1
|
Liu J, Jiang HW, Hu XQ, Xu PF. Visible-Light-Induced Alkoxypyridylation of Alkenes Using N-Alkoxypyridinium Salts as Bifunctional Reagents. Org Lett 2024; 26:3661-3666. [PMID: 38656155 DOI: 10.1021/acs.orglett.4c01186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Considering the ubiquitous presence of pyridine moieties in pharmaceutical compounds, it holds immense value to develop practical and straightforward methodologies for accessing heterocyclic aromatic hydrocarbons. In recent years, N-alkoxypyridinium salts have emerged as convenient radical precursors, enabling the generation of the corresponding alkoxy radicals and pyridine through single-electron transfer. Herein, we present the first report on visible-light-mediated intermolecular alkoxypyridylation of alkenes employing N-alkoxylpyridinium salts as bifunctional reagents with an exceptionally low catalyst loading (0.5 mol %).
Collapse
Affiliation(s)
- Jie Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Hao-Wen Jiang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Xiu-Qin Hu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Peng-Fei Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| |
Collapse
|
2
|
Han G, You J, Choi J, Kang EJ. N-Iminopyridinium Compounds in Giese Reaction: Photoinduced Homolytic N-N and C-C Bond Cleavage for Cyanoalkyl Radical Generation. Org Lett 2024. [PMID: 38489286 DOI: 10.1021/acs.orglett.4c00565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
We present an innovative photoinduced cyanoalkyl radical addition methodology using N-iminopyridinium reagents derived from cyclic ketones. Mechanistic investigations reveal the association of the excited Hantzsch ester and iminopyridinium with pyridyl radical generation. The ensuing cascade involving homolytic N-N bond and C-C bond cleavage of the pyridyl radical ultimately leads to the formation of cyanoalkyl radical species, leading to diverse Giese-type products. The method showcases versatility and synthetic utility in late-stage functionalization.
Collapse
Affiliation(s)
- Gyuri Han
- Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Korea
| | - Jihyun You
- Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Korea
| | - Junhyeon Choi
- Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Korea
| | - Eun Joo Kang
- Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Korea
| |
Collapse
|
3
|
Midya S, Hari DP. A highly diastereoselective strain-release Doyle-Kirmse reaction: access to functionalized difluoro(methylene)cyclopropanes. Chem Sci 2023; 14:13560-13567. [PMID: 38033902 PMCID: PMC10685340 DOI: 10.1039/d3sc04749k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Difluoro(methylene)cyclopropanes (F2MCPs) show better anti-cancer properties and chemical reactivities compared to their nonfluorinated analogues. However, catalytic stereoselective methods to access these privileged motifs still remain a challenging goal. The Doyle-Kirmse reaction is a powerful strategy for the concomitant formation of carbon-carbon and carbon-sulfur bonds. Although the enantioselective variants of this reaction have been achieved with high levels of selectivity, the methods that control the diastereoselectivity have been only moderately successful. Herein, we report a catalytic, highly diastereoselective strain-release Doyle-Kirmse reaction for synthesizing functionalized F2MCPs using an inexpensive copper catalyst. The transformation proceeds under mild conditions and displays excellent functional group compatibility on both diazo compounds and difluorocyclopropenyl methyl sulfane/selane derivatives. Furthermore, the obtained products were efficiently transformed into valuable building blocks, such as functionalized spiroheterocycles, difluorocyclopropanes, and skipped dienes.
Collapse
Affiliation(s)
- Suparnak Midya
- Department of Organic Chemistry, Indian Institute of Science Bangalore 560012 India
| | - Durga Prasad Hari
- Department of Organic Chemistry, Indian Institute of Science Bangalore 560012 India
| |
Collapse
|
4
|
Luo YC, Wang Y, Shi R, Zhang XG, Zhang HH, Xu PF. Photoredox Catalyzed [3 + 2]-Annulation Reaction of Pyridinium 1,4-Zwitterionic Thiolates with Alkenes: Synthesis of Dihydrothiophenes. Org Lett 2023; 25:6105-6109. [PMID: 37584499 DOI: 10.1021/acs.orglett.3c02068] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Pyridinium 1,4-zwitterionic thiolates are usually used to develop ionic annulation reactions. However, radical reactions were rare. We developed a photoredox catalyzed [3 + 2]-annulation reaction of pyridinium 1,4-zwitterionic thiolates with alkenes, disclosed the new reactivity of pyridinium 1,4-zwitterionic thiolate, and provided a new synthetic method for dihydrothiophene.
Collapse
Affiliation(s)
- Yong-Chun Luo
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, College of Veterinary Medicine, Lanzhou University, Lanzhou 730000, P. R. China
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, P. R. China
| | - Yang Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, College of Veterinary Medicine, Lanzhou University, Lanzhou 730000, P. R. China
| | - Run Shi
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, College of Veterinary Medicine, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xu-Gang Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, College of Veterinary Medicine, Lanzhou University, Lanzhou 730000, P. R. China
| | - Huan-Huan Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, College of Veterinary Medicine, Lanzhou University, Lanzhou 730000, P. R. China
| | - Peng-Fei Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, College of Veterinary Medicine, Lanzhou University, Lanzhou 730000, P. R. China
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, P. R. China
| |
Collapse
|
5
|
Roychowdhury P, Samanta S, Tan H, Powers DC. N-Amino Pyridinium Salts in Organic Synthesis. Org Chem Front 2023; 10:2563-2580. [PMID: 37840843 PMCID: PMC10569450 DOI: 10.1039/d3qo00190c] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
C-N bond forming reactions hold immense significance to synthetic organic chemistry. In pursuit of efficient methods for the introduction of nitrogen in organic small molecules, myriad synthetic methods have been developed, and methods based on both nucleophilic and electrophilic aminating reagents have received sustained research effort. In response to continued challenges - the need for substrate prefunctionalization, the requirement for vestigial N-activating groups, and the need to incorporate nitrogen in ever more complex molecular settings - the development of novel aminating reagents remains a central challenge in method development. N-aminopyridinums and their derivatives have recently emerged as a class of bifunctional aminating reagents, which combine N-centered nucleophilicity with latent electrophilic or radical reactivity by virtue of the reducible N-N bond, with broad synthetic potential. Here, we summarize the synthesis and reactivity of N-aminopyridinium salts relevant to organic synthesis. The preparation and application of these reagents in photocatalyzed and metal-catalyzed transformations is discussed, showcasing the reactivity in the context of bifunctional platform and its potential for innovation in the field.
