foundation, Shanxi Agricultural University, 030800 Taigu, Shanxi, People's Republic of China.
| | - Xiaofeng Ma
- Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
6
|
Nickel‐Catalysed Cross‐Electrophile Coupling of Benzyl Bromides and Sulfonium Salts towards the Synthesis of Dihydrostilbenes. Chemistry 2022; 28:e202201644. [DOI: 10.1002/chem.202201644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Indexed: 11/07/2022]
|
7
|
Li X, Li Y, Yang J, Shi H, Ai Z, Han C, He J, Du Y. Synthesis of 3-SCF 2H-/3-SCF 3-chromones via Interrupted Pummerer Reaction/Intramolecular Cyclization Mediated by Difluoromethyl or Trifluoromethyl Sulfoxide and Tf 2O. Org Lett 2022; 24:7216-7221. [PMID: 36148991 DOI: 10.1021/acs.orglett.2c03017] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The reaction of alkynyl aryl ketones bearing an o-methoxy group with difluoromethyl sulfoxide in the presence of Tf2O was found to conveniently afford the corresponding 3-SCF2H-substituted chromones. The combining use of difluoromethyl sulfoxide/Tf2O could represent the first reagents system that can introduce the biologically important SCF2H moiety under base-free conditions via an interrupted Pummerer reaction. The same protocol could also be applied to the synthesis of 3-SCF3-substituted chromones by replacing difluoromethyl sulfoxide with trifluoromethyl sulfoxide and CH3CN with toluene.
Collapse
Affiliation(s)
- Xuemin Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Yue Li
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Nano-biotechnology, Yanshan University, Qinhuangdao 066004, P.R. China
| | - Jingyue Yang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Nano-biotechnology, Yanshan University, Qinhuangdao 066004, P.R. China
| | - Haofeng Shi
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Zhenkang Ai
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Chi Han
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Jiaxin He
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Yunfei Du
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
8
|
Xie D, Wang Y, Zhang X, Fu Z, Niu D. Alkyl/Glycosyl Sulfoxides as Radical Precursors and Their Use in the Synthesis of Pyridine Derivatives. Angew Chem Int Ed Engl 2022; 61:e202204922. [PMID: 35641436 DOI: 10.1002/anie.202204922] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Indexed: 02/05/2023]
Abstract
We report here the use of simple and readily available alkyl sulfoxides as precursors to radicals and their application in the preparation of pyridine derivatives. We show that alkyl sulfoxides, N-methoxy pyridinium salts and fluoride anions form electron donor-acceptor (EDA) complexes in solution, which, upon visible light irradiation, undergo a radical chain process to afford various pyridine derivatives smoothly. This reaction displays broad scope with respect to both sulfoxides and N-methoxy pyridiniums. The synthetic versatility of sulfoxides as a handle in chemistry adds to their power as radical precursors. Glycosyl sulfoxides are converted to the corresponding pyridyl C-glycosides with high stereoselectivities. Computational and experimental studies provide insights into the reaction mechanism.
Collapse
Affiliation(s)
- Demeng Xie
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| | - Yingwei Wang
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| | - Xia Zhang
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| | - Zhengyan Fu
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| | - Dawen Niu
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| |
Collapse
|
9
|
Xie D, Wang Y, Zhang X, Fu Z, Niu D. Alkyl/Glycosyl Sulfoxides as Radical Precursors and Their Use in the Synthesis of Pyridine Derivatives**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Demeng Xie
- Department of Emergency State Key Laboratory of Biotherapy West China Hospital and School of Chemical Engineering Sichuan University No. 17 Renmin Nan Road Chengdu 610041 China
| | - Yingwei Wang
- Department of Emergency State Key Laboratory of Biotherapy West China Hospital and School of Chemical Engineering Sichuan University No. 17 Renmin Nan Road Chengdu 610041 China
| | - Xia Zhang
- Department of Emergency State Key Laboratory of Biotherapy West China Hospital and School of Chemical Engineering Sichuan University No. 17 Renmin Nan Road Chengdu 610041 China
| | - Zhengyan Fu
- Department of Emergency State Key Laboratory of Biotherapy West China Hospital and School of Chemical Engineering Sichuan University No. 17 Renmin Nan Road Chengdu 610041 China
| | - Dawen Niu
- Department of Emergency State Key Laboratory of Biotherapy West China Hospital and School of Chemical Engineering Sichuan University No. 17 Renmin Nan Road Chengdu 610041 China
| |
Collapse
|
10
|
Zhu W, Zhang Q, Bao X, Lin Y, Xu G, Zhou H. Nucleophilic functionalizations of indole derivatives using the aromatic Pummerer reaction. Org Biomol Chem 2022; 20:3955-3959. [PMID: 35471233 DOI: 10.1039/d2ob00627h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Because of the electron-rich property of indoles, direct functionalization strategies towards indoles generally involve electrophilic substitutions. In this paper, an efficient protocol for nucleophilic hydroxylation, halogenation and esterification of indoles via the aromatic Pummerer process was developed. With the advantages of readily accessible starting materials, simple operation and mild conditions, this protocol should be of interest to synthetic scientists.
