1
|
Zhao F, Mattana A, Alam R, Montgomery SL, Pandya A, Manetti F, Dominguez B, Castagnolo D. Cooperative chemoenzymatic and biocatalytic cascades to access chiral sulfur compounds bearing C(sp 3)-S stereocentres. Nat Commun 2024; 15:8332. [PMID: 39333478 PMCID: PMC11436715 DOI: 10.1038/s41467-024-52608-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/17/2024] [Indexed: 09/29/2024] Open
Abstract
Biocatalysis has been widely employed for the generation of carbon-carbon/heteroatom stereocentres, yet its application in chiral C(sp3)-S bond construction is rare and limited to enzymatic kinetic resolutions. Herein, we describe the enantioselective construction of chiral C(sp3)-S bonds through ene-reductase biocatalyzed conjugate reduction of prochiral vinyl sulfides. A series of cooperative sequential/concurrent chemoenzymatic and biocatalytic cascades have been developed to access a broad range of chiral sulfides, including valuable β-hydroxysulfides bearing two adjacent C(sp3)-S and C(sp3)-O stereocentres, in a stereoconvergent manner with good to excellent yields (up to 96%) and enantioselectivities (up to >99% ee). Notably, this biocatalytic strategy allows to overcome the long-standing shortcomings of catalyst poisoning and C(sp2)/C(sp3)-S bond cleavage faced in transition-metal-catalyzed hydrogenation of vinyl sulfides. Finally, the potential of this methodology is also exemplified by its broader application in the stereoconvergent assembly of chiral C(sp3)-N/O/Se bonds with good to excellent enantioselctivities.
Collapse
Affiliation(s)
- Fei Zhao
- Department of Chemistry, University College London, London, UK
| | - Ariane Mattana
- Department of Chemistry, University College London, London, UK
| | - Ruqaiya Alam
- Department of Chemistry, University College London, London, UK
| | | | | | - Fabrizio Manetti
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | | | | |
Collapse
|
2
|
Morris AO, Barriault L. Redox-Neutral Multicatalytic Cerium Photoredox-Enabled Cleavage of O-H Bearing Substrates. Chemistry 2024; 30:e202400642. [PMID: 38436591 DOI: 10.1002/chem.202400642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/05/2024]
Abstract
The need for synthetic methodologies capable of rapidly altering molecular structure are in high demand. Most existing methods to modify scaffolds rely on net exothermicity to drive the desired transformation. We sought to develop a general strategy for the cleavage of C-C bonds β to hydroxyl groups independent of inherent substrate strain. To this end we have applied a multicatalytic cerium photoredox-based system capable of activating O-H bonds in lactols to deliver formate esters. The same system is also capable of effecting hydrodecarboxylation and hydrodecarbonylation reactions. Initial mechanistic probes demonstrate atomic chlorine (Cl⋅) is generated under the reaction conditions, but substrate activation through cerium-alkoxides or -carboxylates cannot be ruled out.
Collapse
Affiliation(s)
- Avery O Morris
- Center for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, Canada, K1 N 6 N5
| | - Louis Barriault
- Center for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, Canada, K1 N 6 N5
| |
Collapse
|
3
|
Gui YY, Chen XW, Mo XY, Yue JP, Yuan R, Liu Y, Liao LL, Ye JH, Yu DG. Cu-Catalyzed Asymmetric Dicarboxylation of 1,3-Dienes with CO 2. J Am Chem Soc 2024; 146:2919-2927. [PMID: 38277794 DOI: 10.1021/jacs.3c14146] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Dicarboxylic acids and derivatives are important building blocks in organic synthesis, biochemistry, and the polymer industry. Although catalytic dicarboxylation with CO2 represents a straightforward and sustainable route to dicarboxylic acids, it is still highly challenging and limited to generation of achiral or racemic dicarboxylic acids. To date, catalytic asymmetric dicarboxylation with CO2 to give chiral dicarboxylic acids has not been reported. Herein, we report the first asymmetric dicarboxylation of 1,3-dienes with CO2 via Cu catalysis. This strategy provides an efficient and environmentally benign route to chiral dicarboxylic acids with high regio-, chemo-, and enantioselectivities. The copper self-relay catalysis, that is, Cu-catalyzed boracarboxylation of 1,3-dienes to give carboxylated allyl boronic ester intermediates and subsequent carboxylation of C-B bonds to give dicarboxylates, is key to the success of this dicarboxylation. Moreover, this protocol exhibits broad substrate scope, good functional group tolerance, easy product derivatizations, and facile synthesis of chiral liquid crystalline polyester and drug-like scaffolds.
