1
|
Kumar S, Chand S, Singh KN. Electro-oxidative coupling of Bunte salts with aryldiazonium tetrafluoroborates: a benign access to unsymmetrical sulfoxides. Org Biomol Chem 2024; 22:850-856. [PMID: 38175526 DOI: 10.1039/d3ob01955a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
An electrochemical strategy for the synthesis of unsymmetrical sulfoxides has been explored using Bunte salts and aryldiazonium tetrafluoroborates under constant current electrolysis at room temperature. In addition to being eco-safe and using mild conditions, the present protocol is free from the use of metal/oxidant, and is endowed with a broad substrate scope and good functional group tolerance.
Collapse
Affiliation(s)
- Saurabh Kumar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| | - Shiv Chand
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| | - Krishna Nand Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
2
|
Yao W, Lv K, Xie Z, Qiu H, Ma M. Catalyst-Free Electrochemical Sulfonylation of Organoboronic Acids. J Org Chem 2023; 88:2296-2305. [PMID: 36727513 DOI: 10.1021/acs.joc.2c02690] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A simple and efficient electrochemical sulfonylation of organoboronic acids with sodium arylsulfinate salts has been reported for the first time. A variety of aryl, heteroaryl, and alkenylsulfones were obtained in good to excellent yields via a simple electrochemical sulfonylation of various arylboronic acids, heterocyclic boronic acids, or alkenylboronic acids with sodium arylsulfinate at room temperature in 5 h under the catalyst-free and additive-free conditions. A plausible mechanism has been proposed based on various radical-trapping and CV control experiments.
Collapse
Affiliation(s)
- Weiwei Yao
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Kang Lv
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zixi Xie
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hui Qiu
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Mengtao Ma
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
3
|
Hou YJ, Li Y, Zhao ZW, Fan TG, Sun BX, Wang XN, Li YM. Oxidative Dehydrogenative Coupling of Thiols with Alkanes for the Synthesis of Sulfoxides. Org Lett 2023; 25:517-521. [PMID: 36649602 DOI: 10.1021/acs.orglett.2c04238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
An oxidative dehydrogenative coupling of thiols with alkanes via direct C(sp3)-H bond functionalization to form a new C-S bond and S═O double bond was developed. The present reaction features the use of readily available reagents and high step- and atom-efficiency, thus providing an efficient access to sulfoxides. A possible mechanism is proposed.
Collapse
Affiliation(s)
- Yu-Jian Hou
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Yi Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Zhi-Wei Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Tai-Gang Fan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Bo-Xun Sun
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Xu-Nan Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Ya-Min Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| |
Collapse
|
4
|
Kumar R, Taily IM, Banerjee P. Electrochemical sulfinylation of phenols with sulfides: a metal- and oxidant-free cross-coupling for the synthesis of aromatic sulfoxides. Chem Commun (Camb) 2023; 59:310-313. [PMID: 36507914 DOI: 10.1039/d2cc05207e] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The site-selective C-H functionalization of arenes is of indisputable importance in organic chemistry. Herein, we have demonstrated an electrochemical regioselective oxidative cross-coupling towards the direct C(sp2)-H sulfinylation of phenols with sulfides under mild reaction conditions. The designed methodology furnished aryl sulfoxides in good to moderate yields under exogenous metal and oxidant-free conditions. Moreover, the exploitation of traceless electrons to carry out the tandem site-selective oxidative aryl chalcogenation is the striking feature of this methodology.
Collapse
Affiliation(s)
- Rakesh Kumar
- Lab no. 406, S.S. Bhatnagar block, Department of Chemistry, Indian Institute of Technology Ropar, Punjab-140001, India.
| | - Irshad Maajid Taily
- Lab no. 406, S.S. Bhatnagar block, Department of Chemistry, Indian Institute of Technology Ropar, Punjab-140001, India.
| | - Prabal Banerjee
- Lab no. 406, S.S. Bhatnagar block, Department of Chemistry, Indian Institute of Technology Ropar, Punjab-140001, India.
| |
Collapse
|
5
|
Tian HD, Fu ZH, Li C, Lin HC, Li M, Ni SF, Wen LR, Zhang LB. Selective Electrochemical Synthesis of 9-Aryl-10-sulfonyl Substituted Phenanthrene from Alkynes and Sulfonyl Hydrazides. Org Lett 2022; 24:9322-9326. [PMID: 36484520 DOI: 10.1021/acs.orglett.2c03948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An efficient electrochemical synthesis of sulfonated phenanthrenes via the reaction of internal alkynes with sulfonyl hydrazides has been established. The protocol does not require a metal catalyst or external oxidants, providing a green and mild route to functionalized phenanthrenes. Moreover, the compatibility of various functional groups and decagram-scale experimental conditions demonstrate the practicality of the electrochemical strategy.
Collapse
Affiliation(s)
- Hao-Dong Tian
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Zi-Hao Fu
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Chen Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Huang-Chu Lin
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Ming Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Shao-Fei Ni
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Li-Rong Wen
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Lin-Bao Zhang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| |
Collapse
|
6
|
Aganda KCC, Na S, Lee A. Catalyst-free, direct synthesis of dibenzothiophenes. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
7
|
Feng CW, Wang DY, Lu HL, Xi ZW, Shen YM, Cao J. Photocatalytic Synthesis of Sulfinamides and Sulfoxides from Nitroarenes and Thiophenols. Org Lett 2022; 24:4485-4489. [PMID: 35678627 DOI: 10.1021/acs.orglett.2c01824] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present an efficient and versatile visible light-driven methodology for synthesizing sulfinamides and sulfoxides using nitroarenes as the nitrogen source and thiophenols as the sulfur source. The switch-over of the two reaction pathways was achieved by changing the type of photocatalyst and the amount of thiophenol in the reaction mixture. The reaction proceeds under mild conditions with good functional group tolerance and can easily be scaled up.
