1
|
Yang G, Yang L, Liu Z, Song Y, Qu Y, Dong S, Feng X. Construction of Chiral Spiro-Bridged Rings with Four Consecutive Stereocenters via Dearomative Diels-Alder Reactions of Anthracenes. Org Lett 2025. [PMID: 40366298 DOI: 10.1021/acs.orglett.5c01223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
A highly diastereo- and enantioselective dearomative Diels-Alder reaction was accomplished by chiral N,N'-dioxide/Mg(II) complex catalyst. Various anthracene derivatives and methyleneindolinones efficiently transformed into the corresponding chiral spiro-bridged cyclic products with four consecutive stereocenters in good yields, excellent dr and er values under mild conditions (46 examples, up to 99% yield, >19:1 dr, >99:1 er). Gram-scale synthesis of chiral products and their further transformations were feasible. On the basis of theoretical calculation, possible working modes were provided to understand the origin of stereoselectivity of this transformation.
Collapse
Affiliation(s)
- Gaofei Yang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Longqing Yang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zhenzhong Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yilun Song
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yinhe Qu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Shunxi Dong
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
2
|
Ranga PK, Fatma S, Athira MP, Velloth A, Ahmad F, Wadhave AB, Kumar V, Saini P, Anand RV. Tris(aryl)cyclopropenium Ion as Organic Lewis Acid Catalyst in Carbonyl Activation Reactions. Chem Asian J 2025:e202500131. [PMID: 40298038 DOI: 10.1002/asia.202500131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/30/2025] [Accepted: 03/31/2025] [Indexed: 04/30/2025]
Abstract
Although, in recent years, cyclopropenium salts have been explored as phase-transfer catalysts, electro-photocatalysts, H-bond donor catalysts, etc., and until now, they have not been utilized directly as Lewis acid catalysts in organic transformations. In this article, we demonstrate a "Proof of Concept" that the tris(aryl)cyclopropenium (TAC) carbocation could be utilized as an organic Lewis acid catalyst in some of the reactions involving carbonyl activation such as 1,2-addition reactions of aldehydes, 1,4-conjugate addition reactions of enones, and 1,6-vinylogous conjugate addition of dienones (p-quinone methides). The mode of activation of carbonyl group by cyclopropenium ion has been studied using NMR titrations and UV kinetics and further supported by computational calculations.
Collapse
Affiliation(s)
- Pavit Kumar Ranga
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli (PO), Punjab, 140306, India
| | - Shaheen Fatma
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli (PO), Punjab, 140306, India
| | - Mangalassery P Athira
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli (PO), Punjab, 140306, India
| | - Archana Velloth
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli (PO), Punjab, 140306, India
| | - Feroz Ahmad
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli (PO), Punjab, 140306, India
| | - Akshaykumar B Wadhave
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli (PO), Punjab, 140306, India
| | - Vaibhav Kumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli (PO), Punjab, 140306, India
| | - Piyush Saini
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli (PO), Punjab, 140306, India
| | - Ramasamy Vijaya Anand
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli (PO), Punjab, 140306, India
| |
Collapse
|
3
|
Zhou C, Liu Z, Liang G, Zhang YQ, Lei T, Chen B, Liao RZ, Tung CH, Wu LZ. Regioselective Diels-Alder Reactions of Anthracenes with Olefins via Visible Light Photocatalysis in a Homogeneous Solution. Org Lett 2024; 26:1116-1121. [PMID: 38295357 DOI: 10.1021/acs.orglett.3c04392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Diels-Alder cycloaddition of anthracene with olefin is achieved in a homogeneous solution via energy transfer under visible light. A series of substrates including electroneutral styrene derivatives can be successfully converted into the corresponding cycloadducts in a head-to-head orientation with high to excellent yields. The high ortho-regioselectivity, mild condition, and broad substrate scope enable promising advances in organic transformation.