Collapse
Affiliation(s)
- Yong-Yuan Gui
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Xiao-Wang Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Xiao-Yan Mo
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Jun-Ping Yue
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Rong Yuan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Yi Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Li-Li Liao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Jian-Heng Ye
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Da-Gang Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
4
|
Tang Y, Luo Y, Xiang J, He Y, Fan Q. Rhodium‐Catalyzed ON‐OFF Switchable Hydrogenation Using a Molecular Shuttle Based on a [2]Rotaxane with a Phosphine Ligand. Angew Chem Int Ed Engl 2022; 61:e202200638. [DOI: 10.1002/anie.202200638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Indexed: 12/18/2022]
Affiliation(s)
- Yu‐Ping Tang
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yi‐Er Luo
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jun‐Feng Xiang
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yan‐Mei He
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
| | - Qing‐Hua Fan
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
5
|
Tang Y, Luo Y, Xiang J, He Y, Fan Q. Rhodium‐Catalyzed ON‐OFF Switchable Hydrogenation Using a Molecular Shuttle Based on a [2]Rotaxane with a Phosphine Ligand. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yu‐Ping Tang
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yi‐Er Luo
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jun‐Feng Xiang
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yan‐Mei He
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
| | - Qing‐Hua Fan
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
6
|
Nepal P, Kalapugama S, Shevlin M, Naber JR, Campeau LC, Pezzetta C, Carlone A, Cobley CJ, Bergens SH. Polycationic Rh–JosiPhos Polymers Supported on Phosphotungstic Acid/Al2O3 by Multiple Electrostatic Attractions. ACS Catal 2022. [DOI: 10.1021/acscatal.1c04983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Prabin Nepal
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton T6G 2G2, Alberta, Canada
| | - Suneth Kalapugama
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton T6G 2G2, Alberta, Canada
| | - Michael Shevlin
- Process Research and Development, MRL, Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - John R. Naber
- JRN - Process Research and Development, MRL, Merck & Co., Inc., 2000 Galloping Hill Rd, Kenilworth, New Jersey 07033, United States
| | - Louis-Charles Campeau
- Process Research and Development, MRL, Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Cristofer Pezzetta
- Dr. Reddy’s Laboratories (EU), 410 Science Park, Milton Road, Cambridge CB4 0PE, United Kingdom
| | - Armando Carlone
- Dr. Reddy’s Laboratories (EU), 410 Science Park, Milton Road, Cambridge CB4 0PE, United Kingdom
- Department of Physical and Chemical Sciences, Università degli Studi dell’Aquila, Via Vetoio, 67100 L’Aquila, Italy
| | - Christopher J. Cobley
- Dr. Reddy’s Laboratories (EU), 410 Science Park, Milton Road, Cambridge CB4 0PE, United Kingdom
| | - Steven H. Bergens
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton T6G 2G2, Alberta, Canada
| |
Collapse
|
7
|
Wang Q, Shi Y, Huang X, Wang Y, Jiao J, Tang Y, Li J, Xu S, Li Y. Ru(II)-Catalyzed Difunctional Pyridyloxy-Directed Regio- and Stereospecific Addition of Carboxylic Acids to Internal Alkynes. Org Lett 2021; 24:379-384. [PMID: 34935395 DOI: 10.1021/acs.orglett.1c04052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A highly efficient Ru(II)-catalyzed regio- and stereospecific hydro-oxycarbonylation of unsymmetrical internal alkynes bearing a difunctional 2-pyridyloxy directing group with carboxylic acids has been developed, which provides allylic (Z)-enol esters in good to excellent yields with a broad substrate scope under mild conditions. The difunctional directing group can be diversely derivatized, particularly undergoing allylic substitution with various nucleophiles to afford β-functionalized (Z)-enol esters without directing groups.