Collapse
Affiliation(s)
- Chuan-Wei Feng
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Dan-Yan Wang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Hui-Ling Lu
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Zi-Wei Xi
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China.,School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, P. R. China
| | - Yong-Miao Shen
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China.,Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou 310027, P. R. China
| | - Jianyu Cao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
8
|
Gong B, Zhu H, Yang L, Wang H, Fan Q, Xie Z, Le Z. Base-promoted synthesis of diarylsulfones from sulfonyl hydrazines and diaryliodonium salts. Org Biomol Chem 2022; 20:3501-3505. [PMID: 35420103 DOI: 10.1039/d2ob00389a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient and concise method for the synthesis of diverse substituted sulfones was developed with high selectivity. Using n-PrOH as the solvent, diaryl sulfones are formed even on a gram scale via metal-free coupling from sulfonyl hydrazines with symmetrical or unsymmetrical diaryliodonium salts.
Collapse
Affiliation(s)
- Bozhen Gong
- Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry, Biology and Material Science, East China University of Technology, 330013, Nanchang, China.
| | - Haibo Zhu
- Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry, Biology and Material Science, East China University of Technology, 330013, Nanchang, China.
| | - Liu Yang
- Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry, Biology and Material Science, East China University of Technology, 330013, Nanchang, China.
| | - Haifeng Wang
- Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry, Biology and Material Science, East China University of Technology, 330013, Nanchang, China. .,Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China
| | - Qiangwen Fan
- Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry, Biology and Material Science, East China University of Technology, 330013, Nanchang, China. .,Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, 330013, China
| | - Zongbo Xie
- Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry, Biology and Material Science, East China University of Technology, 330013, Nanchang, China.
| | - Zhanggao Le
- Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry, Biology and Material Science, East China University of Technology, 330013, Nanchang, China.
| |
Collapse
|
9
|
Das P, Das S, Jana R. Aryldiazonium Salts and DABSO: a Versatile Combination for Three-Component Sulfonylative Cross-Coupling Reactions. Chem Asian J 2022; 17:e202200085. [PMID: 35366373 DOI: 10.1002/asia.202200085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/31/2022] [Indexed: 11/09/2022]
Abstract
A combination of aryldiazonium salts and DABSO provides a unique opportunity for sulfonylative multicomponent cross-coupling reactions. Here, a copper-catalyzed three-component cross-coupling of aryldiazonium salts, DABSO with arylboronic acids to obtain medicinally relevant unsymmetrical diarylsulfones is disclosed. Interestingly, a catalyst-free approach for the synthesis of arylvinylsulfones from the corresponding vinyl boronic acid or vinyl halides is explored under basic condition. Tethered aryldiazonium salts provided the corresponding annulated alkylvinylsulfones via alkene difunctionalization under the same transition metal-free condition. Mechanistically, these multicomponent reactions proceed through a single electron pathway by the formation of arylsulfonyl radical as a key intermediate.
Collapse
Affiliation(s)
- Pritha Das
- CSIR-IICB: Indian Institute of Chemical Biology CSIR, Organic and Medicinal Chemistry Division, INDIA
| | - Subhodeep Das
- CSIR-IICB: Indian Institute of Chemical Biology CSIR, Organic and Medicinal Chemistry Division, INDIA
| | - Ranjan Jana
- Indian Institute of Chemical Biology CSIR, Chemistry Division, 4, Raja S. C. Mullick Road, Jadavpur, 700032, Kolkata, INDIA
| |
Collapse
|
10
|
Ghorbani-Choghamarani A, Taherinia Z. Sustainable approaches in the catalytic synthesis of optically active and inactive diaryl sulfoxides. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Lv X, Zhao XL, Zhao Q, Zheng Q, Xuan W. Cerium-Oxo clusters for photocatalytic aerobic oxygenation of sulfides to sulfoxides. Dalton Trans 2022; 51:8949-8954. [DOI: 10.1039/d2dt00856d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two cerium-oxo clusters (COCs) 1 and 2 are constructed by self-assembly of cerium ions and carboxylate ligands. Both clusters feature spherical structures resembling the key moiety of fluorite phase CeO2,...
Collapse
|
12
|
Gong X, Shen Z, Wang G, Qu L, Zhu C. Heterogeneous copper-catalyzed synthesis of diaryl sulfones. Org Biomol Chem 2021; 19:10662-10668. [PMID: 34850802 DOI: 10.1039/d1ob01830b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A carbon-supported copper nanoparticle (Cu-NP) with high catalytic activity for the synthesis of diaryl sulfones is reported. For the first time, this Cu-NP is proved to be able to effectively promote the reaction of arylboronic acids and arylsulfonyl hydrazides to generate diaryl sulfones at room temperature. The reaction shows excellent substrate universality, and substrates with different substituents can undergo the reaction smoothly, leading to the desired products in good yields. The Cu-NP is found to be made of low valence Cu based on XRD. Hence, the reaction catalyzed by the Cu-NP is believed to involve a Cu-mediated organometallic cycle.
Collapse
Affiliation(s)
- Xinchi Gong
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Zhengqi Shen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Ganghu Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Lingling Qu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Chunyin Zhu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
13
|
Xue Q, Sun Q, Zhang TT, Li Y, Li JH. Electrochemical oxygenation of sulfides with molecular oxygen or water: switchable preparation of sulfoxides and sulfones. Org Biomol Chem 2021; 19:10314-10318. [PMID: 34783815 DOI: 10.1039/d1ob01756j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A practical and eco-friendly method for the controllable aerobic oxygenation of sulfides by electrochemical catalysis was developed. The switchable preparation of sulfoxides and sulfones was effectively controlled by reaction time, in which both molecular oxygen and water can be used as the oxygen source under catalyst and external oxidant-free conditions. The electrochemical protocol features a broad substrate scope and excellent site selectivity and is successfully applied to the modification of some sulfide-containing pharmaceuticals and their derivatives.