Collapse
Affiliation(s)
- Wen Zhu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, People's Republic of China. .,College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing, China
| | - Qianyun Zhang
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing, China
| | - Xingping Bao
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing, China
| | - Yanfei Lin
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing, China
| | - Guangyu Xu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, People's Republic of China.
| | - Hongwei Zhou
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing, China
| |
Collapse
|
11
|
Zhang C, Luo J, Zhang J, Chen L, Zhu X, Guo M, Shen C, Li Z, Wang W. Tf
2
O‐mediated Regioselective C(sp
2
)−H Sulfenylation of Enaminones Using Methyl Sulfoxides as Sulfur Sources. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Changyuan Zhang
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology College of Chemistry and Bio-engineering Yichun University 576 Xuefu Road Yichun 336000 P. R. China
| | - Jian Luo
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology College of Chemistry and Bio-engineering Yichun University 576 Xuefu Road Yichun 336000 P. R. China
| | - Jiantao Zhang
- College of Chemistry Guangdong University of Petrochemical Technology Guandu Road Maoming 525000 P. R. China
| | - Lulu Chen
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology College of Chemistry and Bio-engineering Yichun University 576 Xuefu Road Yichun 336000 P. R. China
| | - Xuncheng Zhu
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology College of Chemistry and Bio-engineering Yichun University 576 Xuefu Road Yichun 336000 P. R. China
| | - Mengping Guo
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology College of Chemistry and Bio-engineering Yichun University 576 Xuefu Road Yichun 336000 P. R. China
| | - Chan Shen
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology College of Chemistry and Bio-engineering Yichun University 576 Xuefu Road Yichun 336000 P. R. China
| | - Zeng Li
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology College of Chemistry and Bio-engineering Yichun University 576 Xuefu Road Yichun 336000 P. R. China
| | - Wei Wang
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology College of Chemistry and Bio-engineering Yichun University 576 Xuefu Road Yichun 336000 P. R. China
| |
Collapse
|
12
|
Ma NN, Ren JA, Liu X, Chu XQ, Rao W, Shen ZL. Nickel-Catalyzed Direct Cross-Coupling of Aryl Sulfonium Salt with Aryl Bromide. Org Lett 2022; 24:1953-1957. [PMID: 35244408 DOI: 10.1021/acs.orglett.2c00357] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The direct cross-couplings of aryl sulfonium salts with aryl halides could be achieved by using nickel as a reaction catalyst. The reactions proceeded efficiently via C-S bond activation in the presence of magnesium turnings and lithium chloride in THF at ambient temperature to afford the corresponding biaryls in moderate to good yields, potentially serving as an attractive alternative to conventional cross-coupling reactions employing preprepared organometallic reagents.
Collapse
Affiliation(s)
- Na-Na Ma
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jing-Ao Ren
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xiang Liu
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xue-Qiang Chu
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Weidong Rao
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhi-Liang Shen
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
13
|
Liu H, Sun K, Li X, Zhang J, Lu W, Luo X, Luo H. Palladium-catalyzed phosphorylation of arylsulfonium salts with P(O)H compounds via C–S bond cleavage. RSC Adv 2022; 12:25280-25283. [PMID: 36199296 PMCID: PMC9450109 DOI: 10.1039/d2ra04297e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/31/2022] [Indexed: 11/21/2022] Open
Abstract
Herein we report a novel palladium-catalyzed phosphorylation of arylsulfonium salts with P(O)H compounds via C–S bond cleavage under mild conditions.
Collapse
Affiliation(s)
- Huijin Liu
- Department of Chemistry & Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Kai Sun
- Department of Chemistry & Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Xiaolan Li
- Department of Chemistry & Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Jie Zhang
- Department of Chemistry & Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Wei Lu
- Department of Chemistry & Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Xuzhong Luo
- Department of Chemistry & Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Haiqing Luo
- Department of Chemistry & Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| |
Collapse
|
14
|
Saroha M, Sindhu J, Kumar S, Bhasin KK, Khurana JM, Varma RS, Tomar D. Transition Metal‐Free Sulfenylation of C−H Bonds for C−S Bond Formation in Recent Years: Mechanistic Approach and Promising Future. ChemistrySelect 2021. [DOI: 10.1002/slct.202102042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Mohit Saroha
- Department of Chemistry University of Delhi Delhi 110007 India
| | - Jayant Sindhu
- Department of Chemistry, COBS&H, CCSHAU Hisar Haryana 125004 India
| | - Sudhir Kumar
- Department of Chemistry, COBS&H, CCSHAU Hisar Haryana 125004 India
| | - Kuldip K. Bhasin
- Department of Chemistry & Centre of Advanced Studies in Chemistry Panjab University Chandigarh 160014 India
| | | | - Rajender S. Varma
- Regional Centre of Advanced Technologies and Materials Palacký University in Olomouc Šlechtitelů 27 783 71 Olomouc Czech Republic
| | - Deepak Tomar
- Department of Chemistry R. K. P. G. College Shamli Uttar Pradesh 247776 India
| |
Collapse
|
15
|
Zhang B, Li X, Li X, Yu Z, Zhao B, Wang X, Du Y, Zhao K. An Interrupted Pummerer Reaction Mediated by a Hypervalent Iodine(III) Reagent: In Situ Formation of RSCl and Its Application for the Synthesis of 3-Sulfenylated Indoles. J Org Chem 2021; 86:17274-17281. [PMID: 34806887 DOI: 10.1021/acs.joc.1c02404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
An interrupted Pummerer reaction of PhICl2 and sulfoxides was found to in situ generate reactive organosulfenyl chloride, which enabled the intramolecular electrophilic cyclization of 2-alkynylanilines, generating 3-sulfenylated indole with a good to excellent yield under metal-free conditions. One striking feature of the approach is that sulfoxide regeneration can be realized via the oxidation of the formed sulfides by the generated hypervalent iodine species.
