1
|
Wang H, Zhang G, Xu K. Electrochemical C-H Hydroxylation and Alkoxylation Reactions. CHEMSUSCHEM 2025; 18:e202402312. [PMID: 39601543 DOI: 10.1002/cssc.202402312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 11/29/2024]
Abstract
The electrochemical C-H hydroxylation and alkoxylation reactions have emerged as sustainable platforms to construct valuable oxygenated compounds such as alcohols, phenols, and ethers. Compared with traditional approaches, these electrochemical strategies not only enhance the atom economy through bypassing the use of chemical oxidants but also unlock new reactivities by accessing reactive intermediates under mild conditions. In this review, we tried to provide an overview of the representative achievements in this field since 2020. The related transformations are classified into five parts according to the underlying mechanisms. Furthermore, the potential opportunities and challenges within this rapidly emerging field were also discussed. This review is not intended to be exhaustive but rather to illustrate the synthetic potential of electrochemical C-H hydroxylation and alkoxylation strategies in the sustainable and selective assembly of valuable oxygenated compounds.
Collapse
Affiliation(s)
- Huiqiao Wang
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, P.R. China
- School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, 455099, P.R. China
| | - Guangwu Zhang
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, P.R. China
| | - Kun Xu
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, P.R. China
| |
Collapse
|
2
|
Smith RE, Dinh LP, Sevov CS. Aminoborate-Catalyzed Reductive Counterreactions for Oxidative Electrosynthetic Transformations. J Org Chem 2024; 89:18550-18555. [PMID: 39621303 DOI: 10.1021/acs.joc.4c02488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
Electrooxidative transformations frequently rely on proton reduction as the terminal electron sink. However, this cathodic counterreaction can be slow in organic solvents and can operate at reducing potentials that are incompatible with catalysts and reagents needed for oxidative reactions. We report aminoborate adducts as redox mediators for proton reduction that operate at mild reducing potentials. This reliable cathodic couple ultimately enables successful oxidative organic transformations, including chlorodeborylation, developed herein, and Cu-catalyzed Chan-Lam coupling, reported previously by our group. Pyridinium borate adducts formed during electrooxidative chlorination of aryl trifluoroborates serve as easily reduced complexes (-1.1 V vs Fc/Fc+) to catalyze proton reduction. Reactions that promote the formation of borate adducts result in high yields, operate at low cell potentials, suppress aryl trifluoroborate decomposition, and mitigate electrode passivation. These studies illustrate the utility of Lewis acid-base complexes in cathodic counterreactions and underscore the importance of developing both anodic and cathodic reactions in electrosynthesis.
Collapse
Affiliation(s)
- Ryan E Smith
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Long P Dinh
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Christo S Sevov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
3
|
Doraghi F, Aghanour Ashtiani MM, Ameli M, Larijani B, Mahdavi M. Transition Metal-Catalyzed C-H Activation/Functionalization of 8-Methylquinolines. CHEM REC 2024; 24:e202400116. [PMID: 39422078 DOI: 10.1002/tcr.202400116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/17/2024] [Indexed: 10/19/2024]
Abstract
8-Methylquinoline is regarded as an ideal substrate to participate in diversely C(sp3)-H functionalization reactions. The presence of the chelating nitrogen atom enables 8-methylquinoline to easily form cyclometallated complexes with various transition metals, leading to the selective synthesis of functionalized quinolines. Considering the great importance of quinoline cores in medicinal chemistry, in this review article, we have covered the publications related to the C-H activation and functionalization of 8-methylquinoline under transition metal catalysis during the last decade.
Collapse
Affiliation(s)
- Fatemeh Doraghi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdi Aghanour Ashtiani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Ameli
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Ogawa D, Sasaki A, Kochi T, Kakiuchi F. Palladium-catalyzed electrochemical C(sp 3)-H acetoxylation of alcohol derivatives with an exo-directing group. Org Biomol Chem 2024; 22:7696-7701. [PMID: 39224936 DOI: 10.1039/d4ob01241k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Palladium-catalyzed electrochemical C(sp3)-H acetoxylation to prepare 1,2-diol derivatives was achieved using oxime ethers as exo-directing groups. Various substrates containing alkoxy groups with a methyl branch at the α-position as well as norbornan-2-ol derivative were acetoxylated only using a catalytic amount of Pd(OAc)2 along with NaOAc/Ac2O/AcOH under anodic oxidation conditions.
Collapse
Affiliation(s)
- Daisuke Ogawa
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
| | - Ayumu Sasaki
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
| | - Takuya Kochi
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
| | - Fumitoshi Kakiuchi
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
- JST, CREST, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| |
Collapse
|
5
|
Zeng JS, Cosner EL, Delgado-Kukuczka SP, Jiang C, Adams JS, Román-Leshkov Y, Manthiram K. Electrifying Hydroformylation Catalysts Exposes Voltage-Driven C-C Bond Formation. J Am Chem Soc 2024; 146:16521-16530. [PMID: 38856020 PMCID: PMC11191585 DOI: 10.1021/jacs.4c02992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/11/2024]
Abstract
Electrochemical reactions can access a significant range of driving forces under operationally mild conditions and are thus envisioned to play a key role in decarbonizing chemical manufacturing. However, many reactions with well-established thermochemical precedents remain difficult to achieve electrochemically. For example, hydroformylation (thermo-HFN) is an industrially important reaction that couples olefins and carbon monoxide (CO) to make aldehydes. However, the electrochemical analogue of hydroformylation (electro-HFN), which uses protons and electrons instead of hydrogen gas, represents a complex C-C bond-forming reaction that is difficult to achieve at heterogeneous electrocatalysts. In this work, we import Rh-based thermo-HFN catalysts onto electrode surfaces to unlock electro-HFN reactivity. At mild conditions of room temperature and 5 bar CO, we achieve Faradaic efficiencies of up to 15% and turnover frequencies of up to 0.7 h-1. This electro-HFN rate is an order of magnitude greater than the corresponding thermo-HFN rate at the same catalyst, temperature, and pressure. Reaction kinetics and operando X-ray absorption spectroscopy provide evidence for an electro-HFN mechanism that involves distinct elementary steps relative to thermo-HFN. This work demonstrates a step-by-step experimental strategy for electrifying a well-studied thermochemical reaction to unveil a new electrocatalyst for a complex and underexplored electrochemical reaction.
Collapse
Affiliation(s)
- Joy S. Zeng
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Emma L. Cosner
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Spencer P. Delgado-Kukuczka
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Chenyu Jiang
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Jason S. Adams
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Yuriy Román-Leshkov
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Karthish Manthiram
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
6
|
Kumar Gupta S, Panda N. Palladium-Catalyzed C3-Carbaldehyde Directed Regioselective C2-Thioarylation of Indoles. Chem Asian J 2024:e202400272. [PMID: 38577719 DOI: 10.1002/asia.202400272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 04/06/2024]
Abstract
Palladium-catalyzed thioarylation of indoles by diaryl disulfides in the presence of phenyliododiacetate is reported. The directing potential of weakly coordinating aldehyde group present at 3-position of indole was exploited for regioselective C2-H thioarylation over the possible C4-H functionalization. Mechanistic studies reveal that the process involves initial generation of thioaryl radical followed by sequential C-H activation, thiolate transfer, and reductive elimination.