Collapse
Affiliation(s)
- Pritam Roychowdhury
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| | - Samya Samanta
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| | - Hao Tan
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| | - David C Powers
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|
6
|
Wei HZ, Shi M, Wei Y. Visible-light-induced reactions of methylenecyclopropanes (MCPs). Chem Commun (Camb) 2023; 59:2726-2738. [PMID: 36752186 DOI: 10.1039/d2cc06957a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Diverse, visible-light-induced transformations of methylenecyclopropanes (MCPs) have been reported in recent years, attracting significant attention from synthetic chemists. As readily accessible strained molecules, MCPs have sufficient reactivity to selectively generate different target products, through reactions with various radical species upon visible-light irradiation under regulated reaction conditions. These transformations can be classified into three subcategories of reaction pathway, forming ring-opened products, cyclopropane derivatives, and alkynes. These products include pharmaceutical intermediates and polycyclic/heterocyclic compounds that are challenging to obtain using traditional methods. This review summarizes the recent advancements in this field.
Collapse
Affiliation(s)
- Hao-Zhao Wei
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Min Shi
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China. .,Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yin Wei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.
| |
Collapse
|
7
|
Pan C, Yang Z, Wu X, Yu JT, Zhu C. Substituent-Controlled Regioselective Photoinduced Cyclization of N-Allylbenzamides with N-Sulfonylaminopyridinium Salts. Org Lett 2023; 25:494-499. [PMID: 36634986 DOI: 10.1021/acs.orglett.2c04190] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The annulation reactions of N-allylbenzamides with N-sulfonylaminopyridinium salts were developed under metal-free photoinduced mild conditions. Substituent-controlled sulfonaminoarylation and sulfonaminooxylation of benzamides were realized: N-allylbenzamides lead to benzosultams, while N-(2-phenylallyl)benzamides give sulfonamidylated oxazoline derivatives. Control experiments indicated that those reactions undergo a radical pathway with arylsulfonamidyl radicals as the intermediates. The aryl C-H bond functionalization in arylsulfonamidyl was involved for the first time to give benzosultams.
Collapse
Affiliation(s)
- Changduo Pan
- School of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou 213001, P. R. China.,School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.,School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Zixian Yang
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Xian Wu
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Jin-Tao Yu
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Chengjian Zhu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.,Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
8
|
Sośnicki JG, Borzyszkowska-Ledwig A, Idzik TJ, Lubowicz MM, Maciejewska G, Struk Ł. Divergent Synthesis of Functionalized Indenopyridin-2-ones and 2-Pyridones via Benzyl Group Transfer: Two Cases of Aza-semipinacol-Type Rearrangement. Org Lett 2022; 24:8498-8502. [DOI: 10.1021/acs.orglett.2c03361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Jacek G. Sośnicki
- West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Department of Organic and Physical Chemistry, Al. Piastów 42, Szczecin 71-065, Poland
| | - Aleksandra Borzyszkowska-Ledwig
- West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Department of Organic and Physical Chemistry, Al. Piastów 42, Szczecin 71-065, Poland
| | - Tomasz J. Idzik
- West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Department of Organic and Physical Chemistry, Al. Piastów 42, Szczecin 71-065, Poland
| | - Magdalena M. Lubowicz
- West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Department of Organic and Physical Chemistry, Al. Piastów 42, Szczecin 71-065, Poland
| | - Gabriela Maciejewska
- Wrocław University of Science and Technology, Faculty of Chemistry, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Łukasz Struk
- West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Department of Organic and Physical Chemistry, Al. Piastów 42, Szczecin 71-065, Poland
| |
Collapse
|
9
|
Wu YL, Jiang M, Rao L, Cheng Y, Xiao WJ, Chen JR. Selective Three-Component 1,2-Aminoalkoxylation of 1-Aryl-1,3-dienes by Dual Photoredox and Copper Catalysis. Org Lett 2022; 24:7470-7475. [PMID: 36173401 DOI: 10.1021/acs.orglett.2c03124] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A three-component 1,2-aminooxygenation reaction of 1,3-dienes by dual photoredox and copper catalysis is described. This protocol uses N-aminopyridinium salts as N-centered radical precursors and nucleophilic alcohols as oxygen sources, providing modular and practical access to 1,2-aminoalkoxylation products with good yields and regioselectivity. Preliminary mechanistic studies support the radical property of the reaction and the involvement of N-centered radical intermediates.
