1
|
Zhang LY, Wang NX, Lucan D, Nastasi J, Xing Y. Recent Advances of C-S Coupling Reaction of (Hetero)Arenes by C-H Functionalization. CHEM REC 2024; 24:e202400177. [PMID: 39558752 DOI: 10.1002/tcr.202400177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/18/2024] [Indexed: 11/20/2024]
Abstract
Organic sulfur compounds encompass a vast and diverse variety of species that possess unique biological activity due to the presence of sulfur atoms or sulfur-containing functional groups. These compounds are widely present in natural products, pharmaceuticals, agricultural chemicals, and functional materials. In recent years, numerous sulfur-containing compounds such as thiols, thioethers, disulfides, thiourea, dimethyl sulfoxide, sulfonates and their derivatives, as well as sulfur-containing inorganic compounds, have been utilized as coupling agents to synthesize (hetero)aryl sulfides via C-H Functionalization. These novel transformations provide effective methods for constructing C-S bond of (hetero)arenes, while also expanding the scope of (hetero)aryl sulfides with the potential biological activity. Therefore, the synthesis of aryl sulfides through C-H bond functionalization has attracted widespread attention. This review mainly focuses on the construction of (hetero)aryl sulfides via C-H bond functionalization since 2015. We hope this review offers a useful conceptual overview and inspires further advancements in the efficient construction of C-S bonds.
Collapse
Affiliation(s)
- Lei-Yang Zhang
- Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Nai-Xing Wang
- Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
- Technical Sciences Academy of Romania ASTR, Dacia Avenue no.26, Bucharest, Romania
| | - Dumitra Lucan
- Technical Sciences Academy of Romania ASTR, Dacia Avenue no.26, Bucharest, Romania
| | - Julia Nastasi
- Department of Chemistry, Hofstra University, Hempstead, NY 11549, United States
| | - Yalan Xing
- Department of Chemistry, Hofstra University, Hempstead, NY 11549, United States
| |
Collapse
|
2
|
Yu S, Lei J, Xu J, Li X, Zhang B, Xu ZG, Lv ML, Tang DY, Chen ZZ. Copper-Catalyzed Radical Sulfonylation: Divergent Construction of C(sp 3)-Sulfonyl Bonds with Sulfonylhydrazones. J Org Chem 2024; 89:16340-16350. [PMID: 39504540 DOI: 10.1021/acs.joc.4c00784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Sulfonylhydrazones have been proven to be versatile synthetic intermediates in a panel of transformations. However, radical sulfonylation with sulfonylhydrazone as sulfonyl radical source is relatively rare. Here, we found that sulfonylhydrazone can serve as a new sulfonyl radical precursor to couple various partners such as arylacetic acids, ene-yne-ketones, and para-quinone methides under copper catalysis and microwave irradiation. The reactions of sulfonyl radicals have been successively developed to enable the divergent synthesis of C(sp3)-sulfonyl bonds. In addition, when alkynes and alkenes are used as radical receptors, this method can also promote the formation of C(sp2)-sulfonyl bonds. This finding suggests that sulfonylhydrazone could be regarded as a potentially useful sulfonyl radical in sulfone synthesis.
Collapse
Affiliation(s)
- Shan Yu
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Jie Lei
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Jia Xu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Xue Li
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Bin Zhang
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Zhi-Gang Xu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Meng-Lan Lv
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Dian-Yong Tang
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Zhong-Zhu Chen
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| |
Collapse
|
3
|
Chikunova EI, Kukushkin VY, Dubovtsev AY. Non-Friedländer Route to Diversely 3-Substituted Quinolines through Au(III)-Catalyzed Annulation Involving Electron-Deficient Alkynes. Org Lett 2023. [PMID: 38016092 DOI: 10.1021/acs.orglett.3c03775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Gold(III)-catalyzed annulation of electron-deficient alkynes and 2-amino-arylcarbonyls provides general modular one-step access to a broad scope of quinoline products. This highly selective reaction is a useful alternative to the classic Friedländer synthesis, which requires harsh reaction conditions. In contrast, the developed method works under relatively mild PicAuCl2-catalyzed conditions and exhibits a high functional group tolerance (40 examples; yields of ≤96%). Another feature of the developed approach is a versatility toward other electron-deficient alkynes. Alkynylsulfones, alkynylcarbonyls, alkynylphosphonates, propiolonitriles, and trifluoromethylated alkynes can be used as the starting materials for the preparation of quinolines diversely substituted at position 3. On the basis of experimental data, we proposed a reaction mechanism in which gold(III) functions as a strong electrophilic activator of the C≡C bond and the carbonyl group. The synthetic potential of the presented method is additionally illustrated by practical postmodifications of the obtained compounds, including a two-step synthesis of interpirdine, a potent drug candidate.
Collapse
Affiliation(s)
- Elena I Chikunova
- Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
| | - Vadim Yu Kukushkin
- Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
- Institute of Chemistry and Pharmaceutical Technologies, Altai State University, 656049 Barnaul, Russian Federation
| | - Alexey Yu Dubovtsev
- Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
| |
Collapse
|
4
|
Malkova K, Bubyrev A, Kalinin S, Dar’in D. Facile access to 3-sulfonylquinolines via Knoevenagel condensation/aza-Wittig reaction cascade involving ortho-azidobenzaldehydes and β-ketosulfonamides and sulfones. Beilstein J Org Chem 2023; 19:800-807. [PMID: 37346493 PMCID: PMC10280061 DOI: 10.3762/bjoc.19.60] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/22/2023] [Indexed: 06/23/2023] Open
Abstract
Quinoline-based sulfonyl derivatives, and especially sulfonamides, are relevant and promising structures for drug design. We have developed a new convenient protocol for the synthesis of 3-sulfonyl-substituted quinolines (sulfonamides and sulfones). The approach is based on a Knoevenagel condensation/aza-Wittig reaction cascade involving o-azidobenzaldehydes and ketosulfonamides or ketosulfones as key building blocks. The protocol is appropriate for both ketosulfonyl reagents and α-sulfonyl-substituted alkyl acetates providing the target quinoline derivatives in good to excellent yields.