Collapse
Affiliation(s)
- Beibei Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Xuemin Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Xiaoxian Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Zhenyang Yu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Bingyue Zhao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Xiaofan Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Yunfei Du
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Kang Zhao
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
16
|
Abedinifar F, Bahadorikhalili S, Larijani B, Mahdavi M, Verpoort F. A review on the latest progress of C‐S cross‐coupling in diaryl sulfide synthesis: Update from 2012 to 2021. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6482] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Fahimeh Abedinifar
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute Tehran University of Medical Sciences Tehran Iran
| | - Saeed Bahadorikhalili
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute Tehran University of Medical Sciences Tehran Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute Tehran University of Medical Sciences Tehran Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute Tehran University of Medical Sciences Tehran Iran
| | - Francis Verpoort
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan China
- Center for Environmental and Energy Research (CEER) Ghent University–Global Campus Songdo Incheon South Korea
| |
Collapse
|
17
|
Yorimitsu H. Catalytic Transformations of Sulfonium Salts via C‐S Bond Activation. CHEM REC 2021; 21:3356-3369. [DOI: 10.1002/tcr.202000172] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/30/2020] [Accepted: 12/30/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Hideki Yorimitsu
- Department of Chemistry, Graduate School of Science Kyoto University Sakyo-ku, Kyoto 606-8502 Japan
| |
Collapse
|
18
|
Yamada K, Yanagi T, Yorimitsu H. Generation of Organozinc Reagents from Arylsulfonium Salts Using a Nickel Catalyst and Zinc Dust. Org Lett 2020; 22:9712-9718. [DOI: 10.1021/acs.orglett.0c03782] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kodai Yamada
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Tomoyuki Yanagi
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hideki Yorimitsu
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
19
|
Azulenesulfonium and azulenebis(sulfonium) salts: Formation by interrupted Pummerer reaction and subsequent derivatisation by nucleophiles. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131700] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Wang D, Carlton CG, Tayu M, McDouall JJW, Perry GJP, Procter DJ. Trifluoromethyl Sulfoxides: Reagents for Metal‐Free C−H Trifluoromethylthiolation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005531] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Dong Wang
- Department of Chemistry University of Manchester Oxford Road Manchester M13 9PL UK
| | - C. Grace Carlton
- Department of Chemistry University of Manchester Oxford Road Manchester M13 9PL UK
| | - Masanori Tayu
- Department of Chemistry University of Manchester Oxford Road Manchester M13 9PL UK
- Department of Chemistry Meiji Pharmaceutical University 2-522-1 Noshio Kiyose Tokyo 204-8588 Japan
| | | | - Gregory J. P. Perry
- Department of Chemistry University of Manchester Oxford Road Manchester M13 9PL UK
| | - David J. Procter
- Department of Chemistry University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
21
|
Wang D, Carlton CG, Tayu M, McDouall JJW, Perry GJP, Procter DJ. Trifluoromethyl Sulfoxides: Reagents for Metal-Free C-H Trifluoromethylthiolation. Angew Chem Int Ed Engl 2020; 59:15918-15922. [PMID: 32463942 PMCID: PMC7540508 DOI: 10.1002/anie.202005531] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/21/2020] [Indexed: 12/22/2022]
Abstract
Trifluoromethyl sulfoxides are a new class of trifluoromethylthiolating reagent. The sulfoxides engage in metal-free C-H trifluoromethylthiolation with a range of (hetero)arenes. The method is also applicable to the functionalization of important compound classes, such as ligand derivatives and polyaromatics, and in the late-stage trifluoromethylthiolation of medicines and agrochemicals. The isolation and characterization of a sulfonium salt intermediate supports an interrupted Pummerer reaction mechanism.
Collapse
Affiliation(s)
- Dong Wang
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - C. Grace Carlton
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Masanori Tayu
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
- Department of ChemistryMeiji Pharmaceutical University2-522-1 NoshioKiyoseTokyo204-8588Japan
| | | | - Gregory J. P. Perry
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - David J. Procter
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| |
Collapse
|
22
|
Abstract
This minireview aims to cover the developments over the past two decades in the chemistry of sulfonium salts. Specifically, insight is provided into the synthetic strategies available for the preparation of these compounds, the different reactivity patterns that are expected depending on their structural features or the reaction conditions applied, and the diversity of organic scaffolds that can thereby be synthesized. Additionally, the pros and cons derived from the use of sulfonium salts are presented and critically compared, when possible, in relation to reagents not based on sulfur but depicting similar reactivity.
Collapse
Affiliation(s)
- Sergei I. Kozhushkov
- Institut für Organische und Biomolekulare ChemieGeorg‐August‐Universität GöttingenTammannstr. 237077GöttingenGermany
| | - Manuel Alcarazo
- Institut für Organische und Biomolekulare ChemieGeorg‐August‐Universität GöttingenTammannstr. 237077GöttingenGermany
| |
Collapse
|
23
|
Altundas B, Kumar CVS, Fleming FF. Acetonitrile-Hexane Extraction Route to Pure Sulfonium Salts. ACS OMEGA 2020; 5:13384-13388. [PMID: 32548524 PMCID: PMC7288713 DOI: 10.1021/acsomega.0c01586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/15/2020] [Indexed: 05/16/2023]
Abstract
A rapid, simple procedure is described for synthesizing trialkyl, dialkylaryl, and alkyldiaryl sulfonium salts that features a selective extraction procedure to access analytically pure sulfonium salts. Alkylation of dialkylsulfides, alkylarylsulfides, and diarylsulfides followed by partitioning between acetonitrile and hexanes efficiently separates nonpolar reactants and byproducts, the usual impurities, to afford analytically pure crystalline and noncrystalline sulfonium salts. The method is efficient, general, and particularly well suited for the preparation of oily sulfonium salts that are otherwise extremely difficult to purify.
Collapse
|
24
|
Selmani A, Gevondian AG, Schoenebeck F. Germylation of Arenes via Pd(I) Dimer Enabled Sulfonium Salt Functionalization. Org Lett 2020; 22:4802-4805. [PMID: 32491868 DOI: 10.1021/acs.orglett.0c01609] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
While aryl germanes have recently found usage as coupling partners in powerful catalytic applications, the synthetic access to this promising functionality is currently limited. This report details the straightforward synthesis of functionalized aryl triethylgermanes via formal C-H functionalization. Building on the concept of directing-group-free and site-selective C-H functionalization of arenes to thianthrenium salt intermediates, we showcase their efficient couplings with triethylgermane (Et3Ge-H) at room temperature, which was enabled by the air- and moisture-stable Pd(I) dimer, [Pd(μ-I)(PtBu3)]2. The method tolerates numerous functional groups, including valuable (pseudo)halides.