Collapse
Affiliation(s)
- Chao Zhou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, New Cornerstone Science Laboratory, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, PR China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zan Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, New Cornerstone Science Laboratory, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, PR China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ge Liang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, New Cornerstone Science Laboratory, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, PR China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ya-Qiong Zhang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Tao Lei
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, New Cornerstone Science Laboratory, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, PR China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Bin Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, New Cornerstone Science Laboratory, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, PR China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Rong-Zhen Liao
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, New Cornerstone Science Laboratory, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, PR China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, New Cornerstone Science Laboratory, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, PR China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
4
|
Wang P, Wang Y, Neumann H, Beller M. Rhodium-Catalyzed Formylation of Unactivated Alkyl Chlorides to Aldehydes. Chemistry 2023; 29:e202203342. [PMID: 36342300 PMCID: PMC10108320 DOI: 10.1002/chem.202203342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022]
Abstract
The first rhodium-catalyzed formylation of non-activated alkyl chlorides with syn gas (H2 /CO) allows to produce aldehydes in high yields (25 examples). A catalyst optimization study revealed Rh(acac)(CO)2 in the presence of 1,3-bisdiphenylphosphinopropane (DPPP) as the most active catalyst system for this transformation. Key for the success of the reaction is the addition of sodium iodide (NaI) to the reaction system, which leads to the formation of activated alkyl iodides as intermediates. Depending on the reaction conditions, either the linear or branched aldehydes can be preferentially obtained, which is explained by a different mechanism.
Collapse
Affiliation(s)
- Peng Wang
- Leibniz-Institut für Katalyse e. V.Albert-Einstein-Straße 29a18059RostockGermany
| | - Yaxin Wang
- Leibniz-Institut für Katalyse e. V.Albert-Einstein-Straße 29a18059RostockGermany
| | - Helfried Neumann
- Leibniz-Institut für Katalyse e. V.Albert-Einstein-Straße 29a18059RostockGermany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e. V.Albert-Einstein-Straße 29a18059RostockGermany
| |
Collapse
|
5
|
Mastachi-Loza S, Ramírez-Candelero TI, Benítez-Puebla LJ, Fuentes-Benítes A, González-Romero C, Vázquez MA. Chalcones, a Privileged Scaffold: Highly Versatile Molecules in [4+2] Cycloadditions. Chem Asian J 2022; 17:e202200706. [PMID: 35976743 DOI: 10.1002/asia.202200706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/14/2022] [Indexed: 11/09/2022]
Abstract
Chalcones are aromatic ketones found in nature as the central core of many biological compounds. They have a wide range of biological activity and are biogenetic precursors of other important molecules such as flavonoids. Their pharmacological relevance makes them a privileged scaffold, advantageous for seeking alternative therapies in medicinal chemistry. Due to their structural diversity and ease of synthesis, they are often employed as building blocks for chemical transformations. Chalcones have a carbonyl conjugated system with two electrophilic centers that are commonly used for nucleophilic additions, as described in numerous articles. They can also participate in Diels-Alder reactions, which are [4+2] cycloadditions between a diene and a dienophile. This microreview presents a chronological survey of studies on chalcones as dienes and dienophiles in Diels-Alder cycloadditions. Although these reactions occur in nature, isolation of chalcones from plants yields very small quantities. Contrarily, synthesis leads to large quantities at a low cost. Hence, novel methodologies have been developed for [4+2] cycloadditions, with chalcones serving as a 2π or 4π electron system.