Collapse
Affiliation(s)
- Qi Xue
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.
| | - Qing Sun
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.
| | - Ting-Ting Zhang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.
| | - Yang Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China. .,State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|
14
|
Aganda KCC, Lee A. Synthesis of Selenaheterocycles via Visible‐Light‐Mediated Radical Cyclization. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100969] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Kim Christopher C. Aganda
- Department of Energy Science and Technology Myongji University Yongin 17058 Republic of Korea
- Department of Chemistry Jeonbuk National University Jeonju 54896 Republic of Korea
| | - Anna Lee
- Department of Chemistry Jeonbuk National University Jeonju 54896 Republic of Korea
| |
Collapse
|
15
|
Modulation of photochemical oxidation of thioethers to sulfoxides or sulfones using an aromatic ketone as the photocatalyst. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
16
|
Liu Y, Zhang ZY, Ji YZ, Li HJ, Wu YC. Efficient Synthesis of 3-(Arenesulfinyl)indoles in Water. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1070428021050109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Zhu S, Yu C, Shi W, Zhou X. Selective and mild sulfoxidation of 2-sulfylbenzothiazole using hydroperoxides derived from cyclohexanone in the absence of catalyst. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Mo F, Qiu D, Zhang L, Wang J. Recent Development of Aryl Diazonium Chemistry for the Derivatization of Aromatic Compounds. Chem Rev 2021; 121:5741-5829. [DOI: 10.1021/acs.chemrev.0c01030] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Fanyang Mo
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing 100871, China
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Di Qiu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Lei Zhang
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Jianbo Wang
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|
19
|
Joseph D, Idris MA, Chen J, Lee S. Recent Advances in the Catalytic Synthesis of Arylsulfonyl Compounds. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05690] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Devaneyan Joseph
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Muhammad Aliyu Idris
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jiajia Chen
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang Province 325035, People’s Republic of China
| | - Sunwoo Lee
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
20
|
Zhou W, Tian YP, Zhou HJ, Wang HJ, Ren Y, Liu XL. Synthesis of methanesulfone-containing tetrasubstituted carbon stereocenters. Org Biomol Chem 2021; 19:2269-2276. [PMID: 33624683 DOI: 10.1039/d1ob00071c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A methanesulfonylation reaction for the synthesis of sulfone-containing tetrasubstituted carbon stereocenters is described for the first time by simple treatment of indanedione-chromanone synthons with Et3N and easily accessible MsCl without any use of organometallic chemistry. This technology gave the corresponding valuable chromone-based 2-methanesulfonylated 1,3-indanediones in good yields (up to 89% yield) under mild conditions. The present work provides an attractive strategy for the construction of biologically interesting sulfone-containing tetrasubstituted carbon stereocenters, which might be valuable in medicinal chemistry.
Collapse
Affiliation(s)
- Wei Zhou
- National & Local Joint Engineering Research Center for the Exploition of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang, Guizhou 550025, P. R. China.
| | - You-Ping Tian
- College of Pharmaceutical Sciences, Guizhou University of Chinese Medicine, Guiyang, Guizhou 550025, P. R. China
| | - Hao-Jie Zhou
- National & Local Joint Engineering Research Center for the Exploition of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang, Guizhou 550025, P. R. China.
| | - Hui-Juan Wang
- National & Local Joint Engineering Research Center for the Exploition of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang, Guizhou 550025, P. R. China.
| | - Yan Ren
- National & Local Joint Engineering Research Center for the Exploition of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang, Guizhou 550025, P. R. China.
| | - Xiong-Li Liu
- National & Local Joint Engineering Research Center for the Exploition of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang, Guizhou 550025, P. R. China.
| |
Collapse
|
21
|
Aganda KCC, Hong B, Lee A. Visible‐Light‐Promoted Switchable Synthesis of C‐3‐Functionalized Quinoxalin‐2(1
H
)‐ones. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001396] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Kim Christopher C. Aganda
- Department of Energy Science and Technology Myongji University Yongin 17058 Republic of Korea
- Department of Chemistry Jeonbuk National University Jeonju 54896 Republic of Korea
| | - Boseok Hong
- Department of Chemistry Myongji University Yongin 17058 Republic of Korea
| | - Anna Lee
- Department of Chemistry Jeonbuk National University Jeonju 54896 Republic of Korea
| |
Collapse
|
22
|
Sun Y, Feng C, Wang P, Yang F, Wu Y. Cobalt-catalyzed C8–H sulfonylation of 1-naphthylamine derivatives with sodium sulfinates. Org Chem Front 2021. [DOI: 10.1039/d1qo00975c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A facile and efficient protocol for cobalt-catalyzed regioselective C8–H sulfonylation of 1-naphthylamine derivatives with sodium sulfinates was developed to afford sulfonylated naphthylamines in moderate to good yields.