Collapse
Affiliation(s)
- Aymane Selmani
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Avetik G Gevondian
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Franziska Schoenebeck
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
25
|
Sato T, Nogi K, Yorimitsu H. Palladium‐Catalyzed
peri
‐Selective C−H Fluoroalkoxylation of Aryl Sulfoxides. ChemCatChem 2020. [DOI: 10.1002/cctc.202000485] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Tomohiko Sato
- Department of Chemistry Graduate School of Science Kyoto University Sakyo-ku Kyoto 606-8502 Japan
| | - Keisuke Nogi
- Department of Chemistry Graduate School of Science Kyoto University Sakyo-ku Kyoto 606-8502 Japan
| | - Hideki Yorimitsu
- Department of Chemistry Graduate School of Science Kyoto University Sakyo-ku Kyoto 606-8502 Japan
| |
Collapse
|
26
|
Liu Z, Jiang Y, Liu C, Zhang L, Wang J, Li T, Zhang H, Li M, Yang X. Metal-Free Synthesis of Phenol-Aryl Selenides via Dehydrogenative C-Se Coupling of Aryl Selenoxides with Phenols. J Org Chem 2020; 85:7386-7398. [PMID: 32370509 DOI: 10.1021/acs.joc.0c00792] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Herein, we disclose the synthesis of diaryl selenides through an unexpected C-Se coupling between aryl benzyl selenoxides and phenols. The synthetic significance of the method is that it provides a mild, rapid, and metal-free access to organoselenides in high yields with excellent functional group tolerance. This coupling of aryl benzyl selenoxides reveals a completely new reaction possibility compared with aryl sulfoxides. We also probed the reaction mechanism of this unexpected transformation through experimental studies and revealed a special Se(IV)-Se(III)-Se(II) reaction pathway.
Collapse
Affiliation(s)
- Zhengfen Liu
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Yonggang Jiang
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Chunxiang Liu
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Linlin Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Jing Wang
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Tiantian Li
- Department of Soil and Water Science, Tropical Research and Education Center, University of Florida, Homestead 33031, Florida, USA
| | - Hongbin Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Minyan Li
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Xiaodong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| |
Collapse
|
27
|
Hou P, Oechsle P, Kuckling D, Paradies J. Palladium‐Catalyzed Polycondensation for the Synthesis of Poly(Aryl)Sulfides. Macromol Rapid Commun 2020; 41:e2000067. [DOI: 10.1002/marc.202000067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Peng Hou
- Department of Chemistry Paderborn University Warburger Strasse 100 Paderborn D‐33098 Germany
| | - Peter Oechsle
- Department of Chemistry Paderborn University Warburger Strasse 100 Paderborn D‐33098 Germany
| | - Dirk Kuckling
- Department of Chemistry Paderborn University Warburger Strasse 100 Paderborn D‐33098 Germany
| | - Jan Paradies
- Department of Chemistry Paderborn University Warburger Strasse 100 Paderborn D‐33098 Germany
| |
Collapse
|
28
|
Péter Á, Perry GJP, Procter DJ. Radical C−C Bond Formation using Sulfonium Salts and Light. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000220] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Áron Péter
- Department of ChemistryUniversity of Manchester Oxford Rd Manchester M13 9PL U.K
| | - Gregory J. P. Perry
- Department of ChemistryUniversity of Manchester Oxford Rd Manchester M13 9PL U.K
| | - David J. Procter
- Department of ChemistryUniversity of Manchester Oxford Rd Manchester M13 9PL U.K
| |
Collapse
|
29
|
Ji Y, Li H, Wang Y, Zhang Z, Wu Y. Sulfoxide‐Promoted Chlorination of Indoles and Electron‐Rich Arenes with Chlorine as Nucleophile. Adv Synth Catal 2020. [DOI: 10.1002/adsc.201901492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yuan‐Zhao Ji
- School of Marine Science and TechnologyHarbin Institute of Technology Weihai 264209 People's Republic of China
| | - Hui‐Jing Li
- School of Marine Science and TechnologyHarbin Institute of Technology Weihai 264209 People's Republic of China
| | - Yi‐Ruo Wang
- Weihai NO.1 High School 75 Wenhuazhong Road Weihai 264200 People's Republic of China
| | - Zheng‐Yan Zhang
- School of Marine Science and TechnologyHarbin Institute of Technology Weihai 264209 People's Republic of China
| | - Yan‐Chao Wu
- School of Marine Science and TechnologyHarbin Institute of Technology Weihai 264209 People's Republic of China
| |
Collapse
|
30
|
Baralle A, Inukai T, Yanagi T, Nogi K, Osuka A, Nagaki A, Yoshida JI, Yorimitsu H. Tf2O-mediated Reaction of Alkenyl Sulfoxides with Unprotected Anilines in Flow Microreactors. CHEM LETT 2020. [DOI: 10.1246/cl.190831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Alexandre Baralle
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Tomoaki Inukai
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Tomoyuki Yanagi
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Keisuke Nogi
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Atsuhiro Osuka
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Aiichiro Nagaki
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Jun-ichi Yoshida
- National Institute of Technology, Suzuka College, Shiroko-cho, Suzuka, Mie 510-0294, Japan
| | - Hideki Yorimitsu
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
31
|
Nogi K, Yorimitsu H. Catalytic Carbonylation and Carboxylation of Organosulfur Compounds via C-S Cleavage. Chem Asian J 2020; 15:441-449. [PMID: 31849193 DOI: 10.1002/asia.201901644] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Indexed: 01/07/2023]
Abstract
Transition-metal-catalyzed carbonylation with CO gas occupies a privileged position in organic synthesis for the synthesis of carbonyl compounds. Although this attractive and useful chemistry has led many researchers to investigate carbonylative transformations of various organic (pseudo)halides, C-S-cleaving carbonylation of organosulfur compounds has been fairly limited. Recently, a broad spectrum of C-S-cleaving transformations has been emerging in the field of cross-coupling. In light of the importance of carbonyl compounds as well as considerable advancement for employing organosulfur compounds as competent surrogates of (pseudo)halides, carbonylative transformations of C-S bonds should be of high value. This Minireview focuses on catalytic C-S carbonylation of organosulfur compounds with CO or its equivalents. In addition, reductive carboxylation of C-S bonds with CO2 is described.