Collapse
Affiliation(s)
- Qin Wang
- Department of Material Chemistry, School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yan Shi
- Department of Material Chemistry, School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Xiaoli Huang
- Department of Material Chemistry, School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yongzhuang Wang
- Department of Material Chemistry, School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Jiao Jiao
- Department of Material Chemistry, School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yuhai Tang
- Department of Material Chemistry, School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Jing Li
- Department of Material Chemistry, School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Silong Xu
- Department of Material Chemistry, School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yang Li
- Department of Material Chemistry, School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| |
Collapse
|
8
|
Li M, Zhang J, Zou Y, Zhou F, Zhang Z, Zhang W. Asymmetric hydrogenation for the synthesis of 2-substituted chiral morpholines. Chem Sci 2021; 12:15061-15066. [PMID: 34909146 PMCID: PMC8612400 DOI: 10.1039/d1sc04288b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/26/2021] [Indexed: 12/17/2022] Open
Abstract
Asymmetric hydrogenation of unsaturated morpholines has been developed by using a bisphosphine-rhodium catalyst bearing a large bite angle. With this approach, a variety of 2-substituted chiral morpholines could be obtained in quantitative yields and with excellent enantioselectivities (up to 99% ee). The hydrogenated products could be transformed into key intermediates for bioactive compounds. 2-Substituted chiral morpholines were synthesized via a newly developed asymmetric hydrogenation of dehydromorpholines catalyzed by a bisphosphine–rhodium complex bearing a large bite angle.![]()
Collapse
Affiliation(s)
- Mingxu Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Jian Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Yashi Zou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Fengfan Zhou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Zhenfeng Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China .,Frontier Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| |
Collapse
|
9
|
García‐Urricelqui A, Cózar A, Campano TE, Mielgo A, Palomo C. syn
‐Selective Michael Reaction of α‐Branched Aryl Acetaldehydes with Nitroolefins Promoted by Squaric Amino Acid Derived Bifunctional Brønsted Bases. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ane García‐Urricelqui
- Departamento de Química Orgánica I Universidad del País Vasco UPV/EHU Manuel Lardizábal 3 20018 San Sebastián Spain
| | - Abel Cózar
- Departamento de Química Orgánica I Universidad del País Vasco UPV/EHU Manuel Lardizábal 3 20018 San Sebastián Spain
- IKERBASQUE Basque Foundation for Science 48009 Blbao Spain
| | - Teresa E. Campano
- Departamento de Química Orgánica I Universidad del País Vasco UPV/EHU Manuel Lardizábal 3 20018 San Sebastián Spain
| | - Antonia Mielgo
- Departamento de Química Orgánica I Universidad del País Vasco UPV/EHU Manuel Lardizábal 3 20018 San Sebastián Spain
| | - Claudio Palomo
- Departamento de Química Orgánica I Universidad del País Vasco UPV/EHU Manuel Lardizábal 3 20018 San Sebastián Spain
| |
Collapse
|
10
|
Wang X, Han Z, Wang Z, Ding K. A Type of Structurally Adaptable Aromatic Spiroketal Based Chiral Diphosphine Ligands in Asymmetric Catalysis. Acc Chem Res 2021; 54:668-684. [PMID: 33444016 DOI: 10.1021/acs.accounts.0c00697] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
ConspectusWhile spectacular successes have been achieved in homogeneous catalysis with the use of achiral diphosphine ligands featuring a wide natural bite angle, such as XantPhos, chiral diphosphines that can induce a large P-M-P bite angle in their transition metal complexes are conspicuously less explored in asymmetric catalysis, probably due to the challenges in the identification and efficient construction of a suitable chiral backbone. In the past decade, a highly efficient synthesis of chiral aromatic spiroketals and the corresponding diphosphine ligands (SKPs) has been developed in this group.Based on a one-pot catalytic tandem double asymmetric hydrogenation-spiroketalization ring-closure reaction sequence, these SKP ligands featuring an extraordinarily long P···P distance and a flexible backbone have been readily prepared in large