Collapse
Affiliation(s)
- Ya-Li Wu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Min Jiang
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, P. R. China
| | - Li Rao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Ying Cheng
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Wen-Jing Xiao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Jia-Rong Chen
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
| |
Collapse
|
10
|
Chen P, Huang PF, Xiong BQ, Huang HW, Tang KW, Liu Y. Visible-Light-Induced Decarboxylative Alkylation/Ring Opening and Esterification of Vinylcyclopropanes. Org Lett 2022; 24:5726-5730. [PMID: 35920748 DOI: 10.1021/acs.orglett.2c02151] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A visible-light-induced four-component reaction of vinylcyclopropanes, N-(acyloxy)phthalimide esters, N,N-dimethylformamide (DMF), and H2O through an oxidative ring opening of cyclopropane is presented. This procedure provides a new and effective way to construct formate esters. DMF is employed as both a solvent and the source of CHO. This difunctionalization of vinylcyclopropanes shows good functional group tolerance under room temperature. A radical pathway is involved, and carbonyl oxygen of ester originated from water in this transformation.
Collapse
Affiliation(s)
- Pu Chen
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, People's Republic of China.,Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, People's Republic of China
| | - Peng-Fei Huang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, People's Republic of China
| | - Bi-Quan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, People's Republic of China
| | - Hua-Wen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, People's Republic of China
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, People's Republic of China
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, People's Republic of China
| |
Collapse
|
11
|
Gao F, Zhang S, Lv Q, Yu B. Recent advances in graphene oxide catalyzed organic transformations. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Wang Y, Bao Y, Tang M, Ye Z, Yuan Z, Zhu G. Recent advances in difunctionalization of alkenes using pyridinium salts as radical precursors. Chem Commun (Camb) 2022; 58:3847-3864. [PMID: 35257136 DOI: 10.1039/d2cc00369d] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this review, we summarise the recent applications of pyridinium salts in the radical-mediated difunctionalization of alkenes. Pyridinium salts are a privileged class of compounds that show great utility in natural products and synthetic chemistry. Various organic transformations of pyridinium salts, especially in radical chemistry, have been developed in recent years. We prepared this review based on the two distinguished properties of pyridinium salts in radical transformation: (1) pyridinium salts can easily undergo single electron reduction to deliver X radicals. (2) Pyridinium salts are highly electrophilic so that alkyl radical intermediates can easily add to the pyridine core. Based on the role of pyridinium salts in difunctionalization of alkenes, the main body of this review is divided into three parts: (1) using pyridinium salts as X transfer reagents. (2) Using pyridinium salts as novel pyridine transfer reagents. (3) Using pyridinium salts as bifunctional reagents (X and pyridine). The C2 and C4 selectivity during pyridylation is discussed in detail. We hope that this review will provide a comprehensive overview of this topic and promote the wider development and application of pyridinium salts.
Collapse
Affiliation(s)
- Yanan Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China.
| | - Yanyang Bao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China.
| | - Meifang Tang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China.
| | - Zhegao Ye
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China.
| | - Zheliang Yuan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China.
| | - Gangguo Zhu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China.
| |
Collapse
|
13
|
Pratley C, Fenner S, Murphy JA. Nitrogen-Centered Radicals in Functionalization of sp 2 Systems: Generation, Reactivity, and Applications in Synthesis. Chem Rev 2022; 122:8181-8260. [PMID: 35285636 DOI: 10.1021/acs.chemrev.1c00831] [Citation(s) in RCA: 148] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The chemistry of nitrogen-centered radicals (NCRs) has plentiful applications in organic synthesis, and they continue to expand as our understanding of these reactive species increases. The utility of these reactive intermediates is demonstrated in the recent advances in C-H amination and the (di)amination of alkenes. Synthesis of previously challenging structures can be achieved by efficient functionalization of sp2 moieties without prefunctionalization, allowing for faster and more streamlined synthesis. This Review addresses the generation, reactivity, and application of NCRs, including, but not limited to, iminyl, aminyl, amidyl, and aminium species. Contributions from early discovery up to the most recent examples have been highlighted, covering radical initiation, thermolysis, photolysis, and, more recently, photoredox catalysis. Radical-mediated intermolecular amination of (hetero)arenes can occur with a variety of complex amine precursors, generating aniline derivatives, an important class of structures for drug discovery and development. Functionalization of olefins is achievable in high anti-Markovnikov regioselectivity and allows access to difunctionalized structures when the intermediate carbon radicals are trapped. Additionally, the reactivity of NCRs can be harnessed for the rapid construction of N-heterocycles such as pyrrolidines, phenanthridines, quinoxalines, and quinazolinones.
Collapse
Affiliation(s)
- Cassie Pratley
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom.,GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Herts SG1 2NY, United Kingdom
| | - Sabine Fenner
- GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Herts SG1 2NY, United Kingdom
| | - John A Murphy
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| |
Collapse
|
14
|
Yang S, Song J, Dong D, Yang H, Zhou M, Zhang H, Wang Z. Progress of N-Amino Pyridinium Salts as Nitrogen Radical Precursors in Visible Light Induced C—N Bond Formation Reactions. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202207019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
15
|
Xu GQ, Xu PF. Visible light organic photoredox catalytic cascade reactions. Chem Commun (Camb) 2021; 57:12914-12935. [PMID: 34782893 DOI: 10.1039/d1cc04883j] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Over the past years, impressive progress has been made in the development of organic photoredox catalytic cascade reactions without the participation of expensive and toxic transition metals under visible light irradiation. These transformations highly depend on the in situ generation of various radical species in the photoredox catalytic cycles. Numerous chemically and biomedically valuable building blocks have been synthesized through this efficient and sustainable protocol. In this review, we highlight the recent progress in this blooming area by presenting a series of new catalytic cascade reactions mediated by organic photoredox catalysts and describe their mechanisms and applications which have appeared in the recent literature.