Collapse
Affiliation(s)
- Keisuke Nogi
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Hideki Yorimitsu
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
32
|
Yanagi T, Somerville RJ, Nogi K, Martin R, Yorimitsu H. Ni-Catalyzed Carboxylation of C(sp2)–S Bonds with CO2: Evidence for the Multifaceted Role of Zn. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05141] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Tomoyuki Yanagi
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Rosie J. Somerville
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- Universitat Rovira i Virgili, Departament de Química Analítica i Química Orgànica, c/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| | - Keisuke Nogi
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Ruben Martin
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- ICREA, Passeig Lluís Companys, 23, 08010 Barcelona, Spain
| | - Hideki Yorimitsu
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
33
|
Guilbaud J, Selmi A, Kammoun M, Contal S, Montalbetti C, Pirio N, Roger J, Hierso JC. C-H Halogenation of Pyridyl Sulfides Avoiding the Sulfur Oxidation: A Direct Catalytic Access to Sulfanyl Polyhalides and Polyaromatics. ACS OMEGA 2019; 4:20459-20469. [PMID: 31858029 PMCID: PMC6906771 DOI: 10.1021/acsomega.9b01636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/23/2019] [Indexed: 05/27/2023]
Abstract
Palladium-catalyzed oxidative C-H halogenation and acetoxylation reactions of S-unprotected sulfides, selectively directed by pyridinyl groups, allows the formation of C-X bonds (X = I, Br, Cl, OAc) by using simple halosuccinimide or phenyliodine diacetate (PIDA) oxidants. The undesired formation of sulfoxides and/or sulfones, which are usually observed under oxidative conditions, is fully obviated. Under the solvent-dependent conditions that we proposed, sulfide C-H functionalization is achieved in less than 1 h without any direct electrophilic halogenation at the pyridine moiety. N-Directed ortho-C-H activation of aryl also facilitates dibromination reactions which are hardly accessible with sulfone and sulfoxide counterparts because of their higher structural rigidity. This general method gives a straightforward access to polyhalide sulfides, without an organosulfur reduction step or protection-deprotection sequence. Polyhalide sulfides are valuable synthons that give a practical entry to new constrained polyaromatic and biphenyl sulfides, including synthetically challenging unsymmetrical examples.
Collapse
Affiliation(s)
- Johan Guilbaud
- Institut
de Chimie Moléculaire de l’Université de Bourgogne
(ICMuB), UMR-CNRS 6302, Université
de Bourgogne Franche-Comté (UBFC), 9 avenue Alain Savary, 21078 Dijon, France
| | - Awatef Selmi
- Institut
de Chimie Moléculaire de l’Université de Bourgogne
(ICMuB), UMR-CNRS 6302, Université
de Bourgogne Franche-Comté (UBFC), 9 avenue Alain Savary, 21078 Dijon, France
- Institut
Supérieur de Biotechnologie, Unité de Recherche de Chimie
Médicinale et Environnementale (UR-17-ES-40), Université de Sfax, Route Soukra Km 4, BP1175-3038 Sfax, Tunisia
| | - Majed Kammoun
- Institut
Supérieur de Biotechnologie, Unité de Recherche de Chimie
Médicinale et Environnementale (UR-17-ES-40), Université de Sfax, Route Soukra Km 4, BP1175-3038 Sfax, Tunisia
| | | | | | - Nadine Pirio
- Institut
de Chimie Moléculaire de l’Université de Bourgogne
(ICMuB), UMR-CNRS 6302, Université
de Bourgogne Franche-Comté (UBFC), 9 avenue Alain Savary, 21078 Dijon, France
| | - Julien Roger
- Institut
de Chimie Moléculaire de l’Université de Bourgogne
(ICMuB), UMR-CNRS 6302, Université
de Bourgogne Franche-Comté (UBFC), 9 avenue Alain Savary, 21078 Dijon, France
| | - Jean-Cyrille Hierso
- Institut
de Chimie Moléculaire de l’Université de Bourgogne
(ICMuB), UMR-CNRS 6302, Université
de Bourgogne Franche-Comté (UBFC), 9 avenue Alain Savary, 21078 Dijon, France
- Institut
Universitaire de France (IUF), 103 Boulevard, Saint Michel, 75005
Cedex Paris, France
| |
Collapse
|
34
|
Huang C, Feng J, Ma R, Fang S, Lu T, Tang W, Du D, Gao J. Redox-Neutral Borylation of Aryl Sulfonium Salts via C-S Activation Enabled by Light. Org Lett 2019; 21:9688-9692. [PMID: 31755274 DOI: 10.1021/acs.orglett.9b03850] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Reported here is a novel photoinduced strategy for the borylation of aryl sulfonium salts using bis(pinacolato)diboron as the boron source. This method exploits redox-neutral aryl sulfoniums to gain access to aryl radicals via C-S bond activation upon photoexcitation under transition-metal-free conditions. Therefore, it grants access to diverse arylboronate esters with good performance from easily available aryl sulfoniums accompanied by mild conditions, operational simplicity, and easy scalability.