Collapse
Affiliation(s)
- Salvador Mastachi-Loza
- Universidad de Guanajuato Division de Ciencias Naturales y Exactas, Departamento de Química, MEXICO
| | - Tania I Ramírez-Candelero
- Universidad Autonoma del Estado de Mexico Facultad de Quimica, Departamento de Química Orgánica, MEXICO
| | - Luis J Benítez-Puebla
- Universidad de Guanajuato Division de Ciencias Naturales y Exactas, Departamento de Química, MEXICO
| | - Aydee Fuentes-Benítes
- Universidad Autonoma del Estado de Mexico Facultad de Quimica, Departamento de Química Orgánica, MEXICO
| | - Carlos González-Romero
- Universidad Autonoma del Estado de Mexico Facultad de Quimica, Departamento de Química Orgánica, MEXICO
| | - Miguel A Vázquez
- Universidad de Guanajuato Division de Ciencias Naturales y Exactas, CHEMISTRY, NORIA ALTA S/N, 36050, GUANAJUATO, MEXICO
| |
Collapse
|
6
|
Gan Z, Cui D, Zhang H, Feng Y, Huang L, Gui Y, Gao L, Song Z. Trityl Cation-Catalyzed Hosomi-Sakurai Reaction of Allylsilane with β,γ-Unsaturated α-Ketoester to Form γ,γ-Disubstituted α-Ketoesters. Molecules 2022; 27:molecules27154730. [PMID: 35897907 PMCID: PMC9331905 DOI: 10.3390/molecules27154730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 12/10/2022] Open
Abstract
(Ph3C)[BPh(F)4]-catalyzed Hosomi-Sakurai allylation of allylsilanes with β,γ-unsaturated α-ketoesters has been developed to give γ,γ-disubstituted α-ketoesters in high yields with excellent chemoselectivity. Preliminary mechanistic studies suggest that trityl cation dominates the catalysis, while the silyl cation plays a minor role.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lu Gao
- Correspondence: (L.G.); (Z.S.)
| | | |
Collapse
|
7
|
Wang P, Cao Z, Wang Y, Neumann H, Beller M. Palladium‐Catalyzed Carbonylation of Allylic Chlorides to β,γ‐Unsaturated Esters/Amides under Mild Conditions. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Peng Wang
- Leibniz Institute for Catalysis: Leibniz-Institut fur Katalyse eV Applied Catalysis GERMANY
| | - Zhusong Cao
- Leibniz Institute for Catalysis: Leibniz-Institut fur Katalyse eV Applied Catalysis GERMANY
| | - Yaxin Wang
- Leibniz Institute for Catalysis: Leibniz-Institut fur Katalyse eV Applied Catalysis GERMANY
| | - Helfried Neumann
- Leibniz Institute for Catalysis: Leibniz-Institut fur Katalyse eV Applied Chemisty GERMANY
| | - Matthias Beller
- Leibniz-Institut für Katalyse Homogeneous Catalysis Albert-Einstein-Straße 29a 18059 Rostock GERMANY
| |
Collapse
|
8
|
Xiao W, Wu J. Recent advance in carbocation-catalyzed reactions. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Zhang Z, Liu X, Ji L, Zhang T, Jia Z, Loh TP. Metal-Free Access to (Spirocyclic)Tetrahydro-β-carbolines in Water Using an Ion-Pair as a Superacidic Precatalyst. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Zhenguo Zhang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Xiaoxiao Liu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Liang Ji
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Ting Zhang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Zhenhua Jia
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Teck-Peng Loh
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
10
|
De Rosa M, Gambaro S, Soriente A, Della Sala P, Iuliano V, Talotta C, Gaeta C, Rescifina A, Neri P. Carbocation catalysis in confined space: activation of trityl chloride inside the hexameric resorcinarene capsule. Chem Sci 2022; 13:8618-8625. [PMID: 35974771 PMCID: PMC9337730 DOI: 10.1039/d2sc02901d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/06/2022] [Indexed: 11/21/2022] Open
Abstract
The hexameric resorcinarene capsule is able to promote carbocation catalysis inside its cavity.