Collapse
Affiliation(s)
- Sandip Kumar Gupta
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Niranjan Panda
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha, 769008, India
| |
Collapse
|
7
|
Rani S, Aslam S, Lal K, Noreen S, Alsader KAM, Hussain R, Shirinfar B, Ahmed N. Electrochemical C-H/C-C Bond Oxygenation: A Potential Technology for Plastic Depolymerization. CHEM REC 2024; 24:e202300331. [PMID: 38063812 DOI: 10.1002/tcr.202300331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/23/2023] [Indexed: 03/10/2024]
Abstract
Herein, we provide eco-friendly and safely operated electrocatalytic methods for the selective oxidation directly or with water, air, light, metal catalyst or other mediators serving as the only oxygen supply. Heavy metals, stoichiometric chemical oxidants, or harsh conditions were drawbacks of earlier oxidative cleavage techniques. It has recently come to light that a crucial stage in the deconstruction of plastic waste and the utilization of biomass is the selective activation of inert C(sp3 )-C/H(sp3 ) bonds, which continues to be a significant obstacle in the chemical upcycling of resistant polyolefin waste. An appealing alternative to chemical oxidations using oxygen and catalysts is direct or indirect electrochemical conversion. An essential transition in the chemical and pharmaceutical industries is the electrochemical oxidation of C-H/C-C bonds. In this review, we discuss cutting-edge approaches to chemically recycle commercial plastics and feasible C-C/C-H bonds oxygenation routes for industrial scale-up.
Collapse
Affiliation(s)
- Sadia Rani
- Department of Chemistry, The Women University Multan, Multan, 60000, Pakistan
| | - Samina Aslam
- Department of Chemistry, The Women University Multan, Multan, 60000, Pakistan
| | - Kiran Lal
- Department of Chemistry, The Women University Multan, Multan, 60000, Pakistan
| | - Sobia Noreen
- Institute of Chemistry, University of Sargodha, Sargodha, 40100, Pakistan
| | | | - Riaz Hussain
- Department of Chemistry, University of Education Lahore, D.G. Khan Campus, 32200, Pakistan
| | - Bahareh Shirinfar
- West Herts College - University of Hertfordshire, Watford, WD17 3EZ, London, United Kingdom
| | - Nisar Ahmed
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, United Kingdom
| |
Collapse
|
8
|
Chugunova E, Gazizov AS, Islamov D, Matveeva V, Burilov A, Akylbekov N, Dobrynin A, Zhapparbergenov R, Appazov N, Chabuka BK, Christopher K, Tonkoglazova DI, Alabugin IV. An Unusual Rearrangement of Pyrazole Nitrene and Coarctate Ring-Opening/Recyclization Cascade: Formal CH-Acetoxylation and Azide/Amine Conversion without External Oxidants and Reductants. Molecules 2023; 28:7335. [PMID: 37959754 PMCID: PMC10648078 DOI: 10.3390/molecules28217335] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
We report an unusual transformation where the transient formation of a nitrene moiety initiates a sequence of steps leading to remote oxidative C-H functionalization (R-CH3 to R-CH2OC(O)R') and the concomitant reduction of the nitrene into an amino group. No external oxidants or reductants are needed for this formal molecular comproportionation. Detected and isolated intermediates and computational analysis suggest that the process occurs with pyrazole ring opening and recyclization.
Collapse
Affiliation(s)
- Elena Chugunova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Akad. Arbuzov St. 8, Kazan 420088, Russia; (A.S.G.); (D.I.); (V.M.); (A.B.); (A.D.); (I.V.A.)
| | - Almir S. Gazizov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Akad. Arbuzov St. 8, Kazan 420088, Russia; (A.S.G.); (D.I.); (V.M.); (A.B.); (A.D.); (I.V.A.)
| | - Daut Islamov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Akad. Arbuzov St. 8, Kazan 420088, Russia; (A.S.G.); (D.I.); (V.M.); (A.B.); (A.D.); (I.V.A.)
| | - Victoria Matveeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Akad. Arbuzov St. 8, Kazan 420088, Russia; (A.S.G.); (D.I.); (V.M.); (A.B.); (A.D.); (I.V.A.)
| | - Alexander Burilov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Akad. Arbuzov St. 8, Kazan 420088, Russia; (A.S.G.); (D.I.); (V.M.); (A.B.); (A.D.); (I.V.A.)
| | - Nurgali Akylbekov
- Laboratory of Engineering Profile “Physical and Chemical Methods of Analysis”, Korkyt Ata Kyzylorda University, Aitekebie Str. 29A, Kyzylorda 120014, Kazakhstan; (N.A.); (R.Z.)
| | - Alexey Dobrynin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Akad. Arbuzov St. 8, Kazan 420088, Russia; (A.S.G.); (D.I.); (V.M.); (A.B.); (A.D.); (I.V.A.)
| | - Rakhmetulla Zhapparbergenov
- Laboratory of Engineering Profile “Physical and Chemical Methods of Analysis”, Korkyt Ata Kyzylorda University, Aitekebie Str. 29A, Kyzylorda 120014, Kazakhstan; (N.A.); (R.Z.)
| | - Nurbol Appazov
- Laboratory of Engineering Profile “Physical and Chemical Methods of Analysis”, Korkyt Ata Kyzylorda University, Aitekebie Str. 29A, Kyzylorda 120014, Kazakhstan; (N.A.); (R.Z.)
- Zhakhaev Kazakh Scientific Research Institute of Rice Growing, Abay Av. 25B, Kyzylorda 120008, Kazakhstan
| | - Beauty K. Chabuka
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306-3290, USA; (B.K.C.); (K.C.); (D.I.T.)
| | - Kimberley Christopher
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306-3290, USA; (B.K.C.); (K.C.); (D.I.T.)
| | - Daria I. Tonkoglazova
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306-3290, USA; (B.K.C.); (K.C.); (D.I.T.)
| | - Igor V. Alabugin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Akad. Arbuzov St. 8, Kazan 420088, Russia; (A.S.G.); (D.I.); (V.M.); (A.B.); (A.D.); (I.V.A.)
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306-3290, USA; (B.K.C.); (K.C.); (D.I.T.)
| |
Collapse
|
9
|
Liu M, Feng T, Wang Y, Kou G, Wang Q, Wang Q, Qiu Y. Metal-free electrochemical dihydroxylation of unactivated alkenes. Nat Commun 2023; 14:6467. [PMID: 37833286 PMCID: PMC10575955 DOI: 10.1038/s41467-023-42106-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Herein, a metal-free electrochemical dihydroxylation of unactivated alkenes is described. The transformation proceeds smoothly under mild conditions with a broad range of unactivated alkenes, providing valuable and versatile dihydroxylated products in moderate to good yields without the addition of costly transition metals and stoichiometric amounts of chemical oxidants. Moreover, this method can be applied to a range of natural products and pharmaceutical derivatives, further demonstrating its synthetic utility. Mechanistic studies have revealed that iodohydrin and epoxide intermediate are formed during the reaction process.