Collapse
Affiliation(s)
- Guo-Qiang Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Peng-Fei Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China. .,State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
16
|
Yang Z, Cao K, Peng X, Lin L, Fan D, Li J, Wang J, Zhang X, Jiang H, Li J. Micellar Catalysis: Visible‐Light Mediated Imidazo[1,2‐
a
]pyridine C—H Amination with
N
‐Aminopyridinium Salt Accelerated by Surfactant in Water. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zhonglie Yang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering Southwest Jiaotong University Chengdu Sichuan 610041 China
| | - Kun Cao
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering Southwest Jiaotong University Chengdu Sichuan 610041 China
| | - Xiaoyan Peng
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering Southwest Jiaotong University Chengdu Sichuan 610041 China
| | - Li Lin
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering Southwest Jiaotong University Chengdu Sichuan 610041 China
| | - Danchen Fan
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering Southwest Jiaotong University Chengdu Sichuan 610041 China
| | - Jun‐Long Li
- Antibiotics Research and Re‐evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy Chengdu University Chengdu Sichuan 610106 China
| | - Jingxia Wang
- Irradiation Preservation Technology Key Laboratory of Sichuan Province Sichuan Institute of Atomic Energy Chengdu Sichuan 610101 China
| | - Xiaobin Zhang
- Irradiation Preservation Technology Key Laboratory of Sichuan Province Sichuan Institute of Atomic Energy Chengdu Sichuan 610101 China
| | - Hezhong Jiang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering Southwest Jiaotong University Chengdu Sichuan 610041 China
| | - Jiahong Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering Southwest Jiaotong University Chengdu Sichuan 610041 China
| |
Collapse
|
17
|
Biletskyi B, Colonna P, Masson K, Parrain JL, Commeiras L, Chouraqui G. Small rings in the bigger picture: ring expansion of three- and four-membered rings to access larger all-carbon cyclic systems. Chem Soc Rev 2021; 50:7513-7538. [PMID: 34002179 DOI: 10.1039/d0cs01396j] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The release of the inherent ring strain of cyclobutane and cyclopropane derivatives allows a rapid build-up of molecular complexity. This review highlights the state-of-the-art of the ring expansions of three- and four-membered cycles and is organised by types of reactions with emphasis on the reaction mechanisms. Selected examples are discussed to illustrate the synthetic potential of this elegant synthetic tool.
Collapse
Affiliation(s)
- Bohdan Biletskyi
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France.
| | - Pierre Colonna
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France.
| | - Kévin Masson
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France.
| | - Jean-Luc Parrain
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France.
| | - Laurent Commeiras
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France.
| | - Gaëlle Chouraqui
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France.
| |
Collapse
|
18
|
Photocatalyst-controlled and visible light-enabled selective oxidation of pyridinium salts. Sci China Chem 2021. [DOI: 10.1007/s11426-020-9958-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
19
|
Liu J, Wei Y, Shi M. Visible light mediated synthesis of 4-aryl-1,2-dihydronaphthalene derivatives via single-electron oxidation or MHAT from methylenecyclopropanes. Org Chem Front 2021. [DOI: 10.1039/d0qo00853b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A new synthetic strategy of a single-electron oxidation and MHAT of methylenecyclopropanes (MCPs) for the rapid construction of 4-aryl-1,2-dihydronaphthalene derivatives by merging photoredox catalysis and cobalt catalysis has been developed.
Collapse
Affiliation(s)
- Jiaxin Liu
- State Key Laboratory of Organometallic Chemistry
- Center for Excellence in Molecular Synthesis
- University of Chinese Academy of Sciences
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
| | - Yin Wei
- State Key Laboratory of Organometallic Chemistry
- Center for Excellence in Molecular Synthesis
- University of Chinese Academy of Sciences
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
| | - Min Shi
- State Key Laboratory of Organometallic Chemistry
- Center for Excellence in Molecular Synthesis
- University of Chinese Academy of Sciences
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
| |
Collapse
|
20
|
Ma TC, Yao S, Qiao MM, Yuan F, Shi DQ, Xiao WJ. Photoredox-mediated N-centered radical addition/semipinacol rearrangement for the convenient synthesis of β-amino (spiro)cyclic ketones. Org Chem Front 2021. [DOI: 10.1039/d1qo00543j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A photoredox-mediated N-centered radical addition/semipinacol rearrangement cascade of cycloalkanol-substituted 1H-indenes or styrenes with N-arylsulfonyl protected 1-aminopyridinium salts for the efficient synthesis of β-amino (spiro)cyclic ketones is presented.
Collapse
Affiliation(s)
- Tian-Cong Ma
- Key Laboratory of Pesticide & Chemical Biology
- Ministry of Education
- College of Chemistry
- Central China Normal University
- Wuhan
| | - Sheng Yao
- Key Laboratory of Pesticide & Chemical Biology
- Ministry of Education
- College of Chemistry
- Central China Normal University
- Wuhan
| | - Ming-Ming Qiao
- Key Laboratory of Pesticide & Chemical Biology
- Ministry of Education
- College of Chemistry
- Central China Normal University
- Wuhan
| | - Fan Yuan
- Key Laboratory of Pesticide & Chemical Biology
- Ministry of Education
- College of Chemistry
- Central China Normal University
- Wuhan
| | - De-Qing Shi
- Key Laboratory of Pesticide & Chemical Biology
- Ministry of Education
- College of Chemistry
- Central China Normal University
- Wuhan
| | - Wen-Jing Xiao
- Key Laboratory of Pesticide & Chemical Biology
- Ministry of Education
- College of Chemistry
- Central China Normal University
- Wuhan
| |
Collapse
|
21
|
Zhu B, Wang Z, Xi H, Feng Z, Wang B, Jiao W, Li Z, Wang Z, Wu J. Visible-light-promoted divergent functionalizations of methylenecyclopropanes. Org Chem Front 2021. [DOI: 10.1039/d1qo01187a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Visible-light-induced monofunctionalization and difunctionalization of MCPs via ring-opening and cyclization processes have been developed for the syntheses of difluoromethyl compounds, alkyl compounds, halides, and sulfonyl compounds.