Collapse
Affiliation(s)
- Margherita De Rosa
- Laboratory of Supramolecular Chemistry, Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno, Via Giovanni Paolo II, I-84084, Fisciano (SALERNO), Italy
| | - Stefania Gambaro
- Laboratory of Supramolecular Chemistry, Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno, Via Giovanni Paolo II, I-84084, Fisciano (SALERNO), Italy
| | - Annunziata Soriente
- Laboratory of Supramolecular Chemistry, Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno, Via Giovanni Paolo II, I-84084, Fisciano (SALERNO), Italy
| | - Paolo Della Sala
- Laboratory of Supramolecular Chemistry, Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno, Via Giovanni Paolo II, I-84084, Fisciano (SALERNO), Italy
| | - Veronica Iuliano
- Laboratory of Supramolecular Chemistry, Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno, Via Giovanni Paolo II, I-84084, Fisciano (SALERNO), Italy
| | - Carmen Talotta
- Laboratory of Supramolecular Chemistry, Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno, Via Giovanni Paolo II, I-84084, Fisciano (SALERNO), Italy
| | - Carmine Gaeta
- Laboratory of Supramolecular Chemistry, Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno, Via Giovanni Paolo II, I-84084, Fisciano (SALERNO), Italy
| | - Antonio Rescifina
- Dipartimento di Scienze del Farmaco e della Salute, Università di Catania, viale Andrea Doria, 6, 95125 Catania, Italy
| | - Placido Neri
- Laboratory of Supramolecular Chemistry, Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno, Via Giovanni Paolo II, I-84084, Fisciano (SALERNO), Italy
| |
Collapse
|
11
|
Patterson WJ, Lucas K, Jones VA, Chen Z, Bardelski K, Guarino‐Hotz M, Brindle CS. Triarylmethyl Cation‐Catalyzed Three‐Component Coupling for the Synthesis of Unsymmetrical Bisindolylmethanes. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
| | - Kelly Lucas
- Department of Chemistry Trinity College 300 Summit Street Hartford CT 06105 USA
| | - Vanessa A. Jones
- Department of Chemistry Trinity College 300 Summit Street Hartford CT 06105 USA
| | - Zhenghua Chen
- Department of Chemistry Trinity College 300 Summit Street Hartford CT 06105 USA
| | - Kevin Bardelski
- Department of Chemistry Trinity College 300 Summit Street Hartford CT 06105 USA
| | | | - Cheyenne S. Brindle
- Department of Chemistry Trinity College 300 Summit Street Hartford CT 06105 USA
| |
Collapse
|
12
|
Ahraminejad M, Ghiasi R, Mohtat B, Ahmadi R. SUBSTITUENT EFFECT IN [2+4] DIELS–ALDER CYCLOADDITION REACTIONS OF ANTHRACENE WITH C2X2 (X = H, F, Cl, Me): A COMPUTATIONAL INVESTIGATION. J STRUCT CHEM+ 2021. [DOI: 10.1134/s0022476621100097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Briou B, Améduri B, Boutevin B. Trends in the Diels-Alder reaction in polymer chemistry. Chem Soc Rev 2021; 50:11055-11097. [PMID: 34605835 DOI: 10.1039/d0cs01382j] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The Diels-Alder (DA) reaction is regarded as quite a useful strategy in organic and macromolecular syntheses. The reversibility of this reaction and the advent of self-repair technology, as well as other applications in controlled macromolecular architectures and crosslinking, have strongly boosted the research activity, which is still attracting a huge interest in both academic and industrial research. The DA reaction is a simple and scalable toolbox. Though it is well-established that furan/maleimide is the most studied diene/dienophile couple, this perspective article reports strategies using other reversible systems with deeper features on other types of diene/dienophile pairs being either petro-sourced (cyclopentadiene, anthracene) or bio-sourced (muconic and sorbic acids, myrcene and farnesene derivatives, eugenol, cardanol). This review is composed of four sections. The first one briefly recalls the background on the DA reactions involving cyclodimerizations, dienes, and dienophiles, parameters affecting the reaction, while the second part deals with the furan/maleimide reaction. The third one deals with petro-sourced and bio-sourced (or products becoming bio-sourced) reactants involved in DA reactions are also listed and discussed. Finally, the authors' opinion is given on the potential future of the crosslinking-decrosslinking reaction, especially regarding the process (e.g., key temperatures of decrosslinking) or possibly monocomponents. It presents both fundamental and applied research on the DA reaction and its applications.