Collapse
Affiliation(s)
- Min Liu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Tian Feng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Yanwei Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Guangsheng Kou
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Qiuyan Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China.
| | - Qian Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Youai Qiu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China.
| |
Collapse
|
10
|
Wang Y, Dana S, Long H, Xu Y, Li Y, Kaplaneris N, Ackermann L. Electrochemical Late-Stage Functionalization. Chem Rev 2023; 123:11269-11335. [PMID: 37751573 PMCID: PMC10571048 DOI: 10.1021/acs.chemrev.3c00158] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Indexed: 09/28/2023]
Abstract
Late-stage functionalization (LSF) constitutes a powerful strategy for the assembly or diversification of novel molecular entities with improved physicochemical or biological activities. LSF can thus greatly accelerate the development of medicinally relevant compounds, crop protecting agents, and functional materials. Electrochemical molecular synthesis has emerged as an environmentally friendly platform for the transformation of organic compounds. Over the past decade, electrochemical late-stage functionalization (eLSF) has gained major momentum, which is summarized herein up to February 2023.
Collapse
Affiliation(s)
| | | | | | - Yang Xu
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| | - Yanjun Li
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| | - Nikolaos Kaplaneris
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| | - Lutz Ackermann
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| |
Collapse
|
11
|
Sun B, Wang ZH, Wang YZ, Gu YC, Ma C, Mei TS. Parallel paired electrolysis-enabled asymmetric catalysis: simultaneous synthesis of aldehydes/aryl bromides and chiral alcohols. Sci Bull (Beijing) 2023; 68:2033-2041. [PMID: 37507259 DOI: 10.1016/j.scib.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/25/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023]
Abstract
Metal-catalyzed asymmetric electro-reductive couplings have emerged as a powerful tool for organic synthesis, wherein a sacrificial anode is typically required. Herein, a parallel paired electrolysis (PPE)-enabled asymmetric catalysis has been developed, and the alcohols and ketones could be simultaneously converted to the corresponding aldehydes and chiral tertiary alcohols with high yields and enantioselectivity in an undivided cell. Additionally, this Ni-catalyzed asymmetric reductive coupling can well match the anodic oxidative C-H bond bromination of (hetero)arenes. This protocol opens an alternative avenue for organic synthesis.
Collapse
Affiliation(s)
- Bing Sun
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhen-Hua Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yun-Zhao Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yu-Cheng Gu
- Syngenta, Jealott's Hill International Research Centre, Berkshire RE42 6EY, UK
| | - Cong Ma
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Tian-Sheng Mei
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
12
|
Changmai S, Sultana S, Saikia AK. Review of electrochemical transition‐metal‐catalyzed C−H functionalization reactions. ChemistrySelect 2023. [DOI: 10.1002/slct.202203530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Affiliation(s)
- Sumi Changmai
- Applied Organic Chemistry Chemical Sciences & Technology Division CSIR-North East Institute of Science and Technology 785006 Jorhat India
- Academy of Scientific and Innovative Research (AcSIR) 201002 Ghaziabad India
| | | | - Anil K. Saikia
- Indian Institute of Technology-Guwahati Department of Chemistry Guwahati 781039 Assam India
| |
Collapse
|
13
|
Baroliya PK, Dhaker M, Panja S, Al-Thabaiti SA, Albukhari SM, Alsulami QA, Dutta A, Maiti D. Transition Metal-Catalyzed C-H Functionalization Through Electrocatalysis. CHEMSUSCHEM 2023:e202202201. [PMID: 36881013 DOI: 10.1002/cssc.202202201] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Electrochemically promoted transition metal-catalyzed C-H functionalization has emerged as a promising area of research over the last few decades. However, development in this field is still at an early stage compared to traditional functionalization reactions using chemical-based oxidizing agents. Recent reports have shown increased attention on electrochemically promoted metal-catalyzed C-H functionalization. From the standpoint of sustainability, environmental friendliness, and cost effectiveness, electrochemically promoted oxidation of a metal catalyst offers a mild, efficient, and atom-economical alternative to traditional chemical oxidants. This Review discusses advances in the field of transition metal-electrocatalyzed C-H functionalization over the past decade and describes how the unique features of electricity enable metal-catalyzed C-H functionalization in an economic and sustainable way.
Collapse
Affiliation(s)
- Prabhat Kumar Baroliya
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai, 400076, India
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, 313001, India
| | - Mukesh Dhaker
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, 313001, India
| | - Subir Panja
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai, 400076, India
| | - Shaeel Ahmed Al-Thabaiti
- Department of Chemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Soha M Albukhari
- Department of Chemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Qana A Alsulami
- Department of Chemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Arnab Dutta
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai, 400076, India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai, 400076, India
| |
Collapse
|
14
|
Zhao Z, Liu Y, Wang S, Tang S, Ma D, Zhu Z, Guo C, Qiu Y. Site-Selective Electrochemical C-H Carboxylation of Arenes with CO 2. Angew Chem Int Ed Engl 2023; 62:e202214710. [PMID: 36382417 DOI: 10.1002/anie.202214710] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Indexed: 11/18/2022]
Abstract
Herein, a direct, metal-free, and site-selective electrochemical C-H carboxylation of arenes by reductive activation using CO2 as the economic and abundant carboxylic source was reported. The electrocarboxylation was carried out in an operationally simple manner with high chemo- and regioselectivity, setting the stage for the challenging site-selective C-H carboxylation of unactivated (hetero)arenes. The robust nature of the electrochemical strategy was reflected by a broad scope of substrates with excellent atom economy and unique selectivity. Notably, the direct and selective C-H carboxylation of various challenging arenes worked well in this approach, including electron-deficient naphthalenes, pyridines, simple phenyl derivatives, and substituted quinolines. The method benefits from being externally catalyst-free, metal-free and base-free, which makes it extremely attractive for potential applications.
Collapse
Affiliation(s)
- Zhiwei Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Yin Liu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Siyi Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Shunyao Tang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Dengke Ma
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Zile Zhu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Chengcheng Guo
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Youai Qiu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| |
Collapse
|
15
|
Zhang J, Das B, Verho O, Bäckvall J. Electrochemical Palladium‐Catalyzed Oxidative Carbonylation‐Cyclization of Enallenols. Angew Chem Int Ed Engl 2022; 61:e202212131. [PMID: 36222322 PMCID: PMC10098644 DOI: 10.1002/anie.202212131] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Indexed: 11/06/2022]
Abstract
Herein, we report an electrochemical oxidative palladium-catalyzed carbonylation-carbocyclization of enallenols to afford γ-lactones and spirolactones, which proceeds with excellent chemoselectivity. Interestingly, electrocatalysis was found to have an accelerating effect on the rate of the tandem process, leading to a more efficient reaction than that under chemical redox conditions.
