1
|
Yang YC, Li WS, Wu HL. Rhodium(I)-Catalyzed Asymmetric Cascade Reactions. CHEM REC 2025; 25:e202400231. [PMID: 40051168 DOI: 10.1002/tcr.202400231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/12/2025] [Indexed: 04/13/2025]
Abstract
Rhodium(I)-catalyzed asymmetric cascade reactions have emerged as powerful tools in contemporary organic synthesis, enabling efficient construction of complex molecular architectures. These transformations proceed through organorhodium intermediates, which undergo additions to reactive π-bonds, subsequently triggering cascade reactions with neighboring functional groups to effectively forge multiple carbon-carbon bonds and stereogenic centers in a single step under mild conditions. This article reviews the pioneering developments and recent breakthroughs from 2002 to 2024, highlighting the attractive advantages of rhodium(I)-catalyzed asymmetric cascade reactions and their profound impacts on synthetic organic chemistry.
Collapse
Affiliation(s)
- Yu-Chu Yang
- Department of Chemistry, National Taiwan Normal University, No.88, Sec. 4, Tingzhou Rd., Taipei, 11677, Taiwan
| | - Wei-Sian Li
- Department of Chemistry, National Taiwan Normal University, No.88, Sec. 4, Tingzhou Rd., Taipei, 11677, Taiwan
| | - Hsyueh-Liang Wu
- Department of Chemistry, National Taiwan Normal University, No.88, Sec. 4, Tingzhou Rd., Taipei, 11677, Taiwan
| |
Collapse
|
2
|
Jin Z, Li Q, Zhu M, Zhang Y, Yan X, Zhou X. Palladium-catalyzed carbon-carbon bond cleavage of primary alcohols: decarbonylative coupling of acetylenic aldehydes with haloarenes. RSC Adv 2025; 15:7826-7831. [PMID: 40070398 PMCID: PMC11895861 DOI: 10.1039/d5ra00357a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
In the current work, a palladium-catalyzed C-C bond cleavage reaction of primary alcohols has been developed. This transformation was characterized by a broad substrate scope, superior functional group tolerance, and high efficiency for selective C-C bond cleavage and was then followed by alkynyl-aryl cross coupling. Mechanism studies indicated that the propargyl alcohols underwent β-H elimination to form aldehydes rather than having undergone β-C elimination. The corresponding aldehyde intermediates then proceeded through a decarbonylation and coupling reaction with haloarenes to yield diarylacetylenes.
Collapse
Affiliation(s)
- Zewei Jin
- College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Qiang Li
- College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Maoshuai Zhu
- College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Yanqiong Zhang
- College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Xufei Yan
- West China School of Public Health and West China Fourth Hospital, Sichuan University Chengdu 610041 P. R. China
| | - Xiangge Zhou
- College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| |
Collapse
|
3
|
Mirabi B, Li S, Ching J, Lenz M, Popovic SM, Lautens M. Stereodivergency in Copper-Catalyzed Borylative Difunctionalizations: The Impact of Boron Coordination. Angew Chem Int Ed Engl 2024; 63:e202411156. [PMID: 39136344 DOI: 10.1002/anie.202411156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Indexed: 09/25/2024]
Abstract
A reagent-controlled diastereodivergent copper-catalyzed borylative difunctionalization is reported. The formation of Lewis adducts that guide selectivity is commonly invoked in organic reaction mechanisms. Using density functional theory calculations, we identified BpinBdan as a sterically similar and less Lewis acidic alternative to B2pin2. Using a newly developed borylative aldol domino reaction as the proof-of-concept, we demonstrate a change in stereochemical outcome by a simple change of borylating reagent-B2pin2 affords the diastereomer associated with coordination control while BpinBdan overturns this mode of binding. We show that this strategy can be generalized to other scaffolds and, more importantly, that BpinBdan does not alter the diastereomeric outcome of the reaction when coordination is not involved. BpinBdan can be viewed as a mechanistic probe for coordination in future copper-catalyzed borylation reactions.