Collapse
Affiliation(s)
- Ksenia Malkova
- Saint Petersburg State University, Saint Petersburg 199034, Russian Federation
| | - Andrey Bubyrev
- Saint Petersburg State University, Saint Petersburg 199034, Russian Federation
| | - Stanislav Kalinin
- Saint Petersburg State University, Saint Petersburg 199034, Russian Federation
| | - Dmitry Dar’in
- Saint Petersburg State University, Saint Petersburg 199034, Russian Federation
| |
Collapse
|
5
|
Wang W, Pi C, Cui X, Wu Y. TBAI-Catalysed Formal [4+4]-Cycloaddition: Easy Access to Oxa-Bridged Eight-Membered Heterocycles. Chemistry 2023; 29:e202300301. [PMID: 36757635 DOI: 10.1002/chem.202300301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/10/2023]
Abstract
TBAI-catalysed [4+4]-cyclization reaction of anthranils with hydrazones to deliver oxa-bridged eight-membered heterocycles in accepted yields was developed. Preliminary mechanistic studies indicated that the reaction involved the in situ generation of vinyldiazenes from readily available hydrazones followed by an aza-Michael addition of the anthranil substrates onto the vinyldiazenes and subsequent annulation. This transformation involved the formation of two new C-N bonds and C-O bond in one pot, overcoming the synthetic limitations of anthranils in organic chemistry. This strategy benefits from high efficiency and atomic economy with mild reaction conditions.
Collapse
Affiliation(s)
- Wenxiang Wang
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Chao Pi
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Xiuling Cui
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Yangjie Wu
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450052, P. R. China
| |
Collapse
|
6
|
Tang YX, Zhuang SY, Liu JY, Chen XL, Zhou Y, Wu YD, Wu AX. I2-DMSO mediated N1/C5 difunctionalization of anthranils with aryl methyl ketones: A facile access to multicarbonyl compounds. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Yan K, Liu M, Wen J, Liu X, Wang X, Sui X, Shang W, Wang X. Synthesis of 3-substituted quinolines by ruthenium-catalyzed aza-Michael addition and intramolecular annulation of enaminones with anthranils. NEW J CHEM 2022. [DOI: 10.1039/d2nj00663d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A method for the synthesis of 3-substituted quinolines by ruthenium-catalyzed aza-Michael addition and intramolecular annulation of enaminones with anthranils has been developed.
Collapse
Affiliation(s)
- Kelu Yan
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China
| | - Min Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China
| | - Jiangwei Wen
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China
| | - Xiao Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China
| | - Xiaoyu Wang
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China
| | - Xinlei Sui
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China
| | - Wenda Shang
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China
| | - Xiu Wang
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China
| |
Collapse
|
8
|
Hu QQ, Gao YT, Sun JC, Gao JJ, Mu HX, Li YM, Zheng YN, Yang KR, Zhu YP. Iodine-imine Synergistic Promoted Povarov-Type Multicomponent Reaction for the Synthesis of 2,2'-Biquinolines and Their Application to a Copper/Ligand Catalytic System. Org Lett 2021; 23:9000-9005. [PMID: 34748354 DOI: 10.1021/acs.orglett.1c03546] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
An efficient iodine-imine synergistic promoted Povarov-type multicomponent reaction was reported for the synthesis of a practical 2,2'-biquinoline scaffold. The tandem annulation has reconciled iodination, Kornblum oxidation, and Povarov aromatization, where the methyl group of the methyl azaarenes represents uniquely reactive input in the Povarov reaction. This method has broad substrate scope and mild conditions. Furthermore, these 2,2'-biquinoline derivatives had been directly used as bidentate ligands in metal-catalyzed reactions.
Collapse
Affiliation(s)
- Qi-Qi Hu
- School of Pharmacy, Yantai University, Shandong, Yantai, 264005, P. R. China
| | - Yan-Ting Gao
- School of Pharmacy, Yantai University, Shandong, Yantai, 264005, P. R. China
| | - Jia-Chen Sun
- School of Pharmacy, Yantai University, Shandong, Yantai, 264005, P. R. China
| | - Jing-Jing Gao
- School of Pharmacy, Yantai University, Shandong, Yantai, 264005, P. R. China
| | - Hong-Xiao Mu
- School of Pharmacy, Yantai University, Shandong, Yantai, 264005, P. R. China
| | - Yi-Ming Li
- School of Pharmacy, Yantai University, Shandong, Yantai, 264005, P. R. China
| | - Ya-Nan Zheng
- School of Pharmacy, Yantai University, Shandong, Yantai, 264005, P. R. China
| | - Kai-Rui Yang
- School of Pharmacy, Yantai University, Shandong, Yantai, 264005, P. R. China
| | - Yan-Ping Zhu
- School of Pharmacy, Yantai University, Shandong, Yantai, 264005, P. R. China
| |
Collapse
|
9
|
Lv Y, Meng J, Li C, Wang X, Ye Y, Sun K. Update on the Synthesis of N‐Heterocycles via Cyclization of Hydrazones (2017–2021). Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101184] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yunhe Lv
- College of Chemistry and Chemical Engineering Anyang Normal University Anyang 4550008 People's Republic of China
| | - Jianping Meng
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 People's Republic of China
| | - Chen Li
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 People's Republic of China
| | - Xin Wang
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 People's Republic of China
| | - Yong Ye
- College of Chemistry Zhengzhou University Zhengzhou 450001 People's Republic of China
| | - Kai Sun
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 People's Republic of China
| |
Collapse
|
10
|
Zhang M, Meng Y, Wu Y, Song C. TfOH-Promoted Decyanative Cyclization toward the Synthesis of 2,1-Benzisoxazoles. J Org Chem 2021; 86:7326-7332. [PMID: 34014082 DOI: 10.1021/acs.joc.1c00091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A novel solvent-free, TfOH-promoted decyanative cyclization approach for the synthesis of 2,1-benzisoxazoles has been developed. The reactions are complete instantly at room temperature and result in the formation of the desired 2,1-benzisoxazoles in a 34-97% isolated yield.