Collapse
Affiliation(s)
- Jianwei Zhang
- Department of Organic Chemistry, Arrhenius Laboratory Stockholm University 10691 Stockholm Sweden
| | - Biswanath Das
- Department of Organic Chemistry, Arrhenius Laboratory Stockholm University 10691 Stockholm Sweden
| | - Oscar Verho
- Department of Medicinal Chemistry Uppsala Biomedical Center, BMC Uppsala University 75236 Uppsala Sweden
| | - Jan‐E. Bäckvall
- Department of Organic Chemistry, Arrhenius Laboratory Stockholm University 10691 Stockholm Sweden
| |
Collapse
|
16
|
Kong F, Chen S, Chen J, Liu C, Zhu W, Dickie DA, Schinski WL, Zhang S, Ess DH, Gunnoe TB. Cu(II) carboxylate arene C─H functionalization: Tuning for nonradical pathways. SCIENCE ADVANCES 2022; 8:eadd1594. [PMID: 36001664 PMCID: PMC9401614 DOI: 10.1126/sciadv.add1594] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
We report carbon-hydrogen acetoxylation of nondirected arenes benzene and toluene, as well as related functionalization with pivalate and 2-ethylhexanoate ester groups, using simple copper(II) [Cu(II)] salts with over 80% yield. By changing the ratio of benzene and Cu(II) salts, 2.4% conversion of benzene can be reached. Combined experimental and computational studies results indicate that the arene carbon-hydrogen functionalization likely occurs by a nonradical Cu(II)-mediated organometallic pathway. The Cu(II) salts used in the reaction can be isolated, recycled, and reused with little change in reactivity. In addition, the Cu(II) salts can be regenerated in situ using oxygen and, after the removal of the generated water, the arene carbon-hydrogen acetoxylation and related esterification reactions can be continued, which leads to a process that enables recycling of Cu(II).
Collapse
Affiliation(s)
- Fanji Kong
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Shusen Chen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84604, USA
| | - Junqi Chen
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Chang Liu
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Weihao Zhu
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Diane A. Dickie
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | | | - Sen Zhang
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Daniel H. Ess
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84604, USA
| | - T. Brent Gunnoe
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| |
Collapse
|
17
|
Li P, Guo C, Wang S, Ma D, Feng T, Wang Y, Qiu Y. Facile and general electrochemical deuteration of unactivated alkyl halides. Nat Commun 2022; 13:3774. [PMID: 35773255 PMCID: PMC9247074 DOI: 10.1038/s41467-022-31435-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 06/16/2022] [Indexed: 01/18/2023] Open
Abstract
Herein, a facile and general electroreductive deuteration of unactivated alkyl halides (X = Cl, Br, I) or pseudo-halides (X = OMs) using D2O as the economical deuterium source was reported. In addition to primary and secondary alkyl halides, sterically hindered tertiary chlorides also work very well, affording the target deuterodehalogenated products with excellent efficiency and deuterium incorporation. More than 60 examples are provided, including late-stage dehalogenative deuteration of natural products, pharmaceuticals, and their derivatives, all with excellent deuterium incorporation (up to 99% D), demonstrating the potential utility of the developed method in organic synthesis. Furthermore, the method does not require external catalysts and tolerates high current, showing possible use in industrial applications.
Collapse
Affiliation(s)
- Pengfei Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Chengcheng Guo
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Siyi Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Dengke Ma
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Tian Feng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Yanwei Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Youai Qiu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China.
| |
Collapse
|
18
|
Zhang ML, Zhang XL, Guo RL, Wang MY, Zhao BY, Yang JH, Jia Q, Wang YQ. Switchable, Reagent-Controlled C(sp 3)-H Selective Iodination and Acetoxylation of 8-Methylquinolines. J Org Chem 2022; 87:5730-5743. [PMID: 35471034 DOI: 10.1021/acs.joc.2c00076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient Pd-catalyzed C(sp3)-H selective iodination of 8-methylquinolines is reported herein for the first time. Because of the versatility of organic iodides, the method offers a facile access to various C8-substituted quinolines. By slightly switching the reaction conditions, an efficient C(sp3)-H acetoxylation of 8-methylquinolines has also been enabled. Both approaches feature mild reaction conditions, good tolerance of functional groups, and a broad substrate scope.
Collapse
Affiliation(s)
- Ming-Lu Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, School of Foreign Languages, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Xing-Long Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, School of Foreign Languages, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Rui-Li Guo
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, School of Foreign Languages, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Meng-Yue Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, School of Foreign Languages, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Bao-Yin Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, School of Foreign Languages, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Jin-Hui Yang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Yinchuan 750021, P. R. China
| | - Qiong Jia
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, School of Foreign Languages, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Yong-Qiang Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, School of Foreign Languages, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| |
Collapse
|
19
|
Zaera F. Designing Sites in Heterogeneous Catalysis: Are We Reaching Selectivities Competitive With Those of Homogeneous Catalysts? Chem Rev 2022; 122:8594-8757. [PMID: 35240777 DOI: 10.1021/acs.chemrev.1c00905] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A critical review of different prominent nanotechnologies adapted to catalysis is provided, with focus on how they contribute to the improvement of selectivity in heterogeneous catalysis. Ways to modify catalytic sites range from the use of the reversible or irreversible adsorption of molecular modifiers to the immobilization or tethering of homogeneous catalysts and the development of well-defined catalytic sites on solid surfaces. The latter covers methods for the dispersion of single-atom sites within solid supports as well as the use of complex nanostructures, and it includes the post-modification of materials via processes such as silylation and atomic layer deposition. All these methodologies exhibit both advantages and limitations, but all offer new avenues for the design of catalysts for specific applications. Because of the high cost of most nanotechnologies and the fact that the resulting materials may exhibit limited thermal or chemical stability, they may be best aimed at improving the selective synthesis of high value-added chemicals, to be incorporated in organic synthesis schemes, but other applications are being explored as well to address problems in energy production, for instance, and to design greener chemical processes. The details of each of these approaches are discussed, and representative examples are provided. We conclude with some general remarks on the future of this field.
Collapse
Affiliation(s)
- Francisco Zaera
- Department of Chemistry and UCR Center for Catalysis, University of California, Riverside, California 92521, United States
| |
Collapse
|
20
|
Malapit CA, Prater MB, Cabrera-Pardo JR, Li M, Pham TD, McFadden TP, Blank S, Minteer SD. Advances on the Merger of Electrochemistry and Transition Metal Catalysis for Organic Synthesis. Chem Rev 2022; 122:3180-3218. [PMID: 34797053 PMCID: PMC9714963 DOI: 10.1021/acs.chemrev.1c00614] [Citation(s) in RCA: 144] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Synthetic organic electrosynthesis has grown in the past few decades by achieving many valuable transformations for synthetic chemists. Although electrocatalysis has been popular for improving selectivity and efficiency in a wide variety of energy-related applications, in the last two decades, there has been much interest in electrocatalysis to develop conceptually novel transformations, selective functionalization, and sustainable reactions. This review discusses recent advances in the combination of electrochemistry and homogeneous transition-metal catalysis for organic synthesis. The enabling transformations, synthetic applications, and mechanistic studies are presented alongside advantages as well as future directions to address the challenges of metal-catalyzed electrosynthesis.