Collapse
Affiliation(s)
- Bijan Mirabi
- Davenport Chemical Laboratories, Department of Chemistry, University of Toronto, 80 St. George St., Toronto, Ontario, M5S 3H6, Canada
| | - Shangyu Li
- Davenport Chemical Laboratories, Department of Chemistry, University of Toronto, 80 St. George St., Toronto, Ontario, M5S 3H6, Canada
| | - Justin Ching
- Davenport Chemical Laboratories, Department of Chemistry, University of Toronto, 80 St. George St., Toronto, Ontario, M5S 3H6, Canada
| | - Madina Lenz
- Davenport Chemical Laboratories, Department of Chemistry, University of Toronto, 80 St. George St., Toronto, Ontario, M5S 3H6, Canada
| | - Simon M Popovic
- Davenport Chemical Laboratories, Department of Chemistry, University of Toronto, 80 St. George St., Toronto, Ontario, M5S 3H6, Canada
| | - Mark Lautens
- Davenport Chemical Laboratories, Department of Chemistry, University of Toronto, 80 St. George St., Toronto, Ontario, M5S 3H6, Canada
| |
Collapse
|
4
|
Tran BL, Fuller JT, Erickson JD, Ginovska B, Raugei S. Direct observation of β-alkynyl eliminations from unstrained propargylic alkoxide Cu(i) complexes by C-C bond cleavage. Chem Sci 2024:d4sc02982h. [PMID: 39371453 PMCID: PMC11447594 DOI: 10.1039/d4sc02982h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/17/2024] [Indexed: 10/08/2024] Open
Abstract
β-Carbon eliminations of aryl, allylic, and propargylic alkoxides of Rh(i), Pd(ii), and Cu(i) are key elementary reactions in the proposed mechanisms of homogeneously catalysed cross-coupling, group transfer, and annulation. Besides the handful of studies with isolable Rh(i)-alkoxides, β-carbon eliminations of Pd(ii)- and Cu(i)-alkoxides are less definitive. Herein, we provide a comprehensive synthetic, structural, and mechanistic study on the β-alkynyl eliminations of isolable secondary and tertiary propargylic alkoxide Cu(i) complexes, LCuOC(H)(Ph)C[triple bond, length as m-dash]CPh and LCuOC(ArF)2C[triple bond, length as m-dash]CPh (L = N-heterocyclic carbene (NHC), dppf, S-BINAP), to produce monomeric (NHC)CuC[triple bond, length as m-dash]CPh, dimeric [(diphosphine)CuC[triple bond, length as m-dash]CPh]2, and the corresponding carbonyl. Selective β-alkynyl over β-hydrogen elimination was observed for NHC- and diphosphine-supported secondary propargylic alkoxide complexes. The mechanism for the first-order reaction of β-carbon elimination of (IPr*Me)CuOC(ArF)2C[triple bond, length as m-dash]CPh is proposed to occur through an organized four-centred transition state via a Cu-alkyne π complex based on Eyring analysis of variable-temperature reaction rates by UV-vis kinetic analysis to provide ΔH ‡ = 24(1) kcal mol-1, ΔS ‡ = -8(3) e.u., and ΔG ‡ (25 °C) = 27 kcal mol-1 over a temperature range of 60-100 °C. Additional quantitative UV-vis kinetic studies conclude that the electronic and steric properties of the NHC ligands engendered a marginal effect on the elimination rate, requiring 2-3 h at 100 °C for completion, whereas complete β-alkynyl eliminations of diphosphine-supported propargylic alkoxides were observed in 1-2 h at 25 °C.