Collapse
Affiliation(s)
- Yucong Sun
- College of Chemistry, Green Catalysis Center, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou 450052, P R China
| | - Cancan Feng
- College of Chemistry, Green Catalysis Center, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou 450052, P R China
| | - Peisong Wang
- College of Chemistry, Green Catalysis Center, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou 450052, P R China
| | - Fan Yang
- College of Chemistry, Green Catalysis Center, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou 450052, P R China
| | - Yangjie Wu
- College of Chemistry, Green Catalysis Center, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou 450052, P R China
| |
Collapse
|
23
|
Li L, Yang M, He Q, Fan R. Conversion of anilines to chiral benzylic amines via formal one-carbon insertion into aromatic C-N bonds. Nat Commun 2020; 11:4805. [PMID: 32968063 PMCID: PMC7511326 DOI: 10.1038/s41467-020-18593-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 08/27/2020] [Indexed: 11/09/2022] Open
Abstract
Insertion of atoms into aromatic carbon-nitrogen bonds is an appealing method for the synthesis of nitrogen-containing molecules and it has the advantage of the availability and abundance of anilines. However, the direct cleavage of aromatic carbon-nitrogen bonds is challenging due to the particularly inert and stable nature of these bonds. Here we report a formal, enantioselective one-carbon insertion into an aromatic carbon-nitrogen bond via an aromaticity dissembly-reconstruction process to directly convert anilines to chiral α-branched benzylic amines. The process involves oxidative dearomatization of para-substituted anilines, chiral sulfur ylide-mediated asymmetric aziridination, and subsequent rearrangement. Chiral sulfur ylides serve as one-carbon insertion units. Atom insertion into aromatic carbon-nitrogen (C-N) bonds is useful for the synthesis of nitrogen-containing molecules, but challenging due to the inert nature of these bonds. Here, the authors report one-carbon insertion into aromatic C-N bonds to directly convert anilines to chiral benzylic amines.
Collapse
Affiliation(s)
- Lei Li
- Department of Chemistry, Fudan University, 200433, Shanghai, China
| | - Min Yang
- Department of Forensic Science, Oil-tea in Medical Health Care and Functional Product Development Engineering Research Center in Jiangxi, Gannan Medical University, Ganzhou, 341000, China
| | - Qiuqin He
- Department of Chemistry, Fudan University, 200433, Shanghai, China
| | - Renhua Fan
- Department of Chemistry, Fudan University, 200433, Shanghai, China.
| |
Collapse
|
24
|
A comprehensive electrochemical study of 2-mercaptobenzoheterocyclic derivatives. Air-assisted electrochemical synthesis of new sulfonamide derivatives. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136451] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
25
|
Kumar J, Ahmad A, Rizvi MA, Ganie MA, Khajuria C, Shah BA. Photoredox-Mediated Synthesis of Functionalized Sulfoxides from Terminal Alkynes. Org Lett 2020; 22:5661-5665. [PMID: 32602720 DOI: 10.1021/acs.orglett.0c02055] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A photoredox-mediated protocol for the synthesis of α-alkoxy-β-ketosulfoxides and α,β-dialkoxysulfoxides using alkynes, thiol, and alcohols is reported. This work presents a rare single-step synthesis of α-substituted sulfoxides, involving tandem introduction of a thiol and alcohol as a key enabling advancement. Furthermore, the method can be easily employed to access vinyl sulfoxides and β-ketosulfoxides.
Collapse
Affiliation(s)
- Jaswant Kumar
- AcSIR and Natural Product Microbes, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, Jammu and Kashmir
| | - Ajaz Ahmad
- AcSIR and Natural Product Microbes, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, Jammu and Kashmir
| | - Masood Ahmad Rizvi
- Department of Chemistry, University of Kashmir, Srinagar 190006, Jammu and Kashmir
| | - Majid Ahmed Ganie
- AcSIR and Natural Product Microbes, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, Jammu and Kashmir
| | - Chhavi Khajuria
- AcSIR and Natural Product Microbes, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, Jammu and Kashmir.,Department of Chemistry, Guru Nanak Dev University, Amritsar, India
| | - Bhahwal Ali Shah
- AcSIR and Natural Product Microbes, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, Jammu and Kashmir
| |
Collapse
|
26
|
Hong B, Aganda KCC, Lee A. Oxidative C-S Bond Cleavage of Benzyl Thiols Enabled by Visible-Light-Mediated Silver(II) Complexes. Org Lett 2020; 22:4395-4399. [PMID: 32459496 DOI: 10.1021/acs.orglett.0c01399] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The oxidative cleavage reaction of the C-S bond using singlet oxygen is challenging because of its uncontrollable nature. We have developed a novel method for the singlet-oxygen-mediated selective C-S bond cleavage reaction using silver(II)-ligand complexes. Visible-light-induced silver catalysis enables the controlled oxidative cleavage of benzyl thiols to afford carbonyl compounds, such as aldehydes or ketones, which are important synthetic components.
Collapse
|
27
|
Pradhan S, Patel S, Chatterjee I. Nitrosoarene-catalyzed regioselective aromatic C-H sulfinylation with thiols under aerobic conditions. Chem Commun (Camb) 2020; 56:5054-5057. [PMID: 32248220 DOI: 10.1039/d0cc01188f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Aromatic amines and (hetero)arenes, such as indoles and pyrroles, are regioselectively sulfinylated under mild aerobic conditions using nitrosoarenes as a redox-catalyst. The nitrosoarene is involved in the electron transfer process with arenes to generate a crucial arene radical cation intermediate for C-H sulfinylation. The present methodology requires no directing group, can be scaled up easily and is applicable for the late-stage functionalization of drug molecules and natural products with high regioselectivity.