Collapse
Affiliation(s)
- Christian A Malapit
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Matthew B Prater
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Jaime R Cabrera-Pardo
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Min Li
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Tammy D Pham
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Timothy Patrick McFadden
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Skylar Blank
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Shelley D Minteer
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| |
Collapse
|
21
|
Tahara K, Takezaki S, Ozawa Y, Abe M. Synthesis of an Organometallic Alkyl-Co(III) Complex with Amidoquinoline Directing Groups via C(sp3)-H Activation and its UV-vis/NMR Spectroscopic, Crystallographic, DFT, and Electrochemical Studies. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20210425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Keishiro Tahara
- Department of Material Science, Graduate School of Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| | - Shun Takezaki
- Department of Material Science, Graduate School of Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| | - Yoshiki Ozawa
- Department of Material Science, Graduate School of Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| | - Masaaki Abe
- Department of Material Science, Graduate School of Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| |
Collapse
|
22
|
Antonov AA, Bryliakov KP. Recent progress in catalytic acyloxylation of C(sp
3
)‐H bonds. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Artem A. Antonov
- Department of the Mechanisms of Catalytic Reactions Boreskov Institute of Catalysis Novosibirsk Russia
| | - Konstantin P. Bryliakov
- Department of the Mechanisms of Catalytic Reactions Boreskov Institute of Catalysis Novosibirsk Russia
| |
Collapse
|
23
|
Shi SH, Wei J, Liang CM, Bai H, Zhu HT, Zhang Y, Fu F. Electro-oxidation induced O–S cross-coupling of quinoxalinones with sodium sulfinates for synthesizing 2-sulfonyloxylated quinoxalines. Chem Commun (Camb) 2022; 58:12357-12360. [DOI: 10.1039/d2cc04524a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The novel C2–O sulfonylation of quinoxalinones via electro-oxidation induced O–S coupling strategy under mild conditions was reported.
Collapse
Affiliation(s)
- Shi-Hui Shi
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan’an University, Yan’an 716000, Shaanxi, China
| | - Jian Wei
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Chun-Miao Liang
- Shannxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China
| | - Huan Bai
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan’an University, Yan’an 716000, Shaanxi, China
| | - Hai-Tao Zhu
- Shannxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China
| | - Yantu Zhang
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan’an University, Yan’an 716000, Shaanxi, China
| | - Feng Fu
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan’an University, Yan’an 716000, Shaanxi, China
| |
Collapse
|
24
|
Wang Z, Ma C, Fang P, Xu H, Mei T. Advances in Organic Electrochemical Synthesis. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a22060260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Xie W, Chen X, Li Y, Lin J, Chen W, Shi J. Electrooxidative Annulation of Unsaturated Molecules via Directed C—H Activation. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202110028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Ma C, Fang P, Liu ZR, Xu SS, Xu K, Cheng X, Lei A, Xu HC, Zeng C, Mei TS. Recent advances in organic electrosynthesis employing transition metal complexes as electrocatalysts. Sci Bull (Beijing) 2021; 66:2412-2429. [PMID: 36654127 DOI: 10.1016/j.scib.2021.07.011] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 01/20/2023]
Abstract
Organic electrosynthesis has been widely used as an environmentally conscious alternative to conventional methods for redox reactions because it utilizes electric current as a traceless redox agent instead of chemical redox agents. Indirect electrolysis employing a redox catalyst has received tremendous attention, since it provides various advantages compared to direct electrolysis. With indirect electrolysis, overpotential of electron transfer can be avoided, which is inherently milder, thus wide functional group tolerance can be achieved. Additionally, chemoselectivity, regioselectivity, and stereoselectivity can be tuned by the redox catalysts used in indirect electrolysis. Furthermore, electrode passivation can be avoided by preventing the formation of polymer films on the electrode surface. Common redox catalysts include N-oxyl radicals, hypervalent iodine species, halides, amines, benzoquinones (such as DDQ and tetrachlorobenzoquinone), and transition metals. In recent years, great progress has been made in the field of indirect organic electrosynthesis using transition metals as redox catalysts for reaction classes including C-H functionalization, radical cyclization, and cross-coupling of aryl halides-each owing to the diverse reactivity and accessible oxidation states of transition metals. Although various reviews of organic electrosynthesis are available, there is a lack of articles that focus on recent research progress in the area of indirect electrolysis using transition metals, which is the impetus for this review.
Collapse
Affiliation(s)
- Cong Ma
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ping Fang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhao-Ran Liu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Shi-Shuo Xu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Kun Xu
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| | - Xu Cheng
- Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Aiwen Lei
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies, Wuhan University, Wuhan 430072, China.
| | - Hai-Chao Xu
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Chengchu Zeng
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| | - Tian-Sheng Mei
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
27
|
Saraswat A, Sharma A. Mini-review on the functionalization of C–H bond to C-X linkage via metalla-electrocatalyzed tool. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
28
|
Tabey A, Vemuri PY, Patureau FW. Cross-dehydrogenative N-N couplings. Chem Sci 2021; 12:14343-14352. [PMID: 34880984 PMCID: PMC8580018 DOI: 10.1039/d1sc03851f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/10/2021] [Indexed: 11/21/2022] Open
Abstract
The relatively high electronegativity of nitrogen makes N-N bond forming cross-coupling reactions particularly difficult, especially in an intermolecular fashion. The challenge increases even further when considering the case of dehydrogenative N-N coupling reactions, which are advantageous in terms of step and atom economy, but introduce the problem of the oxidant in order to become thermodynamically feasible. Indeed, the oxidizing system must be designed to activate the target N-H bonds, while at the same time avoid undesired N-N homocoupling as well as C-N and C-C coupled side products. Thus, preciously few intermolecular hetero N-N cross-dehydrogenative couplings exist, in spite of the central importance of N-N bonds in organic chemistry. This review aims at analyzing these few rare cases and provides a perspective for future developments.
Collapse
Affiliation(s)
- Alexis Tabey
- Institute of Organic Chemistry, RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Pooja Y Vemuri
- Institute of Organic Chemistry, RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Frederic W Patureau
- Institute of Organic Chemistry, RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| |
Collapse
|
29
|
Dethe DH, Shukla M. Enantioselective first total syntheses of the antiviral natural products xiamycins D and E. Chem Commun (Camb) 2021; 57:10644-10646. [PMID: 34604898 DOI: 10.1039/d1cc04739f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The enantioselective first total syntheses of marine pentacyclic indolosesquiterpenoids xiamycins D (4) and E (5) have been described for the first time to the best of our knowledge. The synthetic approach was designed to feature functionalization of enantiopure Wieland-Miescher ketone, Michael addition followed by Heck-type annulation/aromatization, regioselective sp3(C-H) activation, benzylic oxidation and diastereoselective reduction.