Collapse
Affiliation(s)
- Benoit Briou
- Institut Charles Gerhardt, CNRS, Université de Montpellier, ENSCM, Montpellier, France.
| | - Bruno Améduri
- Institut Charles Gerhardt, CNRS, Université de Montpellier, ENSCM, Montpellier, France.
| | - Bernard Boutevin
- Institut Charles Gerhardt, CNRS, Université de Montpellier, ENSCM, Montpellier, France.
| |
Collapse
|
14
|
Borodkin GI, Elanov IR, Shubin VG. Carbocation Catalysis of Organic Reactions. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1070428021030015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
15
|
Oestreich M, Gross BM. The Trityl Cation Embedded into a [7]Helicene-Like Backbone: Preparation and Application as a Lewis Acid Catalyst. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1404-4966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AbstractThe synthesis of a helically chiral carbenium ion is reported. The new motif is essentially a trityl cation embedded into a [7]helicene-like framework. The key step in its preparation establishes the π-extended fluorenone system in one step by an unprecedented palladium-catalyzed carbonylative annulation of a 4,4′-biphenanthryl-3,3′-diyl precursor. The racemic form of the new carbon Lewis acid was found to catalyze a representative set of reactions typically promoted by the trityl cation.
Collapse
|
16
|
Affiliation(s)
- Shunichi Fukuzumi
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 South Korea
- Faculty of Science and Engineering Meijo University Nagoya Aichi 468‐0073 Japan
| | - Yong‐Min Lee
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 South Korea
- Research Institute for Basic Sciences Ewha Womans University Seoul 03760 South Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 South Korea
| |
Collapse
|
17
|
Ma Y, Ueno H, Okada H, Manzhos S, Matsuo Y. Solvation-Free Li + Lewis Acid Enhancing Reaction: Kinetic Study of [5,6]-Li +@PCBM to [6,6]-Li +@PCBM. Org Lett 2020; 22:7239-7243. [PMID: 32870696 DOI: 10.1021/acs.orglett.0c02570] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Kinetic parameters for the [5,6]- to [6,6]-[Li+@PCBM]TFSI- transformation were determined experimentally, revealing a ca. 700-fold faster reaction rate at 423 K than empty PCBM and a 57.4 kJ mol-1 lower activation energy. The encapsulated Li+ can be considered as solvation-free Li+, forming a 1:1 complex with the substrate.
Collapse
Affiliation(s)
- Yue Ma
- School of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China.,Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Hiroshi Ueno
- School of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China.,Center for Fundamental and Applied Research of Novel Nanocarbon Derivatives, Center for Key Interdisciplinary Research, Tohoku University, Sendai 980-8578, Japan
| | - Hiroshi Okada
- Center for Fundamental and Applied Research of Novel Nanocarbon Derivatives, Center for Key Interdisciplinary Research, Tohoku University, Sendai 980-8578, Japan.,Department of Mechanical Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Sergei Manzhos
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, 1650 Boulevard Lionel-Boulet, Varennes, QC J3X1S2, Canada
| | - Yutaka Matsuo
- School of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China.,Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China.,Center for Fundamental and Applied Research of Novel Nanocarbon Derivatives, Center for Key Interdisciplinary Research, Tohoku University, Sendai 980-8578, Japan.,Department of Mechanical Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,Department of Chemical System Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| |
Collapse
|
18
|
Abstract