Collapse
Affiliation(s)
- Mengge Zhang
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, China
| | - Yonggang Meng
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, China
| | - Yangang Wu
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, China
| | - Chuanjun Song
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
11
|
Kumar P, Keshri SK, Kapur M. Ru(II)-Catalyzed, Cu(II)-mediated carbene migratory insertion in the synthesis of trisubstituted pyrroles from isoxazoles. Org Biomol Chem 2021; 19:3428-3433. [PMID: 33899880 DOI: 10.1039/d1ob00255d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A convenient, "one-pot" synthesis of trisubstituted pyrroles via a Ru(ii)-catalyzed, Cu(ii)-mediated reaction of substituted isoxazoles with sulfonylhydrazones has been developed. A series of highly functionalized pyrroles are obtained via a synergistic formation of new C-C and C-N bonds. Mechanistic investigations were carried out to propose the plausible pathway. This protocol provides a facile and expeditious approach for the synthesis of various heterocyclic compounds bearing the pyrrole skeleton.
Collapse
Affiliation(s)
- Pravin Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal Bypass road, Bhopal 462066, MP, India.
| | - Santosh Kumar Keshri
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal Bypass road, Bhopal 462066, MP, India.
| | - Manmohan Kapur
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal Bypass road, Bhopal 462066, MP, India.
| |
Collapse
|
12
|
Hayani S, Sert Y, Baba YF, Benhiba F, Chahdi FO, Laraqui FZ, Mague JT, El Ibrahimi B, Sebbar NK, Rodi YK, Essassi EM. New alkyl (cyclohexyl) 2-oxo-1-(prop‑2-yn-1-yl)-1, 2-dihydroquinoline-4-carboxylates: Synthesis, crystal structure, spectroscopic characterization, hirshfeld surface analysis, molecular docking studies and DFT calculations. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129520] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
13
|
Gao C, Xu J, Zhu S, Jian K, Xuan Q, Song Q. Preparation of anthranils via chemoselective oxidative radical cyclization of 3-(2-azidoaryl) substituted propargyl alcohols. Chem Commun (Camb) 2021; 57:2037-2040. [PMID: 33507184 DOI: 10.1039/d0cc07919g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In the presence of K2S2O8 and HOAc, 3-(2-azidoaryl) substituted propargyl alcohols can go through chemoselective oxidative radical cyclizations to give a pool of anthranils based on Meyer-Schuster rearrangement. It's proposed that the cyclizations were triggered exclusively by the direct attack of oxygen radicals on the azides. The weak N-O bonds in anthranils could be easily cleaved in the presence of transition metal catalysts and went through aminations with 2-oxo-2-phenylacetic acid and iodobenzene.
Collapse
Affiliation(s)
- Chao Gao
- Institute of Next Generation Matter Transformation, College of Chemical Engineering and College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, 361021, Fujian, China.
| | | | | | | | | | | |
Collapse
|
14
|
Shi K, Zhu H, Ren F, Liu S, Song Y, Li W, Zou L. Copper‐catalyzed [3+2+1] Annulation of Anthranils with Phenylacetaldehydes: Synthesis of 8‐Acylquinolines. European J Org Chem 2021. [DOI: 10.1002/ejoc.202001570] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Kai Shi
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Pharmaceutical Sciences Jiangnan University Lihu Avenue 1800 Wuxi 214122 P.R. China
| | - Hao Zhu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Pharmaceutical Sciences Jiangnan University Lihu Avenue 1800 Wuxi 214122 P.R. China
| | - Fei Ren
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Pharmaceutical Sciences Jiangnan University Lihu Avenue 1800 Wuxi 214122 P.R. China
| | - Shuang Liu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Pharmaceutical Sciences Jiangnan University Lihu Avenue 1800 Wuxi 214122 P.R. China
| | - Yingying Song
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Pharmaceutical Sciences Jiangnan University Lihu Avenue 1800 Wuxi 214122 P.R. China
| | - Wei Li
- School of Biology and Chemistry, Key Laboratory of Chemical Synthesis and Environmental Pollution Control-Remediation Technology of Guizhou Province Xingyi Normal University for Nationalities Xingyi 562400 China
| | - Liang‐Hua Zou
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Pharmaceutical Sciences Jiangnan University Lihu Avenue 1800 Wuxi 214122 P.R. China
| |
Collapse
|
15
|
Teja C, Khan FRN. Radical Transformations towards the Synthesis of Quinoline: A Review. Chem Asian J 2020; 15:4153-4167. [PMID: 33135361 DOI: 10.1002/asia.202001156] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/25/2020] [Indexed: 12/21/2022]
Abstract
Quinoline is considered one of the most ubiquitous heterocycles due to its engaging biological activities and synthetic utility over organic transformations. Over the past few decades, numerous reports have been documented in the synthesis of quinolines. The classical methods including, Skraup, Friedlander, Doebner-von-Miller, Conrad-Limpach, Pfitzinger quinoline synthesis, and so forth, these are the well-known methods to construct principal quinoline scaffold with several advantages and limitations. Recently, radical insertion or catalyzed reactions have emerged as a powerful and efficient tool to construct heterocycles with high atom efficiency and step economy. In this concern, this minireview mainly focused on the developments of Quinoline synthesis via radical reactions. In addition, a brief description of the preparation procedure, reactivity, and mechanisms is also included, where as possible. Respectively, the synthesis of quinolines is classified and summarized based on its reactivity, so it will help the researchers to grab the information in this exploration area, as Quinolines are promising pharmacophores.