Collapse
Affiliation(s)
- Dattatraya H Dethe
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| | - Manmohan Shukla
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| |
Collapse
|
30
|
Khenkin AM, Herman A, Haviv E, Neumann R. Electrocatalytic Oxyesterification of Hydrocarbons by Tetravalent Lead. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alexander M. Khenkin
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Adi Herman
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Eynat Haviv
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ronny Neumann
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
31
|
Novaes LFT, Liu J, Shen Y, Lu L, Meinhardt JM, Lin S. Electrocatalysis as an enabling technology for organic synthesis. Chem Soc Rev 2021; 50:7941-8002. [PMID: 34060564 PMCID: PMC8294342 DOI: 10.1039/d1cs00223f] [Citation(s) in RCA: 485] [Impact Index Per Article: 121.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Electrochemistry has recently gained increased attention as a versatile strategy for achieving challenging transformations at the forefront of synthetic organic chemistry. Electrochemistry's unique ability to generate highly reactive radical and radical ion intermediates in a controlled fashion under mild conditions has inspired the development of a number of new electrochemical methodologies for the preparation of valuable chemical motifs. Particularly, recent developments in electrosynthesis have featured an increased use of redox-active electrocatalysts to further enhance control over the selective formation and downstream reactivity of these reactive intermediates. Furthermore, electrocatalytic mediators enable synthetic transformations to proceed in a manner that is mechanistically distinct from purely chemical methods, allowing for the subversion of kinetic and thermodynamic obstacles encountered in conventional organic synthesis. This review highlights key innovations within the past decade in the area of synthetic electrocatalysis, with emphasis on the mechanisms and catalyst design principles underpinning these advancements. A host of oxidative and reductive electrocatalytic methodologies are discussed and are grouped according to the classification of the synthetic transformation and the nature of the electrocatalyst.
Collapse
Affiliation(s)
- Luiz F T Novaes
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Luo X, Wang P. Ynonylation of Acyl Radicals by Electroinduced Homolysis of 4-Acyl-1,4-dihydropyridines. Org Lett 2021; 23:4960-4965. [PMID: 34155886 DOI: 10.1021/acs.orglett.1c01243] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Herein we report the conversion of 4-acyl-1,4-dihydropyridines (DHPs) into ynones under electrochemical conditions. The reaction proceeds via the homolysis of acyl-DHP under electron activation. The resulting acyl radicals react with hypervalent iodine(III) reagents to form the target ynones or ynamides in acceptable yields. This mild reaction condition allows wider functionality tolerance that includes halides, carboxylates, or alkenes. The synthetic utility of this methodology is further demonstrated by the late-stage modification of complex molecules.
Collapse
Affiliation(s)
- Xiaosheng Luo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ping Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
33
|
Nagare YK, Shah IA, Yadav J, Pawar AP, Choudhary R, Chauhan P, Kumar I. Electrochemical Oxidative Coupling Between Benzylic C(sp 3)-H and N-H of Secondary Amines: Rapid Synthesis of α-Amino α-Aryl Esters. J Org Chem 2021; 86:9682-9691. [PMID: 34184902 DOI: 10.1021/acs.joc.1c00944] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
An intermolecular electrochemical coupling between the benzylic C(sp3)-H bond and various secondary amines is reported. The electronic behavior of two electronically rich units viz the α-position of α-aryl acetates and amines was engineered electrochemically, thus facilitating their reactivity for the direct access of α-amino esters. A series of acyclic/cyclic secondary amines and α-aryl acetates were tested to furnish the corresponding α-amino esters with high yields (up to 92%) under mild conditions.
Collapse
Affiliation(s)
- Yadav Kacharu Nagare
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India
| | - Imtiyaz Ahmad Shah
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India
| | - Jyothi Yadav
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India
| | - Amol Prakash Pawar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India
| | - Rahul Choudhary
- Praveen Laboratories Pvt. Ltd., Surat 394304, Gujarat, India
| | - Pankaj Chauhan
- Department of Chemistry, Indian Institute of Technology Jammu, Jammu 181221, India
| | - Indresh Kumar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India
| |
Collapse
|
34
|
Tan X, Massignan L, Hou X, Frey J, Oliveira JCA, Hussain MN, Ackermann L. Rhodaelektrokatalysierte bimetallische C‐H‐Oxygenierung durch schwache
O
‐Koordination. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202017359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Xuefeng Tan
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| | - Leonardo Massignan
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| | - Xiaoyan Hou
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| | - Johanna Frey
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| | - João C. A. Oliveira
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| | - Masoom Nasiha Hussain
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
- Wöhler Research Institute for Sustainable Chemistry Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| |
Collapse
|
35
|
Tan X, Massignan L, Hou X, Frey J, Oliveira JCA, Hussain MN, Ackermann L. Rhoda-Electrocatalyzed Bimetallic C-H Oxygenation by Weak O-Coordination. Angew Chem Int Ed Engl 2021; 60:13264-13270. [PMID: 33651910 PMCID: PMC8252749 DOI: 10.1002/anie.202017359] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/28/2021] [Indexed: 12/20/2022]
Abstract
Rhodium-electrocatalyzed arene C-H oxygenation by weakly O-coordinating amides and ketones have been established by bimetallic electrocatalysis. Likewise, diverse dihydrooxazinones were selectively accessed by the judicious choice of current, enabling twofold C-H functionalization. Detailed mechanistic studies by experiment, mass spectroscopy and cyclovoltammetric analysis provided support for an unprecedented electrooxidation-induced C-H activation by a bimetallic rhodium catalysis manifold.
Collapse
Affiliation(s)
- Xuefeng Tan
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| | - Leonardo Massignan
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| | - Xiaoyan Hou
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| | - Johanna Frey
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| | - João C. A. Oliveira
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| | - Masoom Nasiha Hussain
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
- Wöhler Research Institute for Sustainable ChemistryGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| |
Collapse
|
36
|
Jin S, Kim J, Kim D, Park JW, Chang S. Electrolytic C–H Oxygenation via Oxidatively Induced Reductive Elimination in Rh Catalysis. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01670] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Seongho Jin
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Jinwoo Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Dongwook Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Jung-Woo Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Sukbok Chang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| |
Collapse
|
37
|
Walker BR, Manabe S, Brusoe AT, Sevov CS. Mediator-Enabled Electrocatalysis with Ligandless Copper for Anaerobic Chan-Lam Coupling Reactions. J Am Chem Soc 2021; 143:6257-6265. [PMID: 33861580 PMCID: PMC8143265 DOI: 10.1021/jacs.1c02103] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Simple copper salts serve as catalysts to effect C-X bond-forming reactions in some of the most utilized transformations in synthesis, including the oxidative coupling of aryl boronic acids and amines. However, these Chan-Lam coupling reactions have historically relied on chemical oxidants that limit their applicability beyond small-scale synthesis. Despite the success of replacing strong chemical oxidants with electrochemistry for a variety of metal-catalyzed processes, electrooxidative reactions with ligandless copper catalysts are plagued by slow electron-transfer kinetics, irreversible copper plating, and competitive substrate oxidation. Herein, we report the implementation of substoichiometric quantities of redox mediators to address limitations to Cu-catalyzed electrosynthesis. Mechanistic studies reveal that mediators serve multiple roles by (i) rapidly oxidizing low-valent Cu intermediates, (ii) stripping Cu metal from the cathode to regenerate the catalyst and reveal the active Pt surface for proton reduction, and (iii) providing anodic overcharge protection to prevent substrate oxidation. This strategy is applied to Chan-Lam coupling of aryl-, heteroaryl-, and alkylamines with arylboronic acids in the absence of chemical oxidants. Couplings under these electrochemical conditions occur with higher yields and shorter reaction times than conventional reactions in air and provide complementary substrate reactivity.