Collapse
Affiliation(s)
- Chen Huang
- Department of Chemistry , China Pharmaceutical University , 24 Tong Jia Xiang , Nanjing , 210009 , P. R. China
| | - Jie Feng
- Department of Chemistry , China Pharmaceutical University , 24 Tong Jia Xiang , Nanjing , 210009 , P. R. China
| | - Rui Ma
- Department of Chemistry , China Pharmaceutical University , 24 Tong Jia Xiang , Nanjing , 210009 , P. R. China
| | - Shuaishuai Fang
- Department of Chemistry , China Pharmaceutical University , 24 Tong Jia Xiang , Nanjing , 210009 , P. R. China
| | - Tao Lu
- Department of Chemistry , China Pharmaceutical University , 24 Tong Jia Xiang , Nanjing , 210009 , P. R. China
| | - Weifang Tang
- Department of Chemistry , China Pharmaceutical University , 24 Tong Jia Xiang , Nanjing , 210009 , P. R. China
| | - Ding Du
- Department of Chemistry , China Pharmaceutical University , 24 Tong Jia Xiang , Nanjing , 210009 , P. R. China
| | - Jian Gao
- Department of Chemistry , China Pharmaceutical University , 24 Tong Jia Xiang , Nanjing , 210009 , P. R. China
| |
Collapse
|
35
|
Acosta-Guzmán P, Rodríguez-López A, Gamba-Sánchez D. Pummerer Synthesis of Chromanes Reveals a Competition between Cyclization and Reductive Chlorination. Org Lett 2019; 21:6903-6908. [PMID: 31441312 DOI: 10.1021/acs.orglett.9b02520] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The competition between an unprecedented reductive chlorination and the Pummerer reaction was studied and applied to the synthesis of benzofused oxygen heterocycles including 3-aminochromanes and in the intramolecular chlorination of activated aromatic rings. The use of (COCl)2 as a Pummerer activator showed substantial activity, producing α-chlorinated sulfides that can undergo Pummerer-Friedel-Crafts cyclization. If the aromatic ring has electron-donating groups in position three, then the reaction follows a different pathway, yielding the reductive chlorination products, where the chlorine atom comes from a sulfonium salt.
Collapse
Affiliation(s)
- Paola Acosta-Guzmán
- Laboratory of Organic Synthesis, Bio and Organocatalysis, Chemistry Department, Universidad de los Andes, Cra 1 No. 18A-12 Q:305, Bogotá 111711, Colombia
| | - Alvaro Rodríguez-López
- Laboratory of Organic Synthesis, Bio and Organocatalysis, Chemistry Department, Universidad de los Andes, Cra 1 No. 18A-12 Q:305, Bogotá 111711, Colombia
| | - Diego Gamba-Sánchez
- Laboratory of Organic Synthesis, Bio and Organocatalysis, Chemistry Department, Universidad de los Andes, Cra 1 No. 18A-12 Q:305, Bogotá 111711, Colombia
| |
Collapse
|
36
|
Zhao JN, Kayumov M, Wang DY, Zhang A. Transition-Metal-Free Aryl-Heteroatom Bond Formation via C-S Bond Cleavage. Org Lett 2019; 21:7303-7306. [PMID: 31465236 DOI: 10.1021/acs.orglett.9b02584] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Aryl-heteroatom bonds (C-Het) are almost ubiquitously present in chemical molecules. However, methods for diverse C-Het bond formations from a simple substrate are limited. Herein, we report a convenient and efficient C-S bond transformation of aryl sulfoniums to various C-Het bonds (C-O, C-S, C-Sn, C-Si, C-Se) in the absence of any transition-metal catalyst. These reactions proceeded in mild conditions with a wide substrate scope.
Collapse
Affiliation(s)
- Jian-Nan Zhao
- CAS Key Laboratory of Receptor Research , Shanghai Institute of Materia Medica (SIMM) , Shanghai 201203 , China.,School of Life Science and Technology , ShanghaiTech University , Shanghai 201210 , China
| | - Muzaffar Kayumov
- CAS Key Laboratory of Receptor Research , Shanghai Institute of Materia Medica (SIMM) , Shanghai 201203 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Dong-Yu Wang
- CAS Key Laboratory of Receptor Research , Shanghai Institute of Materia Medica (SIMM) , Shanghai 201203 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Ao Zhang
- CAS Key Laboratory of Receptor Research , Shanghai Institute of Materia Medica (SIMM) , Shanghai 201203 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China.,School of Life Science and Technology , ShanghaiTech University , Shanghai 201210 , China
| |
Collapse
|
37
|
Mesgar M, Nguyen-Le J, Daugulis O. 1,2-Bis(arylthio)arene synthesis via aryne intermediates. Chem Commun (Camb) 2019; 55:9467-9470. [PMID: 31328188 PMCID: PMC6896799 DOI: 10.1039/c9cc03863a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lithium 1,1-diadamantylamide (LDAM) base-promoted insertion of arynes into disulfide S-S bonds is described. After generation of arynes from readily available aryl halides and triflates, reactions with diaryl and diisopropyl disulfides afford the insertion products in moderate to excellent yields. Use of 1-cyclohexenyl triflate gave an excellent yield of 1,2-bis(phenylthio)cyclohexene.
Collapse
Affiliation(s)
- Milad Mesgar
- Department of Chemistry, University of Houston, Houston, TX 77204-5003, USA.
| | | | | |
Collapse
|
38
|
Kaiser D, Klose I, Oost R, Neuhaus J, Maulide N. Bond-Forming and -Breaking Reactions at Sulfur(IV): Sulfoxides, Sulfonium Salts, Sulfur Ylides, and Sulfinate Salts. Chem Rev 2019; 119:8701-8780. [PMID: 31243998 PMCID: PMC6661881 DOI: 10.1021/acs.chemrev.9b00111] [Citation(s) in RCA: 513] [Impact Index Per Article: 85.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Indexed: 12/13/2022]
Abstract
Organosulfur compounds have long played a vital role in organic chemistry and in the development of novel chemical structures and architectures. Prominent among these organosulfur compounds are those involving a sulfur(IV) center, which have been the subject of countless investigations over more than a hundred years. In addition to a long list of textbook sulfur-based reactions, there has been a sustained interest in the chemistry of organosulfur(IV) compounds in recent years. Of particular interest within organosulfur chemistry is the ease with which the synthetic chemist can effect a wide range of transformations through either bond formation or bond cleavage at sulfur. This review aims to cover the developments of the past decade in the chemistry of organic sulfur(IV) molecules and provide insight into both the wide range of reactions which critically rely on this versatile element and the diverse scaffolds that can thereby be synthesized.