Collapse
Affiliation(s)
- Chitrala Teja
- Organic and Medicinal Chemistry Research Laboratory, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632 014, Tamil Nadu, India
| | - Fazlur Rahman Nawaz Khan
- Organic and Medicinal Chemistry Research Laboratory, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632 014, Tamil Nadu, India
| |
Collapse
|
16
|
Recent Advances in the Synthesis of Sulfides, Sulfoxides and Sulfones via C-S Bond Construction from Non-Halide Substrates. Catalysts 2020. [DOI: 10.3390/catal10111339] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The construction of a C-S bond is a powerful strategy for the synthesis of sulfur containing compounds including sulfides, sulfoxides, and sulfones. Recent methodological developments have revealed lots of novel protocols for C-S bond formation, providing easy access to sulfur containing compounds. Unlike traditional Ullmann typed C-S coupling reaction, the recently developed reactions frequently use non-halide compounds, such as diazo compounds and simple arenes/alkanes instead of aryl halides as substrates. On the other hand, novel C-S coupling reaction pathways involving thiyl radicals have emerged as an important strategy to construct C-S bonds. In this review, we focus on the recent advances on the synthesis of sulfides, sulfoxides, and sulfones from non-halide substrates involving C-S bond construction.
Collapse
|
17
|
Hsueh N, Tsai M, Chang M. One‐Pot Access to Sulfonyl 2‐Arylnaphthalenes via Wacker Oxidation of Sulfonyl
o
‐Allylchalcones. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Nai‐Chen Hsueh
- Department of Medicinal and Applied Chemistry Kaohsiung Medical University Kaohsiung 807 Taiwan
| | - Min‐Chen Tsai
- Department of Medicinal and Applied Chemistry Kaohsiung Medical University Kaohsiung 807 Taiwan
| | - Meng‐Yang Chang
- Department of Medicinal and Applied Chemistry Kaohsiung Medical University Kaohsiung 807 Taiwan
- Department of Medical Research Kaohsiung Medical University Hospital Kaohsiung 807 Taiwan
| |
Collapse
|
18
|
Sun Y, Sun H, Wang Y, Xie F. Cu/Ag-Catalyzed Reaction of Azirines with Anthranils: Synthesis of (Quinazolin-2-yl)methanone Derivatives. Org Lett 2020; 22:6756-6759. [DOI: 10.1021/acs.orglett.0c02222] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yajun Sun
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Huimin Sun
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Ying Wang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Fang Xie
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| |
Collapse
|
19
|
Sun Z, He J, Li W, Li X, Feng Y, Liu Y, Liu P, Han S. Pd‐Catalyzed Regioselective Olefination of
N
‐Tosylhydrazones with Benzyl Bromides. ChemistrySelect 2020. [DOI: 10.1002/slct.202002010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zhenze Sun
- School of Chemistry and Chemical Engineering Shihezi University Shihezi 832003 P. R. China
| | - Jing He
- School of Chemistry and Chemical Engineering Shihezi University Shihezi 832003 P. R. China
| | - Weiwei Li
- School of Chemistry and Chemical Engineering Shihezi University Shihezi 832003 P. R. China
| | - Xuezhen Li
- School of Chemistry and Chemical Engineering Shihezi University Shihezi 832003 P. R. China
| | - Yijiao Feng
- School of Chemistry and Chemical Engineering Shihezi University Shihezi 832003 P. R. China
| | - Yan Liu
- School of Chemistry and Chemical Engineering Shihezi University Shihezi 832003 P. R. China
| | - Ping Liu
- School of Chemistry and Chemical Engineering Shihezi University Shihezi 832003 P. R. China
| | - Sheng Han
- School of Chemistry and Chemical Engineering Shihezi University Shihezi 832003 P. R. China
| |
Collapse
|
20
|
Zhu D, Chen L, Fan H, Yao Q, Zhu S. Recent progress on donor and donor-donor carbenes. Chem Soc Rev 2020; 49:908-950. [PMID: 31958107 DOI: 10.1039/c9cs00542k] [Citation(s) in RCA: 245] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Donor and donor-donor carbenes are two important kinds of carbenes, which have experienced tremendous growth in the past two decades. This review provides a comprehensive overview of the recent development of donor and donor-donor carbene chemistry. The development of this chemistry offers efficient protocols to construct a wide variety of C-C and C-X bonds in organic synthesis. This review is organized based on the different types of carbene precursors, including diazo compounds, hydrazones, enynones, cycloheptatrienes and cyclopropenes. The typical transformations, the reaction mechanisms, as well as their subsequent applications in the synthesis of complex natural products and bioactive molecules are discussed. Due to the rapidly increasing interest in this area, we believe that this review will provide a timely and comprehensive discussion of recent progress in donor and donor-donor carbene chemistry.
Collapse
Affiliation(s)
- Dong Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China.
| | | | | | | | | |
Collapse
|
21
|
Zhu S, Shi K, Zhu H, Jia ZK, Xia XF, Wang D, Zou LH. Copper-Catalyzed Annulation or Homocoupling of Sulfoxonium Ylides: Synthesis of 2,3-Diaroylquinolines or α,α,β-Tricarbonyl Sulfoxonium Ylides. Org Lett 2020; 22:1504-1509. [PMID: 32043889 DOI: 10.1021/acs.orglett.0c00085] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
An unprecedented copper-catalyzed reaction of sulfoxonium ylides and anthranils is reported that enables an easy access to 2,3-diaroylquinolines through a [4+1+1] annulation. Copper-catalyzed homocoupling of sulfoxonium ylides provided α,α,β-tricarbonyl sulfoxonium ylides, which provides a strategy to extend the carbon chain through C-C bond formation. The utility of the products as well as the mechanistic details of the process are presented.