Collapse
Affiliation(s)
- Baoxiang Zhu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P.R. China
| | - Zhao Wang
- Henan University of Animal Husbandry and Economy, Zhengzhou 450001, P.R. China
| | - Hui Xi
- Zhengzhou Tobacco Research Institute of China National Tobacco Company, Zhengzhou 450001, P.R. China
| | - Zengqiang Feng
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P.R. China
| | - Binglei Wang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P.R. China
| | - Wenyang Jiao
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P.R. China
| | - Zhongxian Li
- High & New Technology Research Center, Henan Academy of Sciences, Zhengzhou 450002, P.R. China
| | - Zechao Wang
- Division of Molecular Catalysis & Synthesis, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, P.R. China
| | - Junliang Wu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P.R. China
| |
Collapse
|
22
|
Feng Z, Zhu B, Dong B, Cheng L, Li Y, Wang Z, Wu J. Visible-Light-Promoted Synthesis of α-CF2H-Substituted Ketones by Radical Difluoromethylation of Enol Acetates. Org Lett 2020; 23:508-513. [DOI: 10.1021/acs.orglett.0c04021] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Zengqiang Feng
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou 450001, P.R. China
| | - Baoxiang Zhu
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou 450001, P.R. China
| | - Bingbing Dong
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou 450001, P.R. China
| | - Li Cheng
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou 450001, P.R. China
| | - Yunpu Li
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou 450001, P.R. China
| | - Zechao Wang
- Division of Molecular Catalysis & Synthesis, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, P.R. China
| | - Junliang Wu
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou 450001, P.R. China
| |
Collapse
|
23
|
Sokolova OO, Bower JF. Selective Carbon–Carbon Bond Cleavage of Cyclopropylamine Derivatives. Chem Rev 2020; 121:80-109. [DOI: 10.1021/acs.chemrev.0c00166] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Olga O. Sokolova
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - John F. Bower
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United Kingdom
| |
Collapse
|
24
|
Rössler SL, Jelier BJ, Magnier E, Dagousset G, Carreira EM, Togni A. Pyridinium Salts as Redox‐Active Functional Group Transfer Reagents. Angew Chem Int Ed Engl 2020; 59:9264-9280. [DOI: 10.1002/anie.201911660] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Simon L. Rössler
- Department of Chemistry and Applied BiosciencesETH Zürich Vladimir-Prelog-Weg 1–5 8093 Zürich Switzerland
| | - Benson J. Jelier
- Department of Chemistry and Applied BiosciencesETH Zürich Vladimir-Prelog-Weg 1–5 8093 Zürich Switzerland
| | - Emmanuel Magnier
- Institut Lavoisier de VersaillesUMR 8180Université de Versailles-Saint-Quentin 78035 Versailles Cedex France
| | - Guillaume Dagousset
- Institut Lavoisier de VersaillesUMR 8180Université de Versailles-Saint-Quentin 78035 Versailles Cedex France
| | - Erick M. Carreira
- Department of Chemistry and Applied BiosciencesETH Zürich Vladimir-Prelog-Weg 1–5 8093 Zürich Switzerland
| | - Antonio Togni
- Department of Chemistry and Applied BiosciencesETH Zürich Vladimir-Prelog-Weg 1–5 8093 Zürich Switzerland
| |
Collapse
|
25
|
Rössler SL, Jelier BJ, Magnier E, Dagousset G, Carreira EM, Togni A. Pyridiniumsalze als redoxaktive Reagenzien zur Übertragung funktioneller Gruppen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201911660] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Simon L. Rössler
- Departement Chemie und Angewandte BiowissenschaftenETH Zürich Vladimir-Prelog-Weg 1–5 8093 Zürich Schweiz
| | - Benson J. Jelier
- Departement Chemie und Angewandte BiowissenschaftenETH Zürich Vladimir-Prelog-Weg 1–5 8093 Zürich Schweiz
| | - Emmanuel Magnier
- Institut Lavoisier de VersaillesUMR 8180Université de Versailles-Saint-Quentin 78035 Versailles Cedex Frankreich
| | - Guillaume Dagousset
- Institut Lavoisier de VersaillesUMR 8180Université de Versailles-Saint-Quentin 78035 Versailles Cedex Frankreich
| | - Erick M. Carreira
- Departement Chemie und Angewandte BiowissenschaftenETH Zürich Vladimir-Prelog-Weg 1–5 8093 Zürich Schweiz
| | - Antonio Togni
- Departement Chemie und Angewandte BiowissenschaftenETH Zürich Vladimir-Prelog-Weg 1–5 8093 Zürich Schweiz
| |
Collapse
|
26
|
Alajarin M, Ballester FJ, Vivancos JA, Orenes RA, Vidal A, Sanchez-Andrada P, Marin-Luna M. Lewis Acid-Mediated Formation of 1,3-Disubstituted Spiro[cyclopropane-1,2′-indanes]: The Activating Effect of the Cyclopropane Walsh Orbital. J Org Chem 2020; 85:4565-4573. [DOI: 10.1021/acs.joc.0c00090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mateo Alajarin
- Departamento de Quı́mica Orgánica, Facultad de Quı́mica, Regional Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, Murcia 30100, Spain
| | - Francisco-Jose Ballester
- Departamento de Quı́mica Orgánica, Facultad de Quı́mica, Regional Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, Murcia 30100, Spain
| | - Juan-Antonio Vivancos
- Departamento de Quı́mica Orgánica, Facultad de Quı́mica, Regional Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, Murcia 30100, Spain
| | - Raul-Angel Orenes