Collapse
Affiliation(s)
- Daniel Kaiser
- Institute
of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria
| | - Immo Klose
- Institute
of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria
| | - Rik Oost
- Institute
of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria
| | - James Neuhaus
- Institute
of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria
| | - Nuno Maulide
- Institute
of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria
| |
Collapse
|
39
|
Jiang Y, Feng YY, Zou JX, Lei S, Hu XL, Yin GF, Tan W, Wang Z. Brønsted Base-Switched Selective Mono- and Dithiolation of Benzamides via Copper Catalysis. J Org Chem 2019; 84:10490-10500. [PMID: 31333031 DOI: 10.1021/acs.joc.9b01237] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yi Jiang
- School of Pharmacy, Lanzhou University, West Donggang Road No. 199, Lanzhou 730000, China
| | - Yi-yue Feng
- School of Pharmacy, Lanzhou University, West Donggang Road No. 199, Lanzhou 730000, China
| | - Jiao-xia Zou
- School of Pharmacy, Lanzhou University, West Donggang Road No. 199, Lanzhou 730000, China
| | - Shuai Lei
- School of Pharmacy, Lanzhou University, West Donggang Road No. 199, Lanzhou 730000, China
| | - Xiao-ling Hu
- School of Pharmacy, Lanzhou University, West Donggang Road No. 199, Lanzhou 730000, China
| | - Gao-feng Yin
- School of Pharmacy, Lanzhou University, West Donggang Road No. 199, Lanzhou 730000, China
| | - Wen Tan
- School of Pharmacy, Lanzhou University, West Donggang Road No. 199, Lanzhou 730000, China
| | - Zhen Wang
- School of Pharmacy, Lanzhou University, West Donggang Road No. 199, Lanzhou 730000, China
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
40
|
Chen D, Fu Y, Cao X, Luo J, Wang F, Huang S. Metal-Free Cyclopropanol Ring-Opening C(sp3)–C(sp2) Cross-Couplings with Aryl Sulfoxides. Org Lett 2019; 21:5600-5605. [DOI: 10.1021/acs.orglett.9b01908] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dengfeng Chen
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Yuanyuan Fu
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Xiaoji Cao
- College of Chemical Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, Zhejiang 310014, P. R. China
| | - Jinyue Luo
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Fei Wang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Shenlin Huang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P. R. China
| |
Collapse
|
41
|
Nakamura Y, Miyata Y, Uchida K, Yoshida S, Hosoya T. 3-Thioaryne Intermediates for the Synthesis of Diverse Thioarenes. Org Lett 2019; 21:5252-5258. [DOI: 10.1021/acs.orglett.9b01862] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yu Nakamura
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Yoshihiro Miyata
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Keisuke Uchida
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Suguru Yoshida
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Takamitsu Hosoya
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| |
Collapse
|
42
|
Yang S, Cheng R, Zhao T, Luo A, Lan J, You J. Rhodium-Catalyzed C–H/C–H Cross Coupling of Benzylthioethers or Benzylamines with Thiophenes Enabled by Flexible Directing Groups. Org Lett 2019; 21:5086-5090. [DOI: 10.1021/acs.orglett.9b01679] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shiping Yang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P.R. China
| | - Rui Cheng
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P.R. China
| | - Tingxing Zhao
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P.R. China
| | - Anping Luo
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P.R. China
| | - Jingbo Lan
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P.R. China
| | - Jingsong You
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P.R. China
| |
Collapse
|
43
|
Zhang L, He J, Liang Y, Hu M, Shang L, Huang X, Kong L, Wang Z, Peng B. Selective [5,5]‐Sigmatropic Rearrangement by Assembly of Aryl Sulfoxides with Allyl Nitriles. Angew Chem Int Ed Engl 2019; 58:5316-5320. [DOI: 10.1002/anie.201900434] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/18/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Lei Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsZhejiang Normal University Jinhua 321004 China
| | - Jia‐Ni He
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsZhejiang Normal University Jinhua 321004 China
| | - Yuchen Liang
- School of Chemistry and Chemical EngineeringUniversity of the Chinese Academy of Sciences Beijing 100049 China
| | - Mengjie Hu
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsZhejiang Normal University Jinhua 321004 China
| | - Li Shang
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsZhejiang Normal University Jinhua 321004 China
| | - Xin Huang
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsZhejiang Normal University Jinhua 321004 China
| | - Lichun Kong
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsZhejiang Normal University Jinhua 321004 China
| | - Zhi‐Xiang Wang
- School of Chemistry and Chemical EngineeringUniversity of the Chinese Academy of Sciences Beijing 100049 China
| | - Bo Peng
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsZhejiang Normal University Jinhua 321004 China
| |
Collapse
|
44
|
Minami H, Nogi K, Yorimitsu H. Palladium-Catalyzed Alkoxycarbonylation of Arylsulfoniums. Org Lett 2019; 21:2518-2522. [DOI: 10.1021/acs.orglett.9b00067] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Hiroko Minami
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Keisuke Nogi
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hideki Yorimitsu
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
45
|
Zhang L, He J, Liang Y, Hu M, Shang L, Huang X, Kong L, Wang Z, Peng B. Selective [5,5]‐Sigmatropic Rearrangement by Assembly of Aryl Sulfoxides with Allyl Nitriles. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900434] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Lei Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsZhejiang Normal University Jinhua 321004 China
| | - Jia‐Ni He
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsZhejiang Normal University Jinhua 321004 China
| | - Yuchen Liang
- School of Chemistry and Chemical EngineeringUniversity of the Chinese Academy of Sciences Beijing 100049 China
| | - Mengjie Hu
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsZhejiang Normal University Jinhua 321004 China
| | - Li Shang
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsZhejiang Normal University Jinhua 321004 China
| | - Xin Huang
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsZhejiang Normal University Jinhua 321004 China
| | - Lichun Kong
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsZhejiang Normal University Jinhua 321004 China
| | - Zhi‐Xiang Wang
- School of Chemistry and Chemical EngineeringUniversity of the Chinese Academy of Sciences Beijing 100049 China
| | - Bo Peng
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsZhejiang Normal University Jinhua 321004 China
| |
Collapse
|
46
|
Wu C, Berritt S, Liang X, Walsh PJ. Palladium-Catalyzed Enantioselective Alkenylation of Sulfenate Anions. Org Lett 2019; 21:960-964. [PMID: 30694063 DOI: 10.1021/acs.orglett.8b03943] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A novel approach to synthesize enantio-enriched alkenyl/aryl sulfoxides is achieved by using CsF to generate sulfenate anions and conducting the catalytic enantioselective alkenylation with [Pd(allyl)Cl]2/(2 R)-1-[(1 R)-1-[bis(1,1-dimethylethyl)phosphino]ethyl]-2-(diphenylphosphino)ferrocene (SL-J002-1). A wide variety of sulfoxides bearing sensitive functional groups are produced with high yields (up to 94%) and enantioselectivities (up to 92%).