Collapse
Affiliation(s)
- Suman Pradhan
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab 140001, India.
| | | | | |
Collapse
|
28
|
Zhu D, Wu Q, Li H, Li H, Lang J. Hantzsch Ester as a Visible‐Light Photoredox Catalyst for Transition‐Metal‐Free Coupling of Arylhalides and Arylsulfinates. Chemistry 2020; 26:3484-3488. [DOI: 10.1002/chem.201905281] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/15/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Da‐Liang Zhu
- College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 P. R. China
| | - Qi Wu
- College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 P. R. China
| | - Hai‐Yan Li
- College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 P. R. China
| | - Hong‐Xi Li
- College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 P. R. China
| | - Jian‐Ping Lang
- College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 P. R. China
| |
Collapse
|
29
|
Petzold D, Giedyk M, Chatterjee A, König B. A Retrosynthetic Approach for Photocatalysis. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901421] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Daniel Petzold
- Department of Organic Chemistry University of Regensburg Universitätsstraße 31 93053 Regensburg Germany
| | - Maciej Giedyk
- Department of Organic Chemistry University of Regensburg Universitätsstraße 31 93053 Regensburg Germany
- Institute of Organic Chemistry Polish Academy of Sciences Kasprzaka 44/52 01‐224 Warsaw Poland
| | - Anamitra Chatterjee
- Department of Organic Chemistry University of Regensburg Universitätsstraße 31 93053 Regensburg Germany
| | - Burkhard König
- Department of Organic Chemistry University of Regensburg Universitätsstraße 31 93053 Regensburg Germany
| |
Collapse
|
30
|
Cheng Z, Sun P, Tang A, Jin W, Liu C. Switchable Synthesis of Aryl Sulfones and Sulfoxides through Solvent-Promoted Oxidation of Sulfides with O 2/Air. Org Lett 2019; 21:8925-8929. [PMID: 31675240 DOI: 10.1021/acs.orglett.9b03192] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A practical and switchable method for the synthesis of aryl sulfones and sulfoxides via sulfide oxidation was developed. The chemoselectivities of products were simply controlled by reaction temperature using O2/air as the terminal oxidant and oxygen source. The broad substrate scope, easy realization of gram-scale production, and the simplification of a sulfide oxidation system render the strategy attractive and valuable.
Collapse
Affiliation(s)
- Zhen Cheng
- The Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, School of Chemistry and Chemical Engineering , Xinjiang University , Urumqi 830046 , P.R. China
| | - Pengchao Sun
- The Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, School of Chemistry and Chemical Engineering , Xinjiang University , Urumqi 830046 , P.R. China
| | - Ailing Tang
- The Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, School of Chemistry and Chemical Engineering , Xinjiang University , Urumqi 830046 , P.R. China
| | - Weiwei Jin
- The Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, School of Chemistry and Chemical Engineering , Xinjiang University , Urumqi 830046 , P.R. China
| | - Chenjiang Liu
- The Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, School of Chemistry and Chemical Engineering , Xinjiang University , Urumqi 830046 , P.R. China
| |
Collapse
|
31
|
Li Y, Rizvi SA, Hu D, Sun D, Gao A, Zhou Y, Li J, Jiang X. Selective Late‐Stage Oxygenation of Sulfides with Ground‐State Oxygen by Uranyl Photocatalysis. Angew Chem Int Ed Engl 2019; 58:13499-13506. [DOI: 10.1002/anie.201906080] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/08/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Yiming Li
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessDepartment of ChemistryEast China Normal University 3663 North Zhongshan Rd. Shanghai 200062 P. R. China
| | - S. Aal‐e‐Ali Rizvi
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessDepartment of ChemistryEast China Normal University 3663 North Zhongshan Rd. Shanghai 200062 P. R. China
| | - Deqing Hu
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessDepartment of ChemistryEast China Normal University 3663 North Zhongshan Rd. Shanghai 200062 P. R. China
| | - Danwen Sun
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessDepartment of ChemistryEast China Normal University 3663 North Zhongshan Rd. Shanghai 200062 P. R. China
| | - Anhui Gao
- National Center for Drug ScreeningLaboratory of Drug Research Shanghai Institute of Materia MedicaChinese Academy of Sciences Shanghai 201203 P. R. China
| | - Yubo Zhou
- National Center for Drug ScreeningLaboratory of Drug Research Shanghai Institute of Materia MedicaChinese Academy of Sciences Shanghai 201203 P. R. China
| | - Jia Li
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessDepartment of ChemistryEast China Normal University 3663 North Zhongshan Rd. Shanghai 200062 P. R. China
- National Center for Drug ScreeningLaboratory of Drug Research Shanghai Institute of Materia MedicaChinese Academy of Sciences Shanghai 201203 P. R. China
| | - Xuefeng Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessDepartment of ChemistryEast China Normal University 3663 North Zhongshan Rd. Shanghai 200062 P. R. China
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic ChemistryChinese Academy of Sciences Shanghai P. R. China
| |
Collapse
|
32
|
Nikl J, Ravelli D, Schollmeyer D, Waldvogel SR. Straightforward Electrochemical Sulfonylation of Arenes and Aniline Derivatives using Sodium Sulfinates. ChemElectroChem 2019. [DOI: 10.1002/celc.201901212] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Joachim Nikl
- Institut für Organische Chemie Johannes Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Davide Ravelli