Collapse
Affiliation(s)
- Shuai Zhu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences , Jiangnan University . Lihu Avenue 1800 , Wuxi 214122 , Jiangsu Province , P.R. China
| | - Kai Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences , Jiangnan University . Lihu Avenue 1800 , Wuxi 214122 , Jiangsu Province , P.R. China
| | - Hao Zhu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences , Jiangnan University . Lihu Avenue 1800 , Wuxi 214122 , Jiangsu Province , P.R. China
| | - Zhe-Kang Jia
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences , Jiangnan University . Lihu Avenue 1800 , Wuxi 214122 , Jiangsu Province , P.R. China
| | - Xiao-Feng Xia
- School of Chemical and Material Engineering , Jiangnan University , Wuxi 214122 , Jiangsu Province , P.R. China
| | - Dawei Wang
- School of Chemical and Material Engineering , Jiangnan University , Wuxi 214122 , Jiangsu Province , P.R. China
| | - Liang-Hua Zou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences , Jiangnan University . Lihu Avenue 1800 , Wuxi 214122 , Jiangsu Province , P.R. China
| |
Collapse
|
22
|
Xuan DD. Recent Progress in the Synthesis of Quinolines. Curr Org Synth 2020; 16:671-708. [PMID: 31984888 DOI: 10.2174/1570179416666190719112423] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 04/18/2019] [Accepted: 04/18/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Quinoline-containing compounds present in both natural and synthetic products are an important class of heterocyclic compounds. Many of the substituted quinolines have been used in various areas including medicine as drugs. Compounds with quinoline skeleton possess a wide range of bioactivities such as antimalarial, anti-bacterial, anthelmintic, anticonvulsant, antiviral, anti-inflammatory, and analgesic activity. Due to such a wide range of applicability, the synthesis of quinoline derivatives has attracted a lot of attention of chemists to develop effective methods. Many known methods have been expanded and improved. Furthermore, various new methods for quinoline synthesis have been established. This review will focus on considerable studies on the synthesis of quinolines date which back to 2014. OBJECTIVE In this review, we discussed recent achievements on the synthesis of quinoline compounds. Some classical methods have been modified and improved, while other new methods have been developed. A vast variety of catalysts were used for these transformations. In some studies, quinoline synthesis reaction mechanisms were also displayed. CONCLUSION Many methods for the synthesis of substituted quinoline rings have been developed recently. Over the past five years, the majority of those reported have been based on cycloisomerization and cyclization processes. Undoubtedly, more imaginative approaches to quinoline synthesis will appear in the literature in the near future. The application of known methods to natural product synthesis is probably the next challenge in the field.
Collapse
Affiliation(s)
- Duc Dau Xuan
- Department of Chemistry, Institute of Natural Science, Vinh University, Vinh City, Vietnam
| |
Collapse
|
23
|
Gao Y, Nie J, Huo Y, Hu XQ. Anthranils: versatile building blocks in the construction of C–N bonds and N-heterocycles. Org Chem Front 2020. [DOI: 10.1039/d0qo00163e] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review article provides an overview of the recent progress in the transformations of anthranils, which have emerged as versatile building blocks in the assembly of various C–N bonds and medicinally active heterocyclic systems.
Collapse
Affiliation(s)
- Yang Gao
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou
- China
| | - Jianhong Nie
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou
- China
| | - Yanping Huo
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou
- China
| | - Xiao-Qiang Hu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science
- School of Chemistry and Materials Science
- South-Central University for Nationalities
- Wuhan 430074
- China
| |
Collapse
|
24
|
Sahani RL, Ye LW, Liu RS. Synthesis of nitrogen-containing molecules via transition metal-catalyzed reactions on isoxazoles, anthranils and benzoisoxazoles. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2020. [DOI: 10.1016/bs.adomc.2019.12.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
25
|
Flynn AJ, Ford A, Maguire AR. Synthetic and mechanistic aspects of sulfonyl migrations. Org Biomol Chem 2020; 18:2549-2610. [DOI: 10.1039/c9ob02587a] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Sulfonyl migrations, frequently described as ‘unusual’ or ‘unexpected’, from the last 20 years, including 1,2-, 1,3-, 1,4-, 1,5-, 1,6- and 1,7-sulfonyl shifts, through either radical or polar processes, either inter- or intramolecularly are reviewed.
Collapse
Affiliation(s)
- Aaran J. Flynn
- School of Chemistry
- Analytical and Biological Research Facility
- Synthesis and Solid State Pharmaceutical Centre
- University College Cork
- Cork
| | - Alan Ford
- School of Chemistry
- Analytical and Biological Research Facility
- University College Cork
- Cork
- Ireland
| | - Anita R. Maguire
- School of Chemistry and School of Pharmacy
- Analytical and Biological Research Facility
- Synthesis and Solid State Pharmaceutical Centre
- University College Cork
- Cork
| |
Collapse
|
26
|
Li L, Zhang XG, Hu BL, Zhang XH. Copper-Catalyzed Electrophilic Cyclization of N-Propargylamines with Sodium Sulfinate for the Synthesis of 3-Sulfonated Quinolines. Chem Asian J 2019; 14:4358-4364. [PMID: 31680431 DOI: 10.1002/asia.201901298] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/20/2019] [Indexed: 12/17/2022]
Abstract
A convenient and effective protocol for the synthesis of 3-sulfonated quinolines via copper-catalyzed electrophilic cyclization of N-propargylamines has been developed, in which cheap and stable sodium sulfinates were utilized as green sulfonylation reagents. This cascade transformation involves radical addition, cyclization and dehydrogenative aromatization processes in a one-pot reaction under mild conditions.