Collapse
Affiliation(s)
- Benjamin R Walker
- Department of Chemistry and Biochemistry, The Ohio State University, 151 W. Woodruff Avenue, Columbus, Ohio 43210, United States
| | - Shuhei Manabe
- Department of Chemistry and Biochemistry, The Ohio State University, 151 W. Woodruff Avenue, Columbus, Ohio 43210, United States
| | - Andrew T Brusoe
- Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, P.O. Box 368, Ridgefield, Connecticut 06877-0368, United States
| | - Christo S Sevov
- Department of Chemistry and Biochemistry, The Ohio State University, 151 W. Woodruff Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
38
|
Zhu C, Ang NWJ, Meyer TH, Qiu Y, Ackermann L. Organic Electrochemistry: Molecular Syntheses with Potential. ACS CENTRAL SCIENCE 2021; 7:415-431. [PMID: 33791425 PMCID: PMC8006177 DOI: 10.1021/acscentsci.0c01532] [Citation(s) in RCA: 316] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Indexed: 05/05/2023]
Abstract
Efficient and selective molecular syntheses are paramount to inter alia biomolecular chemistry and material sciences as well as for practitioners in chemical, agrochemical, and pharmaceutical industries. Organic electrosynthesis has undergone a considerable renaissance and has thus in recent years emerged as an increasingly viable platform for the sustainable molecular assembly. In stark contrast to early strategies by innate reactivity, electrochemistry was recently merged with modern concepts of organic synthesis, such as transition-metal-catalyzed transformations for inter alia C-H functionalization and asymmetric catalysis. Herein, we highlight the unique potential of organic electrosynthesis for sustainable synthesis and catalysis, showcasing key aspects of exceptional selectivities, the synergism with photocatalysis, or dual electrocatalysis, and novel mechanisms in metallaelectrocatalysis until February of 2021.
Collapse
Affiliation(s)
- Cuiju Zhu
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Nate W. J. Ang
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Tjark H. Meyer
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
- Woehler
Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany
| | - Youai Qiu
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Lutz Ackermann
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
- Woehler
Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany
| |
Collapse
|
39
|
Xing YK, Chen XR, Yang QL, Zhang SQ, Guo HM, Hong X, Mei TS. Divergent rhodium-catalyzed electrochemical vinylic C-H annulation of acrylamides with alkynes. Nat Commun 2021; 12:930. [PMID: 33568643 PMCID: PMC7876044 DOI: 10.1038/s41467-021-21190-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/14/2021] [Indexed: 12/22/2022] Open
Abstract
α-Pyridones and α-pyrones are ubiquitous structural motifs found in natural products and biologically active small molecules. Here, we report an Rh-catalyzed electrochemical vinylic C-H annulation of acrylamides with alkynes, affording cyclic products in good to excellent yield. Divergent syntheses of α-pyridones and cyclic imidates are accomplished by employing N-phenyl acrylamides and N-tosyl acrylamides as substrates, respectively. Additionally, excellent regioselectivities are achieved when using unsymmetrical alkynes. This electrochemical process is environmentally benign compared to traditional transition metal-catalyzed C-H annulations because it avoids the use of stoichiometric metal oxidants. DFT calculations elucidated the reaction mechanism and origins of substituent-controlled chemoselectivity. The sequential C-H activation and alkyne insertion under rhodium catalysis leads to the seven-membered ring vinyl-rhodium intermediate. This intermediate undergoes either the classic neutral concerted reductive elimination to produce α-pyridones, or the ionic stepwise pathway to produce cyclic imidates.
Collapse
Affiliation(s)
- Yi-Kang Xing
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xin-Ran Chen
- Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Qi-Liang Yang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Henan Normal University, Xinxiang, Henan, China
| | - Shuo-Qing Zhang
- Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Hai-Ming Guo
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Henan Normal University, Xinxiang, Henan, China
| | - Xin Hong
- Department of Chemistry, Zhejiang University, Hangzhou, China.
| | - Tian-Sheng Mei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
40
|
Erchinger JE, Gemmeren M. Electrochemical Methods for Pd‐catalyzed C−H Functionalization. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Johannes E. Erchinger
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Manuel Gemmeren
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| |
Collapse
|
41
|
Shen H, Cheng D, Li Y, Liu T, Yi X, Liu L, Ling F, Zhong W. Late-stage diversification by rutheniumelectro-catalyzed C–H mono- and di-acyloxylation. GREEN SYNTHESIS AND CATALYSIS 2020. [DOI: 10.1016/j.gresc.2020.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
42
|
Profile of Dr. Xiaojiang Hao. SCIENCE CHINA. LIFE SCIENCES 2020; 63:1631-1633. [PMID: 32955659 DOI: 10.1007/s11427-020-1812-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
|
43
|
Kakiuchi F, Kochi T. New Strategy for Catalytic Oxidative C–H Functionalization: Efficient Combination of Transition-metal Catalyst and Electrochemical Oxidation. CHEM LETT 2020. [DOI: 10.1246/cl.200475] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Fumitoshi Kakiuchi
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Takuya Kochi
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
44
|
Sun K, Lei J, Liu Y, Liu B, Chen N. Electrochemically Enabled Intramolecular and Intermolecular Annulations of Alkynes. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000876] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Kai Sun
- College of Chemistry and Chemical Engineering Anyang Normal University Anyang 455000 People's Republic of China
- School of Pharmacy Harbin University of Commerce Harbin 150076 People's Republic of China
| | - Jia Lei
- School of Pharmacy Harbin University of Commerce Harbin 150076 People's Republic of China
| | - Yingjie Liu
- School of Pharmacy Harbin University of Commerce Harbin 150076 People's Republic of China
| | - Bing Liu
- School of Pharmacy Harbin University of Commerce Harbin 150076 People's Republic of China
| | - Ning Chen
- School of Pharmacy Harbin University of Commerce Harbin 150076 People's Republic of China
| |
Collapse
|
45
|
Zhang S, Samanta RC, Del Vecchio A, Ackermann L. Evolution of High-Valent Nickela-Electrocatalyzed C-H Activation: From Cross(-Electrophile)-Couplings to Electrooxidative C-H Transformations. Chemistry 2020; 26:10936-10947. [PMID: 32329534 PMCID: PMC7497266 DOI: 10.1002/chem.202001318] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/22/2020] [Indexed: 12/19/2022]
Abstract
C-H activation has emerged as one of the most efficient tools for the formation of carbon-carbon and carbon-heteroatom bonds, avoiding the use of prefunctionalized materials. In spite of tremendous progress in the field, stoichiometric quantities of toxic and/or costly chemical redox reagents, such as silver(I) or copper(II) salts, are largely required for oxidative C-H activations. Recently, electrosynthesis has experienced a remarkable renaissance that enables the use of storable, safe and waste-free electric current as a redox equivalent. While major recent momentum was gained in electrocatalyzed C-H activations by 4d and 5d metals, user-friendly and inexpensive nickela-electrocatalysis has until recently proven elusive for oxidative C-H activations. Herein, the early developments of nickela-electrocatalyzed reductive cross-electrophile couplings as well as net-redox-neutral cross-couplings are first introduced. The focus of this Minireview is, however, the recent emergence of nickel-catalyzed electrooxidative C-H activations until April 2020.