Collapse
Affiliation(s)
- Chen Wu
- Roy and Diana Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , Pennsylvania 19104-6323 , United States
| | - Simon Berritt
- Roy and Diana Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , Pennsylvania 19104-6323 , United States
| | - Xiaoxia Liang
- Roy and Diana Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , Pennsylvania 19104-6323 , United States.,Natural Medicine Research Center, College of Veterinary Medicine , Sichuan Agricultural University , Chengdu 611130 , People's Republic of China
| | - Patrick J Walsh
- Roy and Diana Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , Pennsylvania 19104-6323 , United States
| |
Collapse
|
47
|
Hori M, Yanagi T, Murakami K, Nogi K, Yorimitsu H. Annulative Synthesis of Benzofurans from General Alkenyl Sulfoxides and Phenols via Pummerer/Sigmatropic Cascade. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20180321] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Mitsuki Hori
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Tomoyuki Yanagi
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kei Murakami
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Keisuke Nogi
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hideki Yorimitsu
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
48
|
Ji YZ, Li HJ, Zhang JY, Wu YC. Switchable regioselection of C–H thiolation of indoles using different TMS counterions. Chem Commun (Camb) 2019; 55:11864-11867. [DOI: 10.1039/c9cc05652a] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Simply swapping the counteranions of TMS leads to a switchable regioselectivity in C2– and C3–H thiolation of indoles.
Collapse
Affiliation(s)
- Yuan-Zhao Ji
- School of Marine Science and Technology
- Harbin Institute of Technology
- Weihai 264209
- P. R. China
| | - Hui-Jing Li
- School of Marine Science and Technology
- Harbin Institute of Technology
- Weihai 264209
- P. R. China
- Weihai Institute of Marine Biomedical Industrial Technology
| | - Jin-Yu Zhang
- School of Marine Science and Technology
- Harbin Institute of Technology
- Weihai 264209
- P. R. China
| | - Yan-Chao Wu
- School of Marine Science and Technology
- Harbin Institute of Technology
- Weihai 264209
- P. R. China
- Weihai Institute of Marine Biomedical Industrial Technology
| |
Collapse
|
49
|
Meng X, Chen D, Cao X, Luo J, Wang F, Huang S. Synthesis of polysubstituted cyclic 1,2-diketones enabled by iterative sulfoxide-mediated arylation. Chem Commun (Camb) 2019; 55:12495-12498. [DOI: 10.1039/c9cc06505a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A metal-free iterative C–H arylation of cyclic 1,2-diketones with aryl sulfoxides has been developed.
Collapse
Affiliation(s)
- Xiangtai Meng
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass
- College of Chemical Engineering
- Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources
- Nanjing Forestry University
| | - Dengfeng Chen
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass
- College of Chemical Engineering
- Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources
- Nanjing Forestry University
| | - Xiaoji Cao
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou
- P. R. China
| | - Jinyue Luo
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass
- College of Chemical Engineering
- Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources
- Nanjing Forestry University
| | - Fei Wang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass
- College of Chemical Engineering
- Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources
- Nanjing Forestry University
| | - Shenlin Huang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass
- College of Chemical Engineering
- Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources
- Nanjing Forestry University
| |
Collapse
|
50
|
Bao Y, Zhong L, Hou Q, Zhou Q, Yang F. Metal-Free Synthesis of β-Bromoalkenyl Sulfides via Deoxygenative Bromination/Olefination/Sulfenylation of Ketones with Sulfonyl Hydrazides and Pyridinium Tribromide. CHINESE J CHEM 2018. [DOI: 10.1002/cjoc.201800375] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yishu Bao
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry; China Pharmaceutical University; Nanjing Jiangsu 210009 China
| | - Lingyu Zhong
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry; China Pharmaceutical University; Nanjing Jiangsu 210009 China
| | - Qiaodan Hou
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry; China Pharmaceutical University; Nanjing Jiangsu 210009 China
| | - Qingfa Zhou
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry; China Pharmaceutical University; Nanjing Jiangsu 210009 China
| | - Fulai Yang
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry; China Pharmaceutical University; Nanjing Jiangsu 210009 China
| |
Collapse
|