Collapse
Affiliation(s)
- Ling Li
- College of Chemistry and Materials Engineering, Wenzhou University, Chashan Town, Wenzhou, 325035, China
| | - Xing-Guo Zhang
- College of Chemistry and Materials Engineering, Wenzhou University, Chashan Town, Wenzhou, 325035, China
| | - Bo-Lun Hu
- College of Chemistry and Materials Engineering, Wenzhou University, Chashan Town, Wenzhou, 325035, China
| | - Xiao-Hong Zhang
- College of Chemistry and Materials Engineering, Wenzhou University, Chashan Town, Wenzhou, 325035, China
| |
Collapse
|
27
|
Herndon JW. The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2018. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.213051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
28
|
Copper(II)-catalyzed preparation of alkylindium compounds and applications in cross-coupling reactions both in aqueous media. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.151288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
29
|
Shu WM, Zhang XF, Zhang XX, Li M, Wang AJ, Wu AX. Metal-Free Cascade [4 + 1] Cyclization Access to 4-Aryl- NH-1,2,3-triazoles from N-Tosylhydrazones and Sodium Azide. J Org Chem 2019; 84:14919-14925. [PMID: 31612711 DOI: 10.1021/acs.joc.9b02250] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A molecular iodine-mediated coupling cyclization reaction for the synthesis of 4-aryl-NH-1,2,3-triazoles has been developed from N-tosylhydrazones and sodium azide. This metal-free cascade [4 + 1] cyclization reaction could rapidly synthesize valuable compounds via a sequential C-N and N-N bond formation. Mechanistic studies demostrate that the nitrogen atoms of the 1,2,3-triazoles are not entirely from sodium azide.
Collapse
Affiliation(s)
- Wen-Ming Shu
- College of Chemistry and Environmental Engineering , Yangtze University , Jingzhou 434023 , P.R. China
| | - Xun-Fang Zhang
- College of Chemistry and Environmental Engineering , Yangtze University , Jingzhou 434023 , P.R. China
| | - Xiang-Xiang Zhang
- College of Chemistry and Environmental Engineering , Yangtze University , Jingzhou 434023 , P.R. China
| | - Min Li
- College of Chemistry and Environmental Engineering , Yangtze University , Jingzhou 434023 , P.R. China
| | - An-Jing Wang
- College of Chemistry and Environmental Engineering , Yangtze University , Jingzhou 434023 , P.R. China
| | - An-Xin Wu
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry , Central China Normal University , Wuhan 430079 , P.R. China
| |
Collapse
|
30
|
Xu T, Shao Y, Dai L, Yu S, Cheng T, Chen J. Pd-Catalyzed Tandem Reaction of 2-Aminostyryl Nitriles with Arylboronic Acids: Synthesis of 2-Arylquinolines. J Org Chem 2019; 84:13604-13614. [DOI: 10.1021/acs.joc.9b01875] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Tong Xu
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yinlin Shao
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Ling Dai
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Shulin Yu
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Tianxing Cheng
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Jiuxi Chen
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
31
|
Zou LH, Zhu H, Zhu S, Shi K, Yan C, Li PG. Copper-Catalyzed Ring-Opening/Reconstruction of Anthranils with Oxo-Compounds: Synthesis of Quinoline Derivatives. J Org Chem 2019; 84:12301-12313. [DOI: 10.1021/acs.joc.9b01577] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Liang-Hua Zou
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, P. R. China
| | - Hao Zhu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, P. R. China
| | - Shuai Zhu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, P. R. China
| | - Kai Shi
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, P. R. China
| | - Cheng Yan
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, P. R. China
| | - Ping-Gui Li
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, P. R. China
| |
Collapse
|
32
|
Yoon J, Cheon C. Synthesis of 2‐Arylquinolines from 2‐Iodoanilines and
β
‐Chloropropiophenones
via
Palladium‐Catalyzed Cascade Reaction. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Jooyeon Yoon
- Department of ChemistryKorea University 145 Anam-ro, Seongbuk-gu Seoul 02841 Republic of Korea
| | - Cheol‐Hong Cheon
- Department of ChemistryKorea University 145 Anam-ro, Seongbuk-gu Seoul 02841 Republic of Korea
| |
Collapse
|
33
|
Chang MY, Wu YS, Tsai YL, Chen HY. Synthesis of 2-Sulfonyl Indenes and Indanes. J Org Chem 2019; 84:11699-11723. [DOI: 10.1021/acs.joc.9b01606] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Meng-Yang Chang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Yan-Shin Wu
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yu-Lin Tsai
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hsing-Yin Chen
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
34
|
Kotov AD, Proskurina IK. Anthranils (2,1-benzisoxazoles) as aminating agents (microreview). Chem Heterocycl Compd (N Y) 2019. [DOI: 10.1007/s10593-019-02523-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Wu X, Xiao Y, Sun S, Yu JT, Cheng J. Rhodium-Catalyzed Reaction of Sulfoxonium Ylides and Anthranils toward Indoloindolones via a (4 + 1) Annulation. Org Lett 2019; 21:6653-6657. [DOI: 10.1021/acs.orglett.9b02249] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiaopeng Wu
- School of Petrochemical Engineering and Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Changzhou University, Changzhou 213164, P. R. China
| | - Yan Xiao
- School of Petrochemical Engineering and Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Changzhou University, Changzhou 213164, P. R. China
| | - Song Sun
- School of Petrochemical Engineering and Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Changzhou University, Changzhou 213164, P. R. China
| | - Jin-Tao Yu
- School of Petrochemical Engineering and Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Changzhou University, Changzhou 213164, P. R. China
| | - Jiang Cheng
- School of Petrochemical Engineering and Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Changzhou University, Changzhou 213164, P. R. China
| |
Collapse
|
36
|
Xie Z, Chen R, Ma M, Kong L, Liu J, Wang C. Copper‐catalyzed one‐pot coupling reactions of aldehydes (ketones), tosylhydrazide and 2‐amino(benzo)thiazoles: An efficient strategy for the synthesis of
N
‐alkylated (benzo)thiazoles. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Zengyang Xie
- Laboratory of New Antitumor Drug Molecular Design & Synthesis, College of Basic MedicineJining Medical University Jining 272067 China
| | - Ruijiao Chen
- Laboratory of New Antitumor Drug Molecular Design & Synthesis, College of Basic MedicineJining Medical University Jining 272067 China
| | - Mingfang Ma
- Laboratory of New Antitumor Drug Molecular Design & Synthesis, College of Basic MedicineJining Medical University Jining 272067 China
| | - Lingdong Kong
- Laboratory of New Antitumor Drug Molecular Design & Synthesis, College of Basic MedicineJining Medical University Jining 272067 China