An important strategy for the efficient generation of diversity in molecular structures is the utilization of common starting materials in chemodivergent transformations. The most studied solutions for switching the chemoselectivity rely on the catalyst, ligand, additive, solvent, temperature, time, pressure, pH and even small modifications in the substrate. In this review article several processes have been selected such as inter- and intramolecular cyclizations, including carba-, oxa-, thia- and oxazacyclizations promoted mainly by Brønsted or Lewis acids, transition metals and organocatalysts, as well as radical reactions. Catalyst-controlled intra- and intermolecular cyclizations are mainly described to give five- and six-membered rings. Cycloaddition reactions involving (2+2), (3+2), (3+3), (4+1), (4+2), (5+2), (6+2) and (7+2) processes are useful reactions for the synthesis of cyclic systems using organocatalysts, metal catalysts and Lewis acid-controlled processes. Addition reactions mainly of carba- and heteronucleophiles to unsaturated conjugated substrates can give different adducts via metal catalyst-, Lewis acid- and solvent-dependent processes. Carbonylation reactions of amines and phenols are carried out via ligand-controlled transition metal-catalyzed multicomponent processes. Ring-opening reactions starting mainly from cyclopropanols, cyclopropenols and epoxides or aziridines are applied to the synthesis of acyclic versus cyclic products under catalyst-control mainly by Lewis acids. Chemodivergent reduction reactions are performed using dissolving metals, sodium borohydride or hydrogen transfer conditions under solvent control. Oxidation reactions include molecular oxygen under solvent control or using different dioxiranes, as well as chemodivergent palladium catalyzed cross-coupling reactions using boronic acids are applied to aromatic and allenic compounds. Other chemodivergent reactions such as alkylations and allylations under transition metal catalysis, dimerization of acetylenes, bromination of benzylic substrates, and A3-couplings are performed via catalyst- or reaction condition-dependent processes.
Collapse
Affiliation(s)
- Irina P Beletskaya
- Chemistry Department, M. V. Lomonosov Moscow University, Leminskie Gory 1, 119992 Moscow, Russia
| | | | | |
Collapse
|
19
|
Ding N, Li Z. When Anthracene and Quinone Avoid Cycloaddition: Acid-Catalyzed Redox Neutral Functionalization of Anthracene to Aryl Ethers. Org Lett 2020; 22:4276-4282. [PMID: 32396008 DOI: 10.1021/acs.orglett.0c01315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Benzoquinone and 9-phenylanthracene barely undergo anticipated cycloaddition under acid catalysis. Instead, 9-anthracenyl aryl ethers are obtained as unexpected products. Mechanistic studies indicate that the reaction likely undergoes an ionic mechanism between protonated anthracene species and nucleophilic oxygen of 1,4-benzoquinone or 1,4-hydroquinone. A variety of 9-anthracenyl aryl ethers are constructed with this method. Produced anthracenyl aryl ethers are potential scaffolds for new fluorescent molecules.
Collapse
Affiliation(s)
- Nan Ding
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Shanghai Institute of Organic Chemistry, Shanghai 200032, China
| | - Zhi Li
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| |
Collapse
|
20
|
Fused multifunctionalized bridge aromatic hydrocarbons from in situ-generated arynes and anthracene derivatives. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
Courant T, Lombard M, Boyarskaya DV, Neuville L, Masson G. Tritylium assisted iodine catalysis for the synthesis of unsymmetrical triarylmethanes. Org Biomol Chem 2020; 18:6502-6508. [PMID: 32789393 DOI: 10.1039/d0ob01502d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The combined Lewis acid catalytic system, generated from molecular iodine and tritylium tetrafluoroborate effectively catalyzed the Friedel-Crafts (FC) arylation of diarylmethyl sulfides providing an efficient access to various unsymmetrical triarylmethanes. The addition of tritylium and iodine created a more active catalytic system to promote the cleavage of sulfidic C-S bonds.
Collapse
Affiliation(s)
- Thibaut Courant
- Institut de Chimie des Substances Naturelles CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France.
| | - Marine Lombard
- Institut de Chimie des Substances Naturelles CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France.
| | - Dina V Boyarskaya
- Institut de Chimie des Substances Naturelles CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France.
| | - Luc Neuville
- Institut de Chimie des Substances Naturelles CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France.
| | - Géraldine Masson
- Institut de Chimie des Substances Naturelles CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France.