Collapse
Affiliation(s)
- Ba L Tran
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory Richland WA 99352 USA
| | - Jack T Fuller
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory Richland WA 99352 USA
| | - Jeremy D Erickson
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory Richland WA 99352 USA
| | - Bojana Ginovska
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory Richland WA 99352 USA
| | - Simone Raugei
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory Richland WA 99352 USA
| |
Collapse
|
5
|
Duan D, Tang M, Wang M, Qiu H, Song R, Yang D, Lv J. Switchable Enantioselectivity in Conjugate Alkyne Addition of β,γ-Unsaturated α-Keto Esters by Asymmetric Binary Acid Catalysis. Org Lett 2024; 26:3612-3616. [PMID: 38656195 DOI: 10.1021/acs.orglett.4c01101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Switchable enantioselectivity was uncovered in the enantioselective catalytic conjugate addition of β,γ-unsaturated α-keto esters with terminal alkynes to the chiral Lewis acid complex of In(BF4)3 and chiral phosphoric acid.
Collapse
Affiliation(s)
- Depeng Duan
- Key Laboratory of Optic-electric Sensing and Analytic Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Mengdie Tang
- Key Laboratory of Optic-electric Sensing and Analytic Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Man Wang
- Key Laboratory of Optic-electric Sensing and Analytic Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Huixin Qiu
- Key Laboratory of Optic-electric Sensing and Analytic Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Ran Song
- Key Laboratory of Optic-electric Sensing and Analytic Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Daoshan Yang
- Key Laboratory of Optic-electric Sensing and Analytic Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Jian Lv
- Key Laboratory of Optic-electric Sensing and Analytic Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| |
Collapse
|
6
|
Zou L, Gao Y, Zhang Q, Ye XY, Xie T, Wang LW, Ye Y. Recent Progress in Asymmetric Domino Intramolecular Cyclization/Cascade Reactions of Substituted Olefins. Chem Asian J 2023; 18:e202300617. [PMID: 37462417 DOI: 10.1002/asia.202300617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 08/02/2023]
Abstract
The domino cyclization/coupling strategy is one of the most effective methods to produce cyclized and multi-functionalized compounds from olefins, which has attracted huge attention from chemists and biochemists especially for its considerable potential of enantiocontrol. Nowadays, more and more studies are developed to achieve difunctionalization of substituted olefins through an asymmetric domino intramolecular cyclization/cascade reaction, which is still an elegant choice to accomplish several synthetic ideas such as complex natural products and drugs. This review surveys the recent advances in this field through reaction type classification. It might serve as useful knowledge desktop for the community and accelerate their research.
Collapse
Affiliation(s)
- Liang Zou
- School of Pharmacy, Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou, Zhejiang 311121, P. R. China
| | - Yuan Gao
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 200000, P. R. China
| | - Qiaoman Zhang
- School of Pharmacy, Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou, Zhejiang 311121, P. R. China
| | - Xiang-Yang Ye
- School of Pharmacy, Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou, Zhejiang 311121, P. R. China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou, Zhejiang 311121, P. R. China
| | - Li-Wei Wang
- School of Pharmacy, Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou, Zhejiang 311121, P. R. China
| | - Yang Ye
- School of Pharmacy, Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou, Zhejiang 311121, P. R. China
| |
Collapse
|
7
|
Kisszékelyi P, Šebesta R. Enolates ambushed - asymmetric tandem conjugate addition and subsequent enolate trapping with conventional and less traditional electrophiles. Beilstein J Org Chem 2023; 19:593-634. [PMID: 37180457 PMCID: PMC10167861 DOI: 10.3762/bjoc.19.44] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/21/2023] [Indexed: 05/16/2023] Open
Abstract
Metal enolates are useful intermediates and building blocks indispensable in many organic synthetic transformations. Chiral metal enolates obtained by asymmetric conjugate additions of organometallic reagents are structurally complex intermediates that can be employed in many transformations. In this review, we describe this burgeoning field that is reaching maturity after more than 25 years of development. The effort of our group to broaden possibilities to engage metal enolates in reactions with new electrophiles is described. The material is divided according to the organometallic reagent employed in the conjugate addition step, and thus to the particular metal enolate formed. Short information on applications in total synthesis is also given.