- Departamento de Quı́mica Orgánica, Facultad de Quı́mica, Regional Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, Murcia 30100, Spain
| | - Angel Vidal
- Departamento de Quı́mica Orgánica, Facultad de Quı́mica, Regional Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, Murcia 30100, Spain
| | - Pilar Sanchez-Andrada
- Departamento de Quı́mica Orgánica, Facultad de Quı́mica, Regional Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, Murcia 30100, Spain
| | - Marta Marin-Luna
- Departamento de Quı́mica Orgánica, Facultad de Quı́mica, Regional Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, Murcia 30100, Spain
| |
Collapse
|
27
|
Liu X, Zhu Q, Chen D, Wang L, Jin L, Liu C. Aminoazanium of DABCO: An Amination Reagent for Alkyl and Aryl Pinacol Boronates. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913388] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Xingxing Liu
- College of Chemical EngineeringZhejiang University of Technology Hangzhou 310014 P. R. China
- State Key Laboratory for Oxo Synthesis and Selective OxidationSuzhou Research InstituteLanzhou Institute of Chemical PhysicsChinese Academy of Sciences Lanzhou 730000 P. R. China
| | - Qing Zhu
- State Key Laboratory for Oxo Synthesis and Selective OxidationSuzhou Research InstituteLanzhou Institute of Chemical PhysicsChinese Academy of Sciences Lanzhou 730000 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Du Chen
- State Key Laboratory for Oxo Synthesis and Selective OxidationSuzhou Research InstituteLanzhou Institute of Chemical PhysicsChinese Academy of Sciences Lanzhou 730000 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Lu Wang
- State Key Laboratory for Oxo Synthesis and Selective OxidationSuzhou Research InstituteLanzhou Institute of Chemical PhysicsChinese Academy of Sciences Lanzhou 730000 P. R. China
| | - Liqun Jin
- College of Chemical EngineeringZhejiang University of Technology Hangzhou 310014 P. R. China
| | - Chao Liu
- State Key Laboratory for Oxo Synthesis and Selective OxidationSuzhou Research InstituteLanzhou Institute of Chemical PhysicsChinese Academy of Sciences Lanzhou 730000 P. R. China
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of EducationHangzhou Normal University Hangzhou 311121 P. R. China
| |
Collapse
|
28
|
Liu X, Zhu Q, Chen D, Wang L, Jin L, Liu C. Aminoazanium of DABCO: An Amination Reagent for Alkyl and Aryl Pinacol Boronates. Angew Chem Int Ed Engl 2020; 59:2745-2749. [PMID: 31814182 DOI: 10.1002/anie.201913388] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Indexed: 01/21/2023]
Abstract
The aminoazanium of DABCO (H2 N-DABCO) has been developed as a general and practical amination reagent for the direct amination of alkyl and aryl pinacol boronates. This compound is stable and practical for use as a reagent. Various primary, secondary. and tertiary alkyl-Bpin and aryl-Bpin substrates were aminated to give the corresponding amine derivatives. The amination is stereospecific. The anti-Markovnikov hydroamination of olefins was easily achieved by catalytic hydroboration with HBpin and in subsequent situ amination using H2 N-DABCO. Moreover, the combination of 1,2-diboration of olefins, using B2 pin2 , with this amination process achieved the unprecedented 1,2-diamination of olefins. The amination protocol was also successfully extended to aryl pinacol boronates.
Collapse
Affiliation(s)
- Xingxing Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.,State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Qing Zhu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Du Chen
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lu Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Liqun Jin
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Chao Liu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China.,Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| |
Collapse
|
29
|
Zhao Y, Shi C, Su X, Xia W. Synthesis of isoquinolones by visible-light-induced deaminative [4+2] annulation reactions. Chem Commun (Camb) 2020; 56:5259-5262. [DOI: 10.1039/d0cc01333a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A metal-free approach for the synthesis of isoquinolone derivatives by means of photoinitiated deaminative [4+2] annulation of alkynes and N-amidepyridinium salts is presented.
Collapse
Affiliation(s)
- Yating Zhao
- College of Chemical and Material Engineering
- Quzhou University
- Quzhou
- China
- State Key Lab of Urban Water Resource and Environment
| | - Chengcheng Shi
- State Key Lab of Urban Water Resource and Environment
- Harbin Institute of Technology (Shenzhen)
- Shenzhen
- China
| | - Xing Su
- College of Chemical and Material Engineering
- Quzhou University
- Quzhou
- China
| | - Wujiong Xia
- State Key Lab of Urban Water Resource and Environment
- Harbin Institute of Technology (Shenzhen)
- Shenzhen
- China
| |
Collapse
|
30
|
Chen M, Wei Y, Shi M. Cascade cyclization reactions of alkylidenecyclopropanes for the construction of polycyclic lactams and lactones by visible light photoredox catalysis. Org Chem Front 2020. [DOI: 10.1039/c9qo01360a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A facile method for the synthesis of seven- and eight-membered ring-containing polycyclic lactams and lactones by visible light photocatalysis has been developed.