scale. Remarkably versatile coordination modes have been found in the complexes of SKP with some catalysis-relevant transition metals, for example, Pd, Cu, Au, and Rh. Whereas SKP enforces an unusually large bite angle in [Pd(SKP)Cl2] and [Cu(SKP)Cl] complexes (160.1° and 132.8°, respectively), it also allows for a bimetallic Au-Au interaction (3.254 Å) in the complex of [Au2(SKP)Cl2] or a square-planar coordination geometry for the [Rh(SKP)(cod)]SbF6 complex. Such an adaptable nature of SKP ligands for transition metal coordination has profound consequences in homogeneous asymmetric catalysis, as demonstrated by their unique performance in several types of catalytic asymmetric reactions. One of the most exciting examples is SKP/Pd-catalyzed asymmetric allylic amination of Morita-Baylis-Hillman (MBH) adducts, in which SKP/Pd complexes demonstrated excellent control of regio- and enantioselectivities and exhibited exceptionally high efficiency (with a TON up to 4750) in the catalysis. SKP ligands have also found a diversity of successful applications in Cu-, Au-, or Rh-catalyzed asymmetric reactions, further attesting their wide utilities in asymmetric catalysis. Overall, this class of readily accessible SKP ligands featuring a chiral aromatic spiroketal skeleton have demonstrated unique adaptable structures in a variety of transition metal complexes and provided outstanding performance in some difficult asymmetric transformations. The works delineated herein would be expected to stimulate further research efforts on the application of this type of chiral ligand and to provide useful clues in the design of new chiral diphosphine ligands with adaptable bite angles for transition metal catalyzed asymmetric reactions.
Collapse
Affiliation(s)
- Xiaoming Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Zhaobin Han
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Zheng Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Kuiling Ding
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
11
|
Zeng JJ, Zhao B, Tang XB, Han S, Yang ZQ, Liu ZP, Zhang W, Lu J. Metal-free catalytic hydrocarboxylation of hexafluorobut-2-yne. RSC Adv 2021; 11:38938-38943. [PMID: 35493246 PMCID: PMC9044190 DOI: 10.1039/d1ra06526b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/14/2021] [Indexed: 11/21/2022] Open
Abstract
An efficient method for stereoselective synthesis of trifluorinated enol esters catalyzed by base was introduced.
Collapse
Affiliation(s)
- Ji-Jun Zeng
- State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, Xi'an, 710065, China
| | - Bo Zhao
- State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, Xi'an, 710065, China
| | - Xiao-Bo Tang
- State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, Xi'an, 710065, China
| | - Sheng Han
- State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, Xi'an, 710065, China
| | - Zhi-Qiang Yang
- State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, Xi'an, 710065, China
| | - Ze-Peng Liu
- State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, Xi'an, 710065, China
| | - Wei Zhang
- State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, Xi'an, 710065, China
| | - Jian Lu
- State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, Xi'an, 710065, China
| |
Collapse
|
12
|
Higashida K, Brüning F, Tsujimoto N, Higashihara K, Nagae H, Togni A, Mashima K. Monohydride‐Dichloro Rhodium(III) Complexes with Chiral Diphosphine Ligands as Catalysts for Asymmetric Hydrogenation of Olefinic Substrates. Chemistry 2020; 26:8749-8759. [DOI: 10.1002/chem.202000542] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Kosuke Higashida
- Department of ChemistryGraduate School of Engineering ScienceOsaka University Toyonaka Osaka 560-8531 Japan
| | - Fabian Brüning
- Department of Chemistry and Applied BiosciencesSwiss Federal Institute of Technology Vladimir-Prelog-Weg 2 8093 Zürich Switzerland
| | - Nagataka Tsujimoto
- Department of ChemistryGraduate School of Engineering ScienceOsaka University Toyonaka Osaka 560-8531 Japan
| | - Kenya Higashihara
- Department of ChemistryGraduate School of Engineering ScienceOsaka University Toyonaka Osaka 560-8531 Japan
| | - Haruki Nagae
- Department of ChemistryGraduate School of Engineering ScienceOsaka University Toyonaka Osaka 560-8531 Japan
| | - Antonio Togni
- Department of Chemistry and Applied BiosciencesSwiss Federal Institute of Technology Vladimir-Prelog-Weg 2 8093 Zürich Switzerland
| | - Kazushi Mashima