Collapse
Affiliation(s)
- Péter Kisszékelyi
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Mlynská dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Radovan Šebesta
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Mlynská dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia
| |
Collapse
|
8
|
Li J, Sun J, Ren W, Lei J, Shen R, Huang Y. Rhodium/Chiral-Diene-Catalyzed Switchable Asymmetric Divergent Arylation of Enone-Diones. Org Lett 2022; 24:2420-2424. [DOI: 10.1021/acs.orglett.2c00687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Junbao Li
- College of Materials, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Jinghui Sun
- College of Materials, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Wenzhu Ren
- College of Materials, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Jinhua Lei
- College of Materials, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Runpu Shen
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing 312000, China
| | - Yinhua Huang
- College of Materials, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
9
|
Choo KL, Mirabi B, Demmans KZ, Lautens M. Enantioselective Synthesis of Spiro-oxiranes: An Asymmetric Addition/Aldol/Spirocyclization Domino Cascade. Angew Chem Int Ed Engl 2021; 60:21189-21194. [PMID: 34324779 DOI: 10.1002/anie.202105562] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Indexed: 01/11/2023]
Abstract
Enantioenriched spiro-oxiranes bearing three contiguous stereocenters were synthesized using a rhodium-catalyzed asymmetric addition/aldol/spirocyclization sequence. Starting from a linear substrate, the cascade enabled the formation of a spirocyclic framework in a single step. sp2 - and sp-hybridized carbon nucleophiles were found to be competent initiators for this cascade, giving arylated or alkynylated products, respectively. Derivatization studies demonstrated the synthetic versatility of both the epoxide and the alkyne moieties of the products. DFT calculations were used to reconcile spectroscopic discrepancies observed between the solution- and solid-state structures of the products.
Collapse
Affiliation(s)
- Ken-Loon Choo
- Davenport Chemical Laboratories, Department of Chemistry, University of Toronto, 80 St. George St., Toronto, Ontario, M5S 3H6, Canada
| | - Bijan Mirabi
- Davenport Chemical Laboratories, Department of Chemistry, University of Toronto, 80 St. George St., Toronto, Ontario, M5S 3H6, Canada
| | - Karl Z Demmans
- Davenport Chemical Laboratories, Department of Chemistry, University of Toronto, 80 St. George St., Toronto, Ontario, M5S 3H6, Canada
| | - Mark Lautens
- Davenport Chemical Laboratories, Department of Chemistry, University of Toronto, 80 St. George St., Toronto, Ontario, M5S 3H6, Canada
| |
Collapse
|
10
|
Choo K, Mirabi B, Demmans KZ, Lautens M. Enantioselective Synthesis of Spiro‐oxiranes: An Asymmetric Addition/Aldol/Spirocyclization Domino Cascade. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ken‐Loon Choo
- Davenport Chemical Laboratories Department of Chemistry University of Toronto 80 St. George St. Toronto Ontario M5S 3H6 Canada
| | - Bijan Mirabi
- Davenport Chemical Laboratories Department of Chemistry University of Toronto 80 St. George St. Toronto Ontario M5S 3H6 Canada
| | - Karl Z. Demmans
- Davenport Chemical Laboratories Department of Chemistry University of Toronto 80 St. George St. Toronto Ontario M5S 3H6 Canada
| | - Mark Lautens
- Davenport Chemical Laboratories Department of Chemistry University of Toronto 80 St. George St. Toronto Ontario M5S 3H6 Canada
| |
Collapse
|
11
|
Zhang L, Oestreich M. Diastereotopic Group-Selective Intramolecular Aldol Reactions Initiated by Enantioselective Conjugate Silylation: Diastereodivergence Controlled by the Silicon Nucleophile. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00436] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Liangliang Zhang
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany
| | - Martin Oestreich