Collapse
Affiliation(s)
- Mintao Chen
- State Key Laboratory of Organometallic Chemistry
- Center for Excellence in Molecular Synthesis
- University of Chinese Academy of Sciences
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
| | - Yin Wei
- State Key Laboratory of Organometallic Chemistry
- Center for Excellence in Molecular Synthesis
- University of Chinese Academy of Sciences
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
| | - Min Shi
- State Key Laboratory of Organometallic Chemistry
- Center for Excellence in Molecular Synthesis
- University of Chinese Academy of Sciences
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
| |
Collapse
|
31
|
Affiliation(s)
- Hongen Cao
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou 225002 Jiangsu People's Republic of China
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education Research and Development Center for Fine Chemicals Guizhou University Guiyang 550025 Guizhou People's Republic of China
- School of Horticulture and Plant Protection Yangzhou University Yangzhou 225009 Jiangsu People's Republic of China
| | - Fenglin Chen
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou 225002 Jiangsu People's Republic of China
| | - Chenliang Su
- SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Optoelectronic Engineering Shenzhen University Shenzhen 518060 People's Republic of China
| | - Lei Yu
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou 225002 Jiangsu People's Republic of China
| |
Collapse
|
32
|
Moon Y, Park B, Kim I, Kang G, Shin S, Kang D, Baik MH, Hong S. Visible light induced alkene aminopyridylation using N-aminopyridinium salts as bifunctional reagents. Nat Commun 2019; 10:4117. [PMID: 31511595 PMCID: PMC6739411 DOI: 10.1038/s41467-019-12216-3] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/27/2019] [Indexed: 11/09/2022] Open
Abstract
The development of intermolecular alkene aminopyridylation has great potential for quickly increasing molecular complexity with two valuable groups. Here we report a strategy for the photocatalytic aminopyridylation of alkenes using a variety of N-aminopyridinium salts as both aminating and pyridylating reagents. Using Eosin Y as a photocatalyst, amino and pyridyl groups are simultaneously incorporated into alkenes, affording synthetically useful aminoethyl pyridine derivatives under mild reaction conditions. Remarkably, the C4-regioselectivity in radical trapping with N-aminopyridinium salt can be controlled by electrostatic interaction between the pyridinium nitrogen and sulfonyl group of β-amino radical. This transformation is characterized by a broad substrate scope, good functional group compatibility, and the utility of this transformation was further demonstrated by late-stage functionalization of complex biorelevant molecules. Combining experiments and DFT calculations on the mechanism of the reaction is investigated to propose a complete mechanism and regioselectivity.
Collapse
Affiliation(s)
- Yonghoon Moon
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Bohyun Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Inwon Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Gyumin Kang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Sanghoon Shin
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Dahye Kang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Mu-Hyun Baik
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea. .,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Korea.
| | - Sungwoo Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea. .,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Korea.
| |
Collapse
|
33
|
He FS, Ye S, Wu J. Recent Advances in Pyridinium Salts as Radical Reservoirs in Organic Synthesis. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03084] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Fu-Sheng He
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Shengqing Ye
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Jie Wu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
34
|
He X, Tang Y, Wang Y, Chen J, Xu S, Dou J, Li Y. Phosphine‐Catalyzed Activation of Alkylidenecyclopropanes: Rearrangement to Form Polysubstituted Furans and Dienones. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903320] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xin He
- Department of ChemistrySchool of Science and Xi'an Key Laboratory of Sustainable Energy Materials ChemistryXi'an Jiaotong University Xi'an 710049 P. R. China
| | - Yuhai Tang
- Department of ChemistrySchool of Science and Xi'an Key Laboratory of Sustainable Energy Materials ChemistryXi'an Jiaotong University Xi'an 710049 P. R. China
| | - Yongzhuang Wang
- Department of ChemistrySchool of Science and Xi'an Key Laboratory of Sustainable Energy Materials ChemistryXi'an Jiaotong University Xi'an 710049 P. R. China
| | - Jian‐Bo Chen
- Institute of Chemical MaterialsChina Academy of Engineering Physics Mianyang 621999 P. R. China
| | - Silong Xu
- Department of ChemistrySchool of Science and Xi'an Key Laboratory of Sustainable Energy Materials ChemistryXi'an Jiaotong University Xi'an 710049 P. R. China
| | - Jianwei Dou
- College of PharmacyXi'an Jiaotong University Xi'an 710049 P. R. China
| | - Yang Li
- Department of ChemistrySchool of Science and Xi'an Key Laboratory of Sustainable Energy Materials ChemistryXi'an Jiaotong University Xi'an 710049 P. R. China
| |
Collapse
|
35
|
He X, Tang Y, Wang Y, Chen J, Xu S, Dou J, Li Y. Phosphine‐Catalyzed Activation of Alkylidenecyclopropanes: Rearrangement to Form Polysubstituted Furans and Dienones. Angew Chem Int Ed Engl 2019; 58:10698-10702. [DOI: 10.1002/anie.201903320] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/28/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Xin He
- Department of ChemistrySchool of Science and Xi'an Key Laboratory of Sustainable Energy Materials ChemistryXi'an Jiaotong University Xi'an 710049 P. R. China
| | - Yuhai Tang
- Department of ChemistrySchool of Science and Xi'an Key Laboratory of Sustainable Energy Materials ChemistryXi'an Jiaotong University Xi'an 710049 P. R. China
| | - Yongzhuang Wang
- Department of ChemistrySchool of Science and Xi'an Key Laboratory of Sustainable Energy Materials ChemistryXi'an Jiaotong University Xi'an 710049 P. R. China
| | - Jian‐Bo Chen
- Institute of Chemical MaterialsChina Academy of Engineering Physics Mianyang 621999 P. R. China
| | - Silong Xu
- Department of ChemistrySchool of Science and Xi'an Key Laboratory of Sustainable Energy Materials ChemistryXi'an Jiaotong University Xi'an 710049 P. R. China
| | - Jianwei Dou
- College of PharmacyXi'an Jiaotong University Xi'an 710049 P. R. China
| | - Yang Li
- Department of ChemistrySchool of Science and Xi'an Key Laboratory of Sustainable Energy Materials ChemistryXi'an Jiaotong University Xi'an 710049 P. R. China
| |
Collapse
|
36
|
Wang L, Cheng P, Wang X, Wang W, Zeng J, Liang Y, Reiser O. Visible-light promoted sulfonamidation of enol acetates to α-amino ketones based on redox-neutral photocatalysis. Org Chem Front 2019. [DOI: 10.1039/c9qo01119f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A visible-light mediated photoredox-catalyzed sulfonamidation of enol acetates to α-amino ketones has been developed. The process features mild and operationally simple reaction conditions and does not require an external oxidant.