- Department of ChemistryGraduate School of Engineering ScienceOsaka University Toyonaka Osaka 560-8531 Japan
| |
Collapse
|
13
|
Abbas Z, Hu XH, Ali A, Xu YW, Hu XP. New chiral ferrocene/indole-based diphosphine ligands for Rh-catalyzed asymmetric hydrogenation of functionalized olefins. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151860] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
14
|
Fan D, Zhang J, Hu Y, Zhang Z, Gridnev ID, Zhang W. Asymmetric Hydrogenation of α-Boryl Enamides Enabled by Nonbonding Interactions. ACS Catal 2020. [DOI: 10.1021/acscatal.9b04543] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Dongyang Fan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Jian Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Yanhua Hu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Zhenfeng Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Ilya D. Gridnev
- Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki 3-6, Aoba-ku, Sendai 980-8578, Japan
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| |
Collapse
|
15
|
Liu N, Zhu W, Yao J, Yin L, Lu T, Dou X. Catalyst-Controlled Chemodivergent Synthesis of Spirochromans from Diarylideneacetones and Organoboronic Acids. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05577] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Na Liu
- Department of Chemistry and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Wanjiang Zhu
- Department of Chemistry and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | | | | | | | | |
Collapse
|
16
|
Guo P, Zhang R, Wang X, Wang Z, Ding K. Synthesis of Chiral Tertiary α,α‐Difluoromethyl Carbinols by Cu‐Catalyzed Asymmetric Propargylation. Chemistry 2019; 25:16425-16434. [DOI: 10.1002/chem.201904543] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Peihua Guo
- State Key Laboratory of Organometallic ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryChinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Rui Zhang
- State Key Laboratory of Organometallic ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryChinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Xiaoming Wang
- State Key Laboratory of Organometallic ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryChinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Zheng Wang
- State Key Laboratory of Organometallic ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryChinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Kuiling Ding
- State Key Laboratory of Organometallic ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryChinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Collaborative Innovation Center of Chemical Science and EngineeringNankai University Tianjin 300071 P. R. China
| |
Collapse
|
17
|
Chen J, Li F, Wang F, Hu Y, Zhang Z, Zhao M, Zhang W. Pd(OAc)2-Catalyzed Asymmetric Hydrogenation of α-Iminoesters. Org Lett 2019; 21:9060-9065. [DOI: 10.1021/acs.orglett.9b03452] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
| | - Feilong Li
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Fang Wang
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| | | | | | - Min Zhao
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| | | |
Collapse
|
18
|
Affiliation(s)
- Victorio Cadierno
- Laboratorio de Compuestos Organometálicos y Catálisis (Unidad Asociada al CSIC) Centro de Innovación en Química Avanzada (ORFEO‐CINQA), Departamento de Química Orgánica e Inorgánica Instituto Universitario de Química Organometálica “Enrique Moles”, Universidad de Oviedo Julián Clavería 8 33006 Oviedo Spain
| |
Collapse
|
19
|
Qiu J, Gao S, Li C, Zhang L, Wang Z, Wang X, Ding K. Construction of All-Carbon Chiral Quaternary Centers through Cu I -Catalyzed Enantioselective Reductive Hydroxymethylation of 1,1-Disubstituted Allenes with CO 2. Chemistry 2019; 25:13874-13878. [PMID: 31461578 DOI: 10.1002/chem.201903906] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Indexed: 12/18/2022]
Abstract
A catalytic enantioselective construction of all-carbon chiral quaternary centers through reductive hydroxymethylation of 1,1-disubstituted allenes with CO2 has been developed. In the presence of a copper/Mandyphos catalyst, CO2 is transformed into an alcohol oxidation level by an asymmetric reductive C-C bond formation with allenes by using hydrosilane (HSi(OMe)2 Me) as a reductant. The resulting chiral homoallylic alcohols are versatile synthetic intermediates and can be conveniently converted into a variety of useful chiral chemicals.