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany
| |
Collapse
|
12
|
Ramesh K, Satyanarayana G. Propargyl alcohols as alkyne sources: Synthesis of heterocyclic compounds under microwave irradiation. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Lutz MDR, Morandi B. Metal-Catalyzed Carbon–Carbon Bond Cleavage of Unstrained Alcohols. Chem Rev 2020; 121:300-326. [DOI: 10.1021/acs.chemrev.0c00154] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | - Bill Morandi
- ETH Zürich, Vladimir-Prelog-Weg 3, HCI, 8093 Zürich, Switzerland
| |
Collapse
|
14
|
Ramesh K, Satyanarayana G. Transition-Metal Catalyzed Stereoselective γ-Arylation and Friedel-Crafts Alkylation: A Concise Synthesis of Indenes. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Karu Ramesh
- Department of Chemistry; Indian Institute of Technology (IIT) Hyderabad; 502 285, Sangareddy District Kandi - Telangana INDIA
| | - Gedu Satyanarayana
- Department of Chemistry; Indian Institute of Technology (IIT) Hyderabad; 502 285, Sangareddy District Kandi - Telangana INDIA
| |
Collapse
|
15
|
Blay G, Castilla A, Sanz D, Sanz-Marco A, Vila C, Muñoz MC, Pedro JR. Enantioselective zinc-mediated conjugate alkynylation of saccharin-derived 1- aza-butadienes. Chem Commun (Camb) 2020; 56:9461-9464. [DOI: 10.1039/d0cc04221h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Diethylzinc and a bis(hydroxyl)malonamide ligand allow the first conjugate alkynylation of α,β-unsaturated imines. Excellent enatioselectivities are obtained with aliphatic alkynes.
Collapse
Affiliation(s)
- Gonzalo Blay
- Departament de Química Orgànica
- Facultat de Química, Universitat de València
- 46100 Burjassot
- Spain
| | - Alvaro Castilla
- Departament de Química Orgànica
- Facultat de Química, Universitat de València
- 46100 Burjassot
- Spain
| | - David Sanz
- Departament de Química Orgànica
- Facultat de Química, Universitat de València
- 46100 Burjassot
- Spain
| | - Amparo Sanz-Marco
- Departament de Química Orgànica
- Facultat de Química, Universitat de València
- 46100 Burjassot
- Spain
| | - Carlos Vila
- Departament de Química Orgànica
- Facultat de Química, Universitat de València
- 46100 Burjassot
- Spain
| | - M. Carmen Muñoz
- Departament de Física Aplicada
- Universitat Politècnica de València
- E-46022 València
- Spain
| | - José R. Pedro
- Departament de Química Orgànica
- Facultat de Química, Universitat de València
- 46100 Burjassot
- Spain
| |
Collapse
|
16
|
Liu B, Qiu H, Chen X, Li W, Zhang J. Copper-catalyzed asymmetric tandem borylative addition and aldol cyclization. Org Chem Front 2020. [DOI: 10.1039/d0qo00654h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly enantioselective asymmetric copper-catalyzed tandem conjugate addition/aldol cyclization of electron-deficient olefins with B2pin2 was developed, which provided a rapid access to indanes bearing three consecutive chiral stereogenic centers.
Collapse
Affiliation(s)
- Bing Liu
- National Doping Test Laboratory Shanghai
- Shanghai University of Sport
- Shanghai
- P. R. China
| | - Haile Qiu
- Department of Chemistry
- East China Normal University
- Shanghai
- P. R. China
| | - Xiaofeng Chen
- Department of Chemistry
- East China Normal University
- Shanghai
- P. R. China
| | - Wenbo Li
- Department of Chemistry
- East China Normal University
- Shanghai
- P. R. China
| | - Junliang Zhang
- Department of Chemistry
- Fudan University
- Shanghai 200438
- P. R. China
| |
Collapse
|
17
|
Teng Q, Thirupathi N, Tung CH, Xu Z. Hydroalkynylative cyclization of 1,6-enynes with terminal alkynes. Chem Sci 2019; 10:6863-6867. [PMID: 31391909 PMCID: PMC6657412 DOI: 10.1039/c9sc02341k] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 06/07/2019] [Indexed: 11/25/2022] Open
Abstract
A rhodium-catalyzed highly regio- and enantioselective hydroalkynylation generating cis-hydrobenzofuranone-tethered enynes has been developed. The reaction proceeds with a dynamic kinetic head-to-head insertion and symmetry breaking Michael addition cascade.