Collapse
Affiliation(s)
- Lin Wang
- Key Laboratory of Traditional Chinese Veterinary Medicine of Hunan Province
- Hunan Agricultural University
- Changsha
- China
| | - Pi Cheng
- Key Laboratory of Traditional Chinese Veterinary Medicine of Hunan Province
- Hunan Agricultural University
- Changsha
- China
| | - Xinhao Wang
- Key Laboratory of Traditional Chinese Veterinary Medicine of Hunan Province
- Hunan Agricultural University
- Changsha
- China
| | - Wei Wang
- Key Laboratory of Traditional Chinese Veterinary Medicine of Hunan Province
- Hunan Agricultural University
- Changsha
- China
| | - Jianguo Zeng
- Key Laboratory of Traditional Chinese Veterinary Medicine of Hunan Province
- Hunan Agricultural University
- Changsha
- China
| | - Yun Liang
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province
- Hunan Normal University
- Changsha
- China
| | - Oliver Reiser
- Institut für Organische Chemie
- Universität Regensburg
- 93053 Regensburg
- Germany
| |
Collapse
|
37
|
Chen M, Wei Y, Shi M. A facile method for the synthesis of dihydroquinoline-azide from the Lewis acid-catalyzed reaction of alkylidenecyclopropanes with TMSN3. Org Biomol Chem 2019; 17:9990-9993. [DOI: 10.1039/c9ob02309g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile method for the cascade azidation of alkylidenecyclopropanes catalyzed by In(OTf)3is developed, affording azido compounds in moderate to good yields.
Collapse
Affiliation(s)
- Mintao Chen
- State Key Laboratory of Organometallic Chemistry
- Center for Excellence in Molecular Synthesis
- University of Chinese Academy of Sciences
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
| | - Yin Wei
- State Key Laboratory of Organometallic Chemistry
- Center for Excellence in Molecular Synthesis
- University of Chinese Academy of Sciences
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
| | - Min Shi
- State Key Laboratory of Organometallic Chemistry
- Center for Excellence in Molecular Synthesis
- University of Chinese Academy of Sciences
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
| |
Collapse
|
38
|
Liang H, Xu GQ, Feng ZT, Wang ZY, Xu PF. Dual Catalytic Switchable Divergent Synthesis: An Asymmetric Visible-Light Photocatalytic Approach to Fluorine-Containing γ-Keto Acid Frameworks. J Org Chem 2018; 84:60-72. [PMID: 30507130 DOI: 10.1021/acs.joc.8b02316] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, we describe a novel and efficient method for constructing a series of fluorine-containing γ-keto acid derivatives through combining visible-light photoredox catalysis and chiral Lewis acid catalysis. With this dual catalytic strategy, a variety of chiral γ-keto amides containing a gem-difluoroalkyl group and a series of fluorine-containing α,β-unsaturated-γ-keto esters were successfully constructed with high stereoselectivities, respectively. A series of experiments showed that the chemoselectivity of this process was highly dependent on the fluorine reagents besides the Lewis acid catalysts. This approach facilitates rapid access to γ-keto acid derivatives, an important class of precursors for pharmaceuticals, plasticizers, and various other additives.
Collapse
Affiliation(s)
- Hui Liang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , P. R. China
| | - Guo-Qiang Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , P. R. China
| | - Zhi-Tao Feng
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , P. R. China
| | - Zhu-Yin Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , P. R. China
| | - Peng-Fei Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , P. R. China
| |
Collapse
|
39
|
Mo JN, Yu WL, Chen JQ, Hu XQ, Xu PF. Regiospecific Three-Component Aminofluorination of Olefins via Photoredox Catalysis. Org Lett 2018; 20:4471-4474. [DOI: 10.1021/acs.orglett.8b01760] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jia-Nan Mo
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Wan-Lei Yu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jian-Qiang Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xiu-Qin Hu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Peng-Fei Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
40
|
Chen JQ, Chang R, Lin JB, Luo YC, Xu PF. Photoredox-Induced Intramolecular 1,5-H Transfer Reaction of Aryl Iodides for the Synthesis of Spirocyclic γ-Lactams. Org Lett 2018; 20:2395-2398. [PMID: 29613807 DOI: 10.1021/acs.orglett.8b00731] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This work develops a photocatalysis method for the synthesis of γ-spirolactams through a tandem intramolecular 1,5-HAT reaction-cyclization process. A variety of novel γ-spirolactams are prepared in good to excellent yields with this method. This transformation features mild reaction conditions and exceptional functional group tolerance. Additionally, γ-terpinene is applied to this transformation as a hydrogen atom donor for the first time.
Collapse
Affiliation(s)
- Jian-Qiang Chen
- State Key Laboratory of Applied Organic Chemistry , Lanzhou University , Lanzhou 730000 , PR China
| | - Rui Chang
- State Key Laboratory of Applied Organic Chemistry , Lanzhou University , Lanzhou 730000 , PR China
| | - Jun-Bing Lin
- State Key Laboratory of Applied Organic Chemistry , Lanzhou University , Lanzhou 730000 , PR China
| | - Yong-Chun Luo
- State Key Laboratory of Applied Organic Chemistry , Lanzhou University , Lanzhou 730000 , PR China
| | - Peng-Fei Xu
- State Key Laboratory of Applied Organic Chemistry , Lanzhou University , Lanzhou 730000 , PR China
| |
Collapse
|