- Institut für Organische Chemie Johannes Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Germany
- PhotoGreen Lab Department of Chemistry Viale Taramelli 12 27100 Pavia Italy
| | - Dieter Schollmeyer
- Institut für Organische Chemie Johannes Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Siegfried R. Waldvogel
- Institut für Organische Chemie Johannes Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Germany
| |
Collapse
|
33
|
Lu F, Li J, Wang T, Li Z, Jiang M, Hu X, Pei H, Yuan F, Lu L, Lei A. Electrochemical Oxidative C−H Sulfonylation of Anilines. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900447] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Fangling Lu
- College of Chemistry & Chemical EngineeringJiangxi Normal University Nanchang 330022, Jiangxi P. R. China
| | - Jun Li
- College of Chemistry & Chemical EngineeringJiangxi Normal University Nanchang 330022, Jiangxi P. R. China
| | - Tao Wang
- College of Chemistry & Chemical EngineeringJiangxi Normal University Nanchang 330022, Jiangxi P. R. China
| | - Zhen Li
- College of Chemistry & Chemical EngineeringJiangxi Normal University Nanchang 330022, Jiangxi P. R. China
| | - Minbao Jiang
- College of Chemistry & Chemical EngineeringJiangxi Normal University Nanchang 330022, Jiangxi P. R. China
| | - Xingxing Hu
- College of Chemistry & Chemical EngineeringJiangxi Normal University Nanchang 330022, Jiangxi P. R. China
| | - Hongqiao Pei
- College of Chemistry & Chemical EngineeringJiangxi Normal University Nanchang 330022, Jiangxi P. R. China
| | - Feng Yuan
- College of Chemistry & Chemical EngineeringJiangxi Normal University Nanchang 330022, Jiangxi P. R. China
| | - Lijun Lu
- College of Chemistry and Molecular Sciences The Institute for Advanced Studies (IAS)Wuhan University Wuhan, Hubei 430072 P. R. China
| | - Aiwen Lei
- College of Chemistry & Chemical EngineeringJiangxi Normal University Nanchang 330022, Jiangxi P. R. China
- College of Chemistry and Molecular Sciences The Institute for Advanced Studies (IAS)Wuhan University Wuhan, Hubei 430072 P. R. China
| |
Collapse
|
34
|
Li Y, Rizvi SA, Hu D, Sun D, Gao A, Zhou Y, Li J, Jiang X. Selective Late‐Stage Oxygenation of Sulfides with Ground‐State Oxygen by Uranyl Photocatalysis. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906080] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yiming Li
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessDepartment of ChemistryEast China Normal University 3663 North Zhongshan Rd. Shanghai 200062 P. R. China
| | - S. Aal‐e‐Ali Rizvi
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessDepartment of ChemistryEast China Normal University 3663 North Zhongshan Rd. Shanghai 200062 P. R. China
| | - Deqing Hu
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessDepartment of ChemistryEast China Normal University 3663 North Zhongshan Rd. Shanghai 200062 P. R. China
| | - Danwen Sun
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessDepartment of ChemistryEast China Normal University 3663 North Zhongshan Rd. Shanghai 200062 P. R. China
| | - Anhui Gao
- National Center for Drug ScreeningLaboratory of Drug Research Shanghai Institute of Materia MedicaChinese Academy of Sciences Shanghai 201203 P. R. China
| | - Yubo Zhou
- National Center for Drug ScreeningLaboratory of Drug Research Shanghai Institute of Materia MedicaChinese Academy of Sciences Shanghai 201203 P. R. China
| | - Jia Li
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessDepartment of ChemistryEast China Normal University 3663 North Zhongshan Rd. Shanghai 200062 P. R. China
- National Center for Drug ScreeningLaboratory of Drug Research Shanghai Institute of Materia MedicaChinese Academy of Sciences Shanghai 201203 P. R. China
| | - Xuefeng Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessDepartment of ChemistryEast China Normal University 3663 North Zhongshan Rd. Shanghai 200062 P. R. China
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic ChemistryChinese Academy of Sciences Shanghai P. R. China
| |
Collapse
|
35
|
Li X, Wang M, Wang Z, Wang L. Synthesis of Vinyl Sulfones through Visible Light‐Induced Decarboxylative Sulfonylation of Cinnamic Acids with Disulfides. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900386] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Xuezhi Li
- Department of ChemistryHuaibei Normal University Huaibei Anhui 235000 P. R. China
| | - Min Wang
- Department of ChemistryHuaibei Normal University Huaibei Anhui 235000 P. R. China
| | - Zhihui Wang
- Department of ChemistryHuaibei Normal University Huaibei Anhui 235000 P. R. China
| | - Lei Wang
- Department of ChemistryHuaibei Normal University Huaibei Anhui 235000 P. R. China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic ChemistryChinese Academy of Sciences Shanghai 200032 P. R. China
| |
Collapse
|
36
|
Vidyacharan S, Ramanjaneyulu BT, Jang S, Kim DP. Continuous-Flow Visible Light Organophotocatalysis for Direct Arylation of 2H-Indazoles: Fast Access to Drug Molecules. CHEMSUSCHEM 2019; 12:2581-2586. [PMID: 30985985 DOI: 10.1002/cssc.201900736] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/09/2019] [Indexed: 06/09/2023]
Abstract
A continuous-flow homogeneous photocatalytic method has been devised for the direct arylation of 2H-indazoles. This visible-light-promoted approach directly accesses a wide range of structurally diverse C3-arylated scaffolds of biological interest in a fast (1 min), single-step reaction by using eosin Y as an organophotocatalyst. Furthermore, a microreactor technology is also employed for the fast synthesis of liver X receptor inhibitor drugs with very good yields under metal-free conditions, whereas the reported methods required multiple steps and much longer reaction times (18-24 h).