Collapse
Affiliation(s)
- Jia Qiu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shen Gao
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chaopeng Li
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lei Zhang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Zheng Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Xiaoming Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Kuiling Ding
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
20
|
Hu Y, Zhang Z, Zhang J, Liu Y, Gridnev ID, Zhang W. Cobalt‐Catalyzed Asymmetric Hydrogenation of C=N Bonds Enabled by Assisted Coordination and Nonbonding Interactions. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909928] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Yanhua Hu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Zhenfeng Zhang
- School of Pharmacy Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Jian Zhang
- School of Pharmacy Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Yangang Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
- School of Pharmacy Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Ilya D. Gridnev
- Department of Chemistry Graduate School of Science Tohoku University Aramaki 3–6, Aoba-ku Sendai 980-8578 Japan
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
- School of Pharmacy Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| |
Collapse
|
21
|
Hu Y, Zhang Z, Zhang J, Liu Y, Gridnev ID, Zhang W. Cobalt-Catalyzed Asymmetric Hydrogenation of C=N Bonds Enabled by Assisted Coordination and Nonbonding Interactions. Angew Chem Int Ed Engl 2019; 58:15767-15771. [PMID: 31464078 DOI: 10.1002/anie.201909928] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Indexed: 12/29/2022]
Abstract
An efficient cobalt-catalyzed asymmetric hydrogenation of C=N bonds has been realized. Chiral hydrazines were obtained in high yields and with excellent enantioselectivities (95-98 % ee). The hydrogenation went smoothly at up to 2000 substrate/catalyst and on a gram scale. The success of this reaction relies on the presence of an NHBz group in the substrates, with the reactivity and enantioselectivity improved by an assisted coordination to the cobalt atom and a nonbonding interaction with the ligand. Furthermore, this reaction has practical applications for the synthesis of several useful chiral nitrogen-containing compounds.
Collapse
Affiliation(s)
- Yanhua Hu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Zhenfeng Zhang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jian Zhang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yangang Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.,School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Ilya D Gridnev
- Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki 3-6, Aoba-ku, Sendai, 980-8578, Japan
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.,School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
22
|
Zhang J, Jia J, Zeng X, Wang Y, Zhang Z, Gridnev ID, Zhang W. Chemo‐ and Enantioselective Hydrogenation of α‐Formyl Enamides: An Efficient Access to Chiral α‐Amido Aldehydes. Angew Chem Int Ed Engl 2019; 58:11505-11512. [DOI: 10.1002/anie.201905263] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Jian Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Jia Jia
- School of Chemistry and Chemical EngineeringShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Xincheng Zeng
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Yuanhao Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Zhenfeng Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Ilya D. Gridnev
- Department of ChemistryGraduate School of ScienceTohoku University Aramaki 3–6, Aoba-ku Sendai 980-8578 Japan
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
- School of Chemistry and Chemical EngineeringShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| |
Collapse
|
23
|
Zhang J, Jia J, Zeng X, Wang Y, Zhang Z, Gridnev ID, Zhang W. Chemo‐ and Enantioselective Hydrogenation of α‐Formyl Enamides: An Efficient Access to Chiral α‐Amido Aldehydes. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Jian Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Jia Jia
- School of Chemistry and Chemical EngineeringShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Xincheng Zeng
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Yuanhao Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Zhenfeng Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Ilya D. Gridnev
- Department of ChemistryGraduate School of ScienceTohoku University Aramaki 3–6, Aoba-ku Sendai 980-8578 Japan
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
- School of Chemistry and Chemical EngineeringShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| |
Collapse
|
24