A rhodium-catalyzed highly regio- and enantioselective hydroalkynylation, generating cis-hydrobenzofuranone-tethered enynes has been developed. The reaction proceeds with a selective head-to-head insertion and symmetry breaking Michael addition cascade. One product was produced from tens of possible isomers through precise control of chemo-, regio-, and stereoselectivities using a single rhodium catalyst. Notable features of this method include 100% atom-economy, mild reaction conditions and a very broad substrate scope.
Collapse
Affiliation(s)
- Qi Teng
- Key Lab for Colloid and Interface Chemistry of Education Ministry , School of Chemistry and Chemical Engineering , Shandong University , Jinan 250100 , People's Republic of China .
| | - Nuligonda Thirupathi
- Key Lab for Colloid and Interface Chemistry of Education Ministry , School of Chemistry and Chemical Engineering , Shandong University , Jinan 250100 , People's Republic of China .
| | - Chen-Ho Tung
- Key Lab for Colloid and Interface Chemistry of Education Ministry , School of Chemistry and Chemical Engineering , Shandong University , Jinan 250100 , People's Republic of China .
| | - Zhenghu Xu
- Key Lab for Colloid and Interface Chemistry of Education Ministry , School of Chemistry and Chemical Engineering , Shandong University , Jinan 250100 , People's Republic of China . .,State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry , Chinese Academy of Sciences , Shanghai 200032 , PR China
| |
Collapse
|
18
|
Wang ZX, Li BJ. Construction of Acyclic Quaternary Carbon Stereocenters by Catalytic Asymmetric Hydroalkynylation of Unactivated Alkenes. J Am Chem Soc 2019; 141:9312-9320. [PMID: 31117476 DOI: 10.1021/jacs.9b03027] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Quaternary carbon stereocenters are common structural motifs in organic synthesis. The construction of these stereocenters in a catalytic and enantioselective manner remains a prominent synthetic challenge. In particular, methods for the synthesis of alkyne-substituted quaternary carbon stereocenters are very rare. Previous catalytic systems for hydroalkynylation of alkenes create tertiary stereocenters. We describe here an iridium catalyzed asymmetric hydroalkynylation of nonactivated trisubstituted alkene. The hydroalkynylation of β,γ-unsaturated amides occurs with high regio- and enantioselectivities to afford alkyne-substituted acyclic quaternary carbon stereocenters. Computational and experimental data suggest that the enantioselectivity is not only determined by the facial selectivity of the alkene but also by an alkene isomerization process. This strategy provides an efficient method to access alkyne-substituted acyclic quaternary carbon stereocenters with minimally functionalized starting materials.
Collapse
Affiliation(s)
- Zi-Xuan Wang
- Center of Basic Molecular Science (CBMS), Department of Chemistry , Tsinghua University , Beijing 100084 , P. R. China
| | - Bi-Jie Li
- Center of Basic Molecular Science (CBMS), Department of Chemistry , Tsinghua University , Beijing 100084 , P. R. China
| |
Collapse
|
19
|
Duan CL, Tan YX, Zhang JL, Yang S, Dong HQ, Tian P, Lin GQ. Highly Enantioselective Rhodium-Catalyzed Cross-Addition of Silylacetylenes to Cyclohexadienone-Tethered Internal Alkynes. Org Lett 2019; 21:1690-1693. [DOI: 10.1021/acs.orglett.9b00249] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Chang-Lin Duan
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
- Department of Chemistry, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China
| | - Yun-Xuan Tan
- Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jun-Li Zhang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Shiping Yang
- Department of Chemistry, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China
| | - Han-Qing Dong
- Arvinas, Inc., 5 Science Park 395 Winchester Avenue, New Haven, Connecticut 06511, United States
| | - Ping Tian
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
- Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Guo-Qiang Lin
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
- Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|