| | - Jun Liu
- Laboratory of New Antitumor Drug Molecular Design & Synthesis, College of Basic MedicineJining Medical University Jining 272067 China
| | - Cunde Wang
- School of Chemistry and Chemical EngineeringYangzhou University Yangzhou 225002 China
| |
Collapse
|
37
|
Huang S, Li H, Sun X, Xu L, Wang L, Cui X. Rh(III)-Catalyzed Sequential C-H Amination/Annulation Cascade Reactions: Synthesis of Multisubstituted Benzimidazoles. Org Lett 2019; 21:5570-5574. [PMID: 31251630 DOI: 10.1021/acs.orglett.9b01902] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An efficient and practical method to construct benzimidazoles via Rh(III)-catalyzed sequential C-H amination and annulation cascade reaction has been developed. The cascade reaction displays high step, atom, and redox economy, is compatible with the air, and has good functional group tolerance and high efficiency. The titled products can be easily further converted into imidazo[4,5-c]acridines, which were observed unique fluorescent properties.
Collapse
Affiliation(s)
- Siqi Huang
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences , Huaqiao University , Xiamen 361021 , PR China
| | - Huan Li
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences , Huaqiao University , Xiamen 361021 , PR China
| | - Xiangying Sun
- School of Material Science , Huaqiao University , Xiamen 361021 , PR China
| | - Linhua Xu
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences , Huaqiao University , Xiamen 361021 , PR China
| | - Lianhui Wang
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences , Huaqiao University , Xiamen 361021 , PR China
| | - Xiuling Cui
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences , Huaqiao University , Xiamen 361021 , PR China
| |
Collapse
|
38
|
Jia R, Li B, Liang R, Zhang X, Fan X. Tunable Synthesis of Indolo[3,2-c]quinolines or 3-(2-Aminophenyl)quinolines via Aerobic/Anaerobic Dimerization of 2-Alkynylanilines. Org Lett 2019; 21:4996-5001. [DOI: 10.1021/acs.orglett.9b01534] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ruixue Jia
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Bin Li
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Rong Liang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xinying Zhang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuesen Fan
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
39
|
Beesu M, Mehta G. Synthesis of Quinolines and Isoquinolines via Site-Selective, Domino Benzannulation of 2- and 3-Chloropyridyl Ynones with Nitromethane. J Org Chem 2019; 84:8731-8742. [DOI: 10.1021/acs.joc.9b00950] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Mallesh Beesu
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, India
| | - Goverdhan Mehta
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, India
| |
Collapse
|
40
|
Ren J, Pi C, Wu Y, Cui X. Copper-Catalyzed Oxidative [4 + 2]-Cyclization Reaction of Glycine Esters with Anthranils: Access to 3,4-Dihydroquinazolines. Org Lett 2019; 21:4067-4071. [DOI: 10.1021/acs.orglett.9b01246] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jie Ren
- Department of Chemistry, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Chao Pi
- Department of Chemistry, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Yangjie Wu
- Department of Chemistry, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Xiuling Cui
- Department of Chemistry, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou 450052, P. R. China
| |
Collapse
|
41
|
Cheng Q, Xie J, Weng Y, You S. Pd‐Catalyzed Dearomatization of Anthranils with Vinylcyclopropanes by [4+3] Cyclization Reaction. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901251] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Qiang Cheng
- State Key Laboratory of Organometallic ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Jia‐Hao Xie
- State Key Laboratory of Organometallic ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Yue‐Cheng Weng
- State Key Laboratory of Organometallic ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Shu‐Li You
- State Key Laboratory of Organometallic ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| |
Collapse
|
42
|
Cheng Q, Xie J, Weng Y, You S. Pd‐Catalyzed Dearomatization of Anthranils with Vinylcyclopropanes by [4+3] Cyclization Reaction. Angew Chem Int Ed Engl 2019; 58:5739-5743. [DOI: 10.1002/anie.201901251] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Qiang Cheng
- State Key Laboratory of Organometallic ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Jia‐Hao Xie
- State Key Laboratory of Organometallic ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Yue‐Cheng Weng
- State Key Laboratory of Organometallic ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Shu‐Li You
- State Key Laboratory of Organometallic ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| |
Collapse
|
43
|
Jiang J, Cai X, Hu Y, Liu X, Chen X, Wang SY, Zhang Y, Zhang S. Thermo-Promoted Reactions of Anthranils with Carboxylic Acids, Amines, Phenols, and Malononitrile under Catalyst-Free Conditions. J Org Chem 2019; 84:2022-2031. [DOI: 10.1021/acs.joc.8b02890] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jing Jiang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren’ai Road, Suzhou, Jiangsu 215123, China
- Jiangsu Key Laboratory for Functional Substances of Chinese of Medicine, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xin Cai
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren’ai Road, Suzhou, Jiangsu 215123, China
| | - Yanwei Hu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren’ai Road, Suzhou, Jiangsu 215123, China
| | - Xuejun Liu
- Shanghai Fosun Shino Tech Pharmaceutical Co., Ltd., Building 7, No. 1999 ZhangHeng Road, Shanghai, 201203, China
| | - Xiaodong Chen
- Shanghai Fosun Shino Tech Pharmaceutical Co., Ltd., Building 7, No. 1999 ZhangHeng Road, Shanghai, 201203, China
| | - Shun-Yi Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Yinan Zhang
- Jiangsu Key Laboratory for Functional Substances of Chinese of Medicine, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shilei Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren’ai Road, Suzhou, Jiangsu 215123, China
| |
Collapse
|
44
|
Xiong J, Liu Y. Transition‐Metal‐free C5, C7‐Dihalogenation and the Switchable C5 Halogenation of 8‐Hydroxyquinolines. ChemistrySelect 2019. [DOI: 10.1002/slct.201803965] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Jin Xiong
- College of Chemistry and Chemical EngineeringJiangxi Normal University Nanchang 330022 P. R. China
| | - Yunyun Liu
- College of Chemistry and Chemical EngineeringJiangxi Normal University Nanchang 330022 P. R. China
| |
Collapse
|
45
|
Rodrigo E, Baunis H, Suna E, Waldvogel SR. Simple and scalable electrochemical synthesis of 2,1-benzisoxazoles and quinoline N-oxides. Chem Commun (Camb) 2019; 55:12255-12258. [DOI: 10.1039/c9cc06054e] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
At carbon electrodes in a scalable electrosynthetic way to two classes of useful heterocycles.