Collapse
Affiliation(s)
- Shou‐Kun Zhang
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| | - Ramesh C. Samanta
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| | - Antonio Del Vecchio
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
- Woehler Research Institute for Sustainable Chemistry (WISCh)Georg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| |
Collapse
|
46
|
Liu J, Lu L, Wood D, Lin S. New Redox Strategies in Organic Synthesis by Means of Electrochemistry and Photochemistry. ACS CENTRAL SCIENCE 2020; 6:1317-1340. [PMID: 32875074 PMCID: PMC7453421 DOI: 10.1021/acscentsci.0c00549] [Citation(s) in RCA: 209] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Indexed: 05/04/2023]
Abstract
As the breadth of radical chemistry grows, new means to promote and regulate single-electron redox activities play increasingly important roles in driving modern synthetic innovation. In this regard, photochemistry and electrochemistry-both considered as niche fields for decades-have seen an explosive renewal of interest in recent years and gradually have become a cornerstone of organic chemistry. In this Outlook article, we examine the current state-of-the-art in the areas of electrochemistry and photochemistry, as well as the nascent area of electrophotochemistry. These techniques employ external stimuli to activate organic molecules and imbue privileged control of reaction progress and selectivity that is challenging to traditional chemical methods. Thus, they provide alternative entries to known and new reactive intermediates and enable distinct synthetic strategies that were previously unimaginable. Of the many hallmarks, electro- and photochemistry are often classified as "green" technologies, promoting organic reactions under mild conditions without the necessity for potent and wasteful oxidants and reductants. This Outlook reviews the most recent growth of these fields with special emphasis on conceptual advances that have given rise to enhanced accessibility to the tools of the modern chemical trade.
Collapse
Affiliation(s)
| | | | | | - Song Lin
- Department of Chemistry and
Chemical Biology, Cornell University, Ithaca, New
York 14853, United States
| |
Collapse
|
47
|
Chakraborty B, Menezes PW, Driess M. Beyond CO2 Reduction: Vistas on Electrochemical Reduction of Heavy Non-metal Oxides with Very Strong E—O Bonds (E = Si, P, S). J Am Chem Soc 2020; 142:14772-14788. [DOI: 10.1021/jacs.0c05862] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Biswarup Chakraborty
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623 Berlin, Germany
| | - Prashanth W. Menezes
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623 Berlin, Germany
| | - Matthias Driess
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623 Berlin, Germany
| |
Collapse
|
48
|
Dhawa U, Tian C, Wdowik T, Oliveira JCA, Hao J, Ackermann L. Enantioselective Pallada-Electrocatalyzed C-H Activation by Transient Directing Groups: Expedient Access to Helicenes. Angew Chem Int Ed Engl 2020; 59:13451-13457. [PMID: 32243685 PMCID: PMC7497116 DOI: 10.1002/anie.202003826] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Indexed: 01/05/2023]
Abstract
Asymmetric pallada-electrocatalyzed C-H olefinations were achieved through the synergistic cooperation with transient directing groups. The electrochemical, atroposelective C-H activations were realized with high position-, diastereo-, and enantio-control under mild reaction conditions to obtain highly enantiomerically-enriched biaryls and fluorinated N-C axially chiral scaffolds. Our strategy provided expedient access to, among others, novel chiral BINOLs, dicarboxylic acids and helicenes of value to asymmetric catalysis. Mechanistic studies by experiments and computation provided key insights into the catalyst's mode of action.
Collapse
Affiliation(s)
- Uttam Dhawa
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| | - Cong Tian
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| | - Tomasz Wdowik
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| | - João C. A. Oliveira
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| | - Jiping Hao
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
- Wöhler Research Institute for Sustainable Chemistry (WISCh)Georg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| |
Collapse
|
49
|
Jeyakannu P, Chandru Senadi G, Chiang C, Kumar Dhandabani G, Chang Y, Wang J. An Efficient Approach to Functionalized Indoles from λ
3
‐Iodanes via Acyloxylation and Acyl Transfer. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Palaniraja Jeyakannu
- Department of Medicinal and Applied ChemistryKaohsiung Medical University No. 100, Shih-Chuan 1st Road, Sanmin District Kaohsiung City 807 Taiwan
| | - Gopal Chandru Senadi
- Department of Chemistry, Faculty of Engineering and TechnologySRM Institute of Science and Technology, Kattankulathur Chennai 603203 India
| | - Chun‐Hsien Chiang
- Department of Medicinal and Applied ChemistryKaohsiung Medical University No. 100, Shih-Chuan 1st Road, Sanmin District Kaohsiung City 807 Taiwan
| | - Ganesh Kumar Dhandabani
- Department of Medicinal and Applied ChemistryKaohsiung Medical University No. 100, Shih-Chuan 1st Road, Sanmin District Kaohsiung City 807 Taiwan
| | - Yu‐Ching Chang
- Department of Medicinal and Applied ChemistryKaohsiung Medical University No. 100, Shih-Chuan 1st Road, Sanmin District Kaohsiung City 807 Taiwan
| | - Jeh‐Jeng Wang
- Department of Medicinal and Applied ChemistryKaohsiung Medical University No. 100, Shih-Chuan 1st Road, Sanmin District Kaohsiung City 807 Taiwan
- Department of Medical ResearchKaohsiung Medical University Hospital No. 100, Tzyou 1st Road, Sanmin District Kaohsiung City 807 Taiwan
| |
Collapse
|
50
|
Gao P, Weng X, Wang Z, Zheng C, Sun B, Chen Z, You S, Mei T. Cu
II
/TEMPO‐Catalyzed Enantioselective C(sp
3
)–H Alkynylation of Tertiary Cyclic Amines through Shono‐Type Oxidation. Angew Chem Int Ed Engl 2020; 59:15254-15259. [DOI: 10.1002/anie.202005099] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Indexed: 11/05/2022]
Affiliation(s)
- Pei‐Sen Gao
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Science 345 Lingling Road Shanghai 200032 China
| | - Xin‐Jun Weng
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Science 345 Lingling Road Shanghai 200032 China
| | - Zhen‐Hua Wang
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Science 345 Lingling Road Shanghai 200032 China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Science 345 Lingling Road Shanghai 200032 China
| | - Bing Sun
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Science 345 Lingling Road Shanghai 200032 China
| | - Zhi‐Hao Chen
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Science 345 Lingling Road Shanghai 200032 China
| | - Shu‐Li You
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Science 345 Lingling Road Shanghai 200032 China
| | - Tian‐Sheng Mei
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Science 345 Lingling Road Shanghai 200032 China
| |
Collapse
|