| |
Collapse
|
22
|
Jin H, Rudolph M, Rominger F, Hashmi ASK. The Carbocation-Catalyzed Intermolecular Formal [2 + 2 + 1] Cycloaddition of Ynamides with Quinoxaline N-Oxides. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03911] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Hongming Jin
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Matthias Rudolph
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - A. Stephen K. Hashmi
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
- Chemistry Department, Faculty of Science, King Abdulaziz University (KAU), 21589 Jeddah, Saudi Arabia
| |
Collapse
|
23
|
Ebajo VD, Santos CRL, Alea GV, Lin YA, Chen CH. Regenerable Acidity of Graphene Oxide in Promoting Multicomponent Organic Synthesis. Sci Rep 2019; 9:15579. [PMID: 31666532 PMCID: PMC6821726 DOI: 10.1038/s41598-019-51833-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/23/2019] [Indexed: 01/13/2023] Open
Abstract
The Brønsted acidity of graphene oxide (GO) materials has shown promising activity in organic synthesis. However, roles and functionality of Lewis acid sites remain elusive. Herein, we reported a carbocatalytic approach utilizing both Brønsted and Lewis acid sites in GOs as heterogeneous promoters in a series of multicomponent synthesis of triazoloquinazolinone compounds. The GOs possessing the highest degree of oxidation, also having the highest amounts of Lewis acid sites, enable optimal yields (up to 95%) under mild and non-toxic reaction conditions (85 °C in EtOH). The results of FT-IR spectroscopy, temperature-programed decomposition mass spectrometry, and X-ray photoelectron spectroscopy identified that the apparent Lewis acidity via basal plane epoxide ring opening, on top of the saturated Brønsted acidic carboxylic groups, is responsible for the enhanced carbocatalytic activities involving Knoevenagel condensation pathway. Recycled GO can be effectively regenerated to reach 97% activity of fresh GO, supporting the recognition of GO as pseudocatalyst in organic synthesis.
Collapse
Affiliation(s)
- Virgilio D Ebajo
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
- Chemistry Department, De La Salle University, Manila, Philippines
| | - Cybele Riesse L Santos
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
- Chemistry Department, De La Salle University, Manila, Philippines
| | - Glenn V Alea
- Chemistry Department, De La Salle University, Manila, Philippines.
| | - Yuya A Lin
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Chun-Hu Chen
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan.
| |
Collapse
|
24
|
Shang W, Duan D, Liu Y, Lv J. Carbocation Lewis Acid TrBF4-Catalyzed 1,2-Hydride Migration: Approaches to (Z)-α,β-Unsaturated Esters and α-Branched β-Ketocarbonyls. Org Lett 2019; 21:8013-8017. [DOI: 10.1021/acs.orglett.9b03005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Wansong Shang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Depeng Duan
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Yongjun Liu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Jian Lv
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| |
Collapse
|
25
|
Ouyang Y, Zhan M, Zhou J, Jiao J, Hu H, Yamada YMA, Li P. Z‐bpy, a New
C
2
‐Symmetric Bipyridine Ligand and Its Application in Enantioselective Copper(I)‐Catalyzed Cyclopropanation of Olefins. CHINESE J CHEM 2019. [DOI: 10.1002/cjoc.201900141] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yizhao Ouyang
- Frontier Institute of Science and Technology, Xi’an Jiaotong University Xi’an, Shaanxi 710054 China
| | - Miao Zhan
- Frontier Institute of Science and Technology, Xi’an Jiaotong University Xi’an, Shaanxi 710054 China
| | - Jing Zhou
- Frontier Institute of Science and Technology, Xi’an Jiaotong University Xi’an, Shaanxi 710054 China
| | - Jiao Jiao
- Department of Applied ChemistrySchool of Science, Xi’an Jiaotong University Xi’an, Shaanxi 710049 China
- Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, Xi’an Jiaotong University Xi’an, Shaanxi 710049 China
| | - Hao Hu
- RIKEN Center for Sustainable Resource Science Wako, Saitama 3510198 Japan
| | | | - Pengfei Li
- Frontier Institute of Science and Technology, Xi’an Jiaotong University Xi’an, Shaanxi 710054 China
- Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, Xi’an Jiaotong University Xi’an, Shaanxi 710049 China
| |
Collapse
|
26
|
Zhang Q, Lv J, Luo S. Enantioselective Diels-Alder reaction of anthracene by chiral tritylium catalysis. Beilstein J Org Chem 2019; 15:1304-1312. [PMID: 31293679 PMCID: PMC6604712 DOI: 10.3762/bjoc.15.129] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/24/2019] [Indexed: 11/26/2022] Open
Abstract
The combination of the trityl cation and a chiral weakly coordinating Fe(III)-based bisphosphate anion was used to develop a new type of a highly active carbocation Lewis acid catalyst. The stereocontrol potential of the chiral tritylium ion pair was demonstrated by its application in an enantioselective Diels–Alder reaction of anthracene.