Collapse
Affiliation(s)
- Shinde Vidyacharan
- Center of Intelligent Microprocess of Pharmaceutical Synthesis, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 37673, Pohang, Korea
| | - Bandaru T Ramanjaneyulu
- Center of Intelligent Microprocess of Pharmaceutical Synthesis, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 37673, Pohang, Korea
| | - Seungwook Jang
- Center of Intelligent Microprocess of Pharmaceutical Synthesis, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 37673, Pohang, Korea
| | - Dong-Pyo Kim
- Center of Intelligent Microprocess of Pharmaceutical Synthesis, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 37673, Pohang, Korea
| |
Collapse
|
37
|
Lee J, Hong B, Lee A. Visible-Light-Promoted, Catalyst-Free Gomberg–Bachmann Reaction: Synthesis of Biaryls. J Org Chem 2019; 84:9297-9306. [DOI: 10.1021/acs.joc.9b00557] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
38
|
Ji YZ, Zhang JY, Li HJ, Han C, Yang YK, Wu YC. Regioselective and oxidant-free sulfinylation of indoles and pyrroles with sulfinamides. Org Biomol Chem 2019; 17:4789-4800. [PMID: 31033985 DOI: 10.1039/c9ob00526a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An unexpected time-controlled highly selective C3- or C2-sulfinylation of pyrroles with sulfinamides is reported for the first time. The sulfinylation of indoles with sulfinamides using this protocol is oxidant-free and can be performed under obviously more feasible conditions (1.2 equiv. of indoles, 10 min) in comparison with the precedent procedure (3-20 equiv. of indoles, 16-18 h, ammonium persulfate as oxidant, hv). A variety of functional groups were tolerated, and various C2-thioindoles and C2/3-thiopyrroles were obtained in moderate to excellent yields.
Collapse
Affiliation(s)
- Yuan-Zhao Ji
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, P. R. China.
| | | | | | | | | | | |
Collapse
|
39
|
Nikl J, Lips S, Schollmeyer D, Franke R, Waldvogel SR. Direct Metal‐ and Reagent‐Free Sulfonylation of Phenols with Sodium Sulfinates by Electrosynthesis. Chemistry 2019; 25:6891-6895. [DOI: 10.1002/chem.201900850] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Joachim Nikl
- Institut für Organische ChemieJohannes Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Sebastian Lips
- Institut für Organische ChemieJohannes Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Dieter Schollmeyer
- Institut für Organische ChemieJohannes Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Robert Franke
- Evonik Performance Materials GmbH Paul-Baumann-Straße 1 45772 Marl Germany
- Lehrstuhl für Theoretische ChemieRuhr-Universität Bochum 44780 Bochum Germany
| | - Siegfried R. Waldvogel
- Institut für Organische ChemieJohannes Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Germany
| |
Collapse
|
40
|
Zhu H, Shen Y, Wen D, Le ZG, Tu T. Selective Synthesis of ortho-Substituted Diarylsulfones by Using NHC-Au Catalysts under Mild Conditions. Org Lett 2019; 21:974-979. [DOI: 10.1021/acs.orglett.8b03957] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Haibo Zhu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai 200438, China
- School of Chemistry, Biology and Material Science, East China University of Technology, Nanchang 330013, China
| | - Yajing Shen
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Daheng Wen
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Zhang-Gao Le
- School of Chemistry, Biology and Material Science, East China University of Technology, Nanchang 330013, China
| | - Tao Tu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai 200438, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
41
|
Choudhuri K, Maiti S, Mal P. Iodine(III) Enabled Dehydrogenative Aryl C−S Coupling by in situ Generated Sulfenium Ion. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201801510] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Khokan Choudhuri
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar; PO Bhimpur-Padanpur; Via Jatni, District Khurda Odisha 752050 India
| | - Saikat Maiti
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar; PO Bhimpur-Padanpur; Via Jatni, District Khurda Odisha 752050 India
| | - Prasenjit Mal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar; PO Bhimpur-Padanpur; Via Jatni, District Khurda Odisha 752050 India
| |
Collapse
|
42
|
Guo W, Tao K, Tan W, Zhao M, Zheng L, Fan X. Recent advances in photocatalytic C–S/P–S bond formation via the generation of sulfur centered radicals and functionalization. Org Chem Front 2019. [DOI: 10.1039/c8qo01353e] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In this review, we have focused on the recent advances in photocatalytic C–S/P–S bond formation via the generation of thioyl/sulfonyl radicals and further functionalization.
Collapse
Affiliation(s)
- Wei Guo
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province
- Gannan Normal University
- Ganzhou 341000
- China
| | - Kailiang Tao
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province
- Gannan Normal University
- Ganzhou 341000
- China
| | - Wen Tan
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province
- Gannan Normal University
- Ganzhou 341000
- China
| | - Mingming Zhao
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province
- Gannan Normal University
- Ganzhou 341000
- China
| | - Lvyin Zheng
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province
- Gannan Normal University
- Ganzhou 341000
- China
| | - Xiaolin Fan
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province
- Gannan Normal University
- Ganzhou 341000
- China
| |
Collapse
|
43
|
Chawla R, Yadav LDS. Organic photoredox catalysis enabled cross-coupling of arenediazonium and sulfinate salts: synthesis of (un)symmetrical diaryl/alkyl aryl sulfones. Org Biomol Chem 2019; 17:4761-4766. [DOI: 10.1039/c9ob00864k] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Transition-metal- and oxidant/reductant-free visible-light-mediated synthesis of (un)symmetrical diaryl/alkyl aryl sulfones from aryl diazonium and sulfinate salts employing eosin Y as an organo-photoredox catalyst is reported.
Collapse
Affiliation(s)
- Ruchi Chawla
- Green Synthesis Lab
- Department of Chemistry
- University of Allahabad
- Prayagraj 211 002
- India
| | - Lal Dhar S. Yadav
- Green Synthesis Lab
- Department of Chemistry
- University of Allahabad
- Prayagraj 211 002
- India
| |
Collapse
|
44
|
Xie LY, Chen YL, Qin L, Wen Y, Xie JW, Tan JX, Huang Y, Cao Z, He WM. Visible-light-promoted direct C–H/S–H cross-coupling of quinoxalin-2(1H)-ones with thiols leading to 3-sulfenylated quinoxalin-2(1H)-ones in air. Org Chem Front 2019. [DOI: 10.1039/c9qo01240k] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A new and efficient visible-light-mediated strategy has been developed for the synthesis of 3-sulfenylated quinoxalin-2(1H)-ones via rhodamine B catalyzed C–H/S–H cross-coupling of quinoxalin-2(1H)-ones with thiols in air at room temperature.