Collapse
Affiliation(s)
- Eduardo Rodrigo
- Institut für Organische Chemie
- Johannes-Gutenberg-Universität Mainz
- 55128 Mainz
- Germany
| | - Haralds Baunis
- Institut für Organische Chemie
- Johannes-Gutenberg-Universität Mainz
- 55128 Mainz
- Germany
- Latvian Institute of Organic Synthesis
| | - Edgars Suna
- Latvian Institute of Organic Synthesis
- Aizkraukles 21
- Latvia
| | | |
Collapse
|
46
|
Naruto H, Togo H. Preparation of 2-arylquinolines from β-arylpropionitriles with aryllithiums and NIS through iminyl radical-mediated cyclization. Org Biomol Chem 2019; 17:5760-5770. [DOI: 10.1039/c9ob00944b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Treatment of β-arylpropionitriles with aryllithiums, followed by the reaction with water and then with NIS under irradiation with a tungsten lamp gave 2-arylquinolines in good to moderate yields.
Collapse
Affiliation(s)
- Hiroki Naruto
- Graduate School of Science
- Chiba University
- Chiba 263-8522
- Japan
| | - Hideo Togo
- Graduate School of Science
- Chiba University
- Chiba 263-8522
- Japan
| |
Collapse
|
47
|
|
48
|
Zhou P, Hu B, Zhao S, Zhang Q, Wang Y, Li X, Yu F. An improved Pfitzinger reaction for the direct synthesis of quinoline-4-carboxylic esters/acids mediated by TMSCl. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.07.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
49
|
Kim S, Han SH, Mishra NK, Chun R, Jung YH, Kim HS, Park JS, Kim IS. Dual Role of Anthranils as Amination and Transient Directing Group Sources: Synthesis of 2-Acyl Acridines. Org Lett 2018; 20:4010-4014. [PMID: 29905072 DOI: 10.1021/acs.orglett.8b01571] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The transient directing group promoted C(sp2)-H functionalization of benzaldehydes with anthranils by a cationic rhodium(III) catalyst is described. Notably, anthranils have been used as both transient directing groups and amination sources to afford 2-acyl acridines through direct C-H amination followed by acid-mediated cyclization. A range of substrate scopes and functional group tolerance were observed.
Collapse
Affiliation(s)
- Saegun Kim
- School of Pharmacy , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| | - Sang Hoon Han
- School of Pharmacy , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| | - Neeraj Kumar Mishra
- School of Pharmacy , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| | - Rina Chun
- School of Pharmacy , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| | - Young Hoon Jung
- School of Pharmacy , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| | - Hyung Sik Kim
- School of Pharmacy , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| | - Jung Su Park
- Department of Chemistry , Sookmyung Women's University , Seoul 04310 , Republic of Korea
| | - In Su Kim
- School of Pharmacy , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| |
Collapse
|
50
|
Chen YZ, Liu T, Zhu J, Zhang H, Wu L. Transition-metal-free radical cleavage of a hydrazonyl N–S bond: tosyl radical-initiated cascade C(sp3)–OAr cleavage, sulfonyl rearrangement and atropisomeric cyclopropanation. Org Chem Front 2018. [DOI: 10.1039/c8qo00873f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Combination of 1,10-phenanthroline and potassium carbonate enables a radical cleavage of a hydrazonyl N–S bond, allowing a coupling reaction of N-tosylhydrazone and phosphinyl allene via cascade C–O cleavage, sulfonyl rearrangement and atropisomeric cyclopropanation.
Collapse
Affiliation(s)
- Yao-Zhong Chen
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry
- College of Sciences
- Nanjing Agricultural University
- Nanjing 210095
- China
| | - Teng Liu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry
- College of Sciences
- Nanjing Agricultural University
- Nanjing 210095
- China
| | - Jie Zhu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry
- College of Sciences
- Nanjing Agricultural University
- Nanjing 210095
- China
| | - Hui Zhang
- Nanjing Forestry University
- Nanjing 210037
- China
| | - Lei Wu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry
- College of Sciences
- Nanjing Agricultural University
- Nanjing 210095
- China
| |
Collapse
|