Collapse
Affiliation(s)
- Qichao Zhang
- Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Jian Lv
- Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China.,State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, 266042, Qingdao, China
| | - Sanzhong Luo
- Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China.,Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, 100084, Beijing, China
| |
Collapse
|
27
|
Xu WL, Zhang H, Hu YL, Yang H, Chen J, Zhou L. Metal-Free Dehydrogenative Diels-Alder Reactions of Prenyl Derivatives with Dienophiles via a Thermal Reversible Process. Org Lett 2018; 20:5774-5778. [PMID: 30182721 DOI: 10.1021/acs.orglett.8b02469] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
An efficient dehydrogenative Diels-Alder reaction of prenyl derivatives with dienophiles has been developed. The reaction exhibits broad substrate scope and provides efficient access to cyclohexene derivatives with good to excellent yields. A reasonable mechanism involving a metal-free thermal reversible process is proposed.
Collapse
Affiliation(s)
- Wen-Lei Xu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science , Northwest University , Xi'an 710127 , P.R. China
| | - Heng Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science , Northwest University , Xi'an 710127 , P.R. China
| | - Yu-Long Hu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science , Northwest University , Xi'an 710127 , P.R. China
| | - Hui Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science , Northwest University , Xi'an 710127 , P.R. China
| | - Jie Chen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science , Northwest University , Xi'an 710127 , P.R. China
| | - Ling Zhou
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science , Northwest University , Xi'an 710127 , P.R. China
| |
Collapse
|
28
|
Ni S, El Remaily MAEAAA, Franzén J. Carbocation Catalyzed Bromination of Alkyl Arenes, a Chemoselective
sp
3
vs. sp
2
C−H functionalization. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800788] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Shengjun Ni
- KTH, Royal Institute of TechnologySchool of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry/Division of Organic Chemistry Teknikringen 30 SE-100 44 Stockholm Sweden
| | - Mahmoud Abd El Aleem Ali Ali El Remaily
- KTH, Royal Institute of TechnologySchool of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry/Division of Organic Chemistry Teknikringen 30 SE-100 44 Stockholm Sweden
- Department of Chemistry, Faculty of ScienceSohag University 82524 Sohag Egypt
| | - Johan Franzén
- KTH, Royal Institute of TechnologySchool of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry/Division of Organic Chemistry Teknikringen 30 SE-100 44 Stockholm Sweden
| |
Collapse
|
29
|
Ni S, Franzén J. Carbocation catalysed ring closing aldehyde–olefin metathesis. Chem Commun (Camb) 2018; 54:12982-12985. [DOI: 10.1039/c8cc06734a] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
4-Phenylphenyl-diphenylmethylium tetrafluoroborate catalyses a rare high yielding intramolecular aldehyde–olefin metathesis of enals under mild reaction conditions and low catalyst loading.
Collapse
Affiliation(s)
- Shengjun Ni
- Department of Chemistry
- Organic Chemistry
- Royal Institute of Technology (KTH)
- SE-100 44 Stockholm
- Sweden
| | - Johan Franzén
- Department of Chemistry
- Organic Chemistry
- Royal Institute of Technology (KTH)
- SE-100 44 Stockholm
- Sweden
| |
Collapse
|