Collapse
Affiliation(s)
- Long-Yong Xie
- Department of Chemistry
- Hunan University of Science and Engineering
- Yongzhou 425100
- China
| | - Yan-Ling Chen
- Department of Chemistry
- Hunan University of Science and Engineering
- Yongzhou 425100
- China
| | - Li Qin
- Department of Chemistry
- Hunan University of Science and Engineering
- Yongzhou 425100
- China
| | - Yuan Wen
- Department of Chemistry
- Hunan University of Science and Engineering
- Yongzhou 425100
- China
| | - Jian-Wei Xie
- Department of Chemistry
- Hunan University of Science and Engineering
- Yongzhou 425100
- China
| | - Jia-Xi Tan
- School of Chemistry and Chemical Engineering
- Hunan University of Science and Technology
- Xiangtan 411201
- China
| | - Ying Huang
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation
- Changsha University of Science and Technology
- Changsha
- China
| | - Zhong Cao
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation
- Changsha University of Science and Technology
- Changsha
- China
| | - Wei-Min He
- Department of Chemistry
- Hunan University of Science and Engineering
- Yongzhou 425100
- China
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation
| |
Collapse
|
45
|
Zhou Q, Zou Y, Lu L, Xiao W. Mit sichtbarem Licht induzierte, organische photochemische Reaktionen über Energietransferrouten. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803102] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Quan‐Quan Zhou
- CCNU-uOttawa Joint Research CentreKey Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal University (CCNU) 152 Luoyu Road Wuhan Hubei 430079 China
| | - You‐Quan Zou
- CCNU-uOttawa Joint Research CentreKey Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal University (CCNU) 152 Luoyu Road Wuhan Hubei 430079 China
| | - Liang‐Qiu Lu
- CCNU-uOttawa Joint Research CentreKey Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal University (CCNU) 152 Luoyu Road Wuhan Hubei 430079 China
| | - Wen‐Jing Xiao
- CCNU-uOttawa Joint Research CentreKey Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal University (CCNU) 152 Luoyu Road Wuhan Hubei 430079 China
| |
Collapse
|
46
|
Zhou QQ, Zou YQ, Lu LQ, Xiao WJ. Visible-Light-Induced Organic Photochemical Reactions through Energy-Transfer Pathways. Angew Chem Int Ed Engl 2018; 58:1586-1604. [PMID: 29774651 DOI: 10.1002/anie.201803102] [Citation(s) in RCA: 637] [Impact Index Per Article: 91.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/17/2018] [Indexed: 12/25/2022]
Abstract
Visible-light photocatalysis is a rapidly developing and powerful strategy to initiate organic transformations, as it closely adheres to the tenants of green and sustainable chemistry. Generally, most visible-light-induced photochemical reactions occur through single-electron transfer (SET) pathways. Recently, visible-light-induced energy-transfer (EnT) reactions have received considerable attentions from the synthetic community as this strategy provides a distinct reaction pathway, and remarkable achievements have been made in this field. In this Review, we highlight the most recent advances in visible-light-induced EnT reactions.
Collapse
Affiliation(s)
- Quan-Quan Zhou
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - You-Quan Zou
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Liang-Qiu Lu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Wen-Jing Xiao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei, 430079, China
| |
Collapse
|
47
|
Ma M, Hao W, Ma L, Zheng Y, Lian P, Wan X. Interception of Radicals by Molecular Oxygen and Diazo Compounds: Direct Synthesis of Oxalate Esters Using Visible-Light Catalysis. Org Lett 2018; 20:5799-5802. [DOI: 10.1021/acs.orglett.8b02487] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Meihua Ma
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Weiwei Hao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Liang Ma
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Yonggao Zheng
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Pengcheng Lian
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Xiaobing Wan
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
48
|
Gong X, Chen J, Li X, Xie W, Wu J. Sulfonylation of Benzylic C−H Bonds through the Reaction of Aryl(o
-tolyl)methanones with Sulfonyl Hydrazides or Sulfonyl Chlorides. Chem Asian J 2018; 13:2543-2548. [DOI: 10.1002/asia.201800591] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/23/2018] [Indexed: 11/12/2022]
Affiliation(s)
- Xinxing Gong
- Department of Chemistry; Fudan University; 2005 Songhu Road Shanghai 200438 P. R. China
| | - Jiahao Chen
- Department of Chemistry; Fudan University; 2005 Songhu Road Shanghai 200438 P. R. China
| | - Xiaofang Li
- School of Chemistry and Chemical Engineering; Hunan University of Science and Technology; Xiangtan 411201 P. R. China
| | - Wenlin Xie
- School of Chemistry and Chemical Engineering; Hunan University of Science and Technology; Xiangtan 411201 P. R. China
| | - Jie Wu
- Department of Chemistry; Fudan University; 2005 Songhu Road Shanghai 200438 P. R. China
- State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 P. R. China
| |
Collapse
|
49
|
Singh AK, Kandasamy J. Palladium catalyzed stereocontrolled synthesis of C-aryl glycosides using glycals and arenediazonium salts at room temperature. Org Biomol Chem 2018; 16:5107-5112. [DOI: 10.1039/c8ob01393d] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A wide range of glycals underwent C-arylation with aryldiazonium tetrafluoroborates and provided synthetically useful 2,3-deoxy 3-keto α-aryl-C-glycosides in good to excellent yields.
Collapse
Affiliation(s)
- Adesh Kumar Singh
- Department of Chemistry
- Indian Institute of Technology (BHU)
- Varanasi
- India
| | | |
Collapse
|