|
Fan D, Liu Y, Jia J, Zhang Z, Liu Y, Zhang W. Synthesis of Chiral α-Aminosilanes through Palladium-Catalyzed Asymmetric Hydrogenation of Silylimines. Org Lett 2019; 21:1042-1045. [DOI: 10.1021/acs.orglett.8b04073] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Yuan J, Liu C, Chen Y, Zhang Z, Yan D, Zhang W. Rhodium-catalyzed intramolecular hydroacylation of 1,2-disubstituted alkenes for the synthesis of 2-substituted indanones. Tetrahedron 2019. [DOI: 10.1016/j.tet.2018.11.057] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Walker JCL, Oestreich M. Regioselective Transfer Hydrodeuteration of Alkenes with a Hydrogen Deuteride Surrogate Using B(C6F5)3 Catalysis. Org Lett 2018; 20:6411-6414. [DOI: 10.1021/acs.orglett.8b02718] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Johannes C. L. Walker
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany
| | - Martin Oestreich
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany
| |
Collapse
|
27
|
|
28
|
Wang X, Ding K. Making Spiroketal-based Diphosphine (SKP) Ligands via a Catalytic Asymmetric Approach. CHINESE J CHEM 2018. [DOI: 10.1002/cjoc.201800247] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Xiaoming Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences (CAS), 345 Lingling Road; Shanghai 200032 China
| | - Kuiling Ding
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences (CAS), 345 Lingling Road; Shanghai 200032 China
| |
Collapse
|
29
|
Fan D, Hu Y, Jiang F, Zhang Z, Zhang W. Rhodium-Catalyzed Chemo- and Enantioselective Hydrogenation of Alkynyl-Aryl Hydrazones. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800243] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Dongyang Fan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 People's Republic of China
| | - Yanhua Hu
- Institute of Drug Discovery Technology; Ningbo University; Ningbo 315211 People's Republic of China
| | - Feng Jiang
- Institute of Drug Discovery Technology; Ningbo University; Ningbo 315211 People's Republic of China
| | - Zhenfeng Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 People's Republic of China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 People's Republic of China
- School of Chemistry and Chemical Engineering; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 People's Republic of China
| |
Collapse
|
30
|
Han HS, Oh EH, Jung YS, Han SB. Photoredox-Catalyzed Trifluoromethylative Intramolecular Cyclization: Synthesis of CF3-Containing Heterocyclic Compounds. Org Lett 2018; 20:1698-1702. [DOI: 10.1021/acs.orglett.8b00648] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Hong Sik Han
- Department of Medicinal and Pharmaceutical Chemistry, University of Science and Technology, 217 Gajeongro, Yuseong, Daejeon 34113, Republic of Korea
- Division of Bio and Drug Discovery, Korea Research Institute of Chemical Technology, 141 Gajeongro, Yuseong, Daejeon 34114, Republic of Korea
| | - Eun Hye Oh
- Division of Bio and Drug Discovery, Korea Research Institute of Chemical Technology, 141 Gajeongro, Yuseong, Daejeon 34114, Republic of Korea
- Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Young-Sik Jung
- Department of Medicinal and Pharmaceutical Chemistry, University of Science and Technology, 217 Gajeongro, Yuseong, Daejeon 34113, Republic of Korea
- Division of Bio and Drug Discovery, Korea Research Institute of Chemical Technology, 141 Gajeongro, Yuseong, Daejeon 34114, Republic of Korea
| | - Soo Bong Han
- Department of Medicinal and Pharmaceutical Chemistry, University of Science and Technology, 217 Gajeongro, Yuseong, Daejeon 34113, Republic of Korea
- Division of Bio and Drug Discovery, Korea Research Institute of Chemical Technology, 141 Gajeongro, Yuseong, Daejeon 34114, Republic of Korea
| |
Collapse
|
31
|
Zhang J, Liu C, Wang X, Chen J, Zhang Z, Zhang W. Rhodium-catalyzed asymmetric hydrogenation of β-branched enamides for the synthesis of β-stereogenic amines. Chem Commun (Camb) 2018; 54:6024-6027. [DOI: 10.1039/c8cc02798f] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
β-Branched simple enamides were hydrogenated to give β-stereogenic amines in quantitative yields and with excellent enantioselectivities.
Collapse
Affiliation(s)
- Jian Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs
- School of Pharmacy
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Chong Liu
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Xingguang Wang
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Jianzhong Chen
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Zhenfeng Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs
- School of Pharmacy
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs
- School of Pharmacy
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| |
Collapse
|