1
|
Götz J, Richards E, Stepek IA, Takahashi Y, Huang YL, Bertschi L, Rubi B, Bode JW. Predicting three-component reaction outcomes from ~40,000 miniaturized reactant combinations. SCIENCE ADVANCES 2025; 11:eadw6047. [PMID: 40435244 PMCID: PMC12118581 DOI: 10.1126/sciadv.adw6047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 04/25/2025] [Indexed: 06/01/2025]
Abstract
Efficient drug discovery depends on reliable synthetic access to candidate molecules, but emerging machine learning approaches to predicting reaction outcomes are hampered by poor availability of high-quality data. Here, we demonstrate an on-demand synthesis platform based on a three-component reaction that delivers drug-like molecules. Miniaturization and automation enable the execution and analysis of 50,000 distinct reactions on a 3-microliter scale from 193 different substrates, producing the largest public reaction outcome dataset. With machine learning, we accurately predict the result of unknown reactions and analyze the impact of dataset size on model training, both enabling accurate outcome predictions even for unseen reactants and providing a sufficiently large dataset to critically evaluate emerging machine learning approaches to chemical reactivity.
Collapse
Affiliation(s)
- Julian Götz
- Laboratory for Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Euan Richards
- Laboratory for Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Iain A. Stepek
- Laboratory for Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Yu Takahashi
- Laboratory for Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Yi-Lin Huang
- Laboratory for Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Louis Bertschi
- Molecular and Biomolecular Analysis Service (MoBiAS), Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Bertran Rubi
- Molecular and Biomolecular Analysis Service (MoBiAS), Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Jeffrey W. Bode
- Laboratory for Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
2
|
Qiao H, Michalland J, Huang Q, Zard SZ. A Versatile Route to Acyl (MIDA)Boronates. Chemistry 2023; 29:e202302235. [PMID: 37477346 DOI: 10.1002/chem.202302235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 07/22/2023]
Abstract
A modular approach to highly functional acyl (MIDA)boronates is described. It involves the generation of the hitherto unknown radical derived from acetyl (MIDA)boronate and its capture by various alkenes, including electronically unbiased, unactivated alkenes. In contrast to the anion of acetyl (MIDA)boronate, which has not so far been employed in synthesis, the corresponding radical is well behaved and readily produced from the novel α-xanthyl acetyl (MIDA)boronate. This shelf-stable, easily prepared solid is a convenient acyl (MIDA)boronate transfer agent that provides a direct entry to numerous otherwise inaccessible structures, including latent 1,4-dicarbonyl derivatives that can be transformed into B(MIDA) substituted pyrroles and furans. A competition experiment indicated the acyl (MIDA)boronate substituted radical to be more stable than the all-carbon acetonyl radical but somewhat less reactive in additions to alkenes.
Collapse
Affiliation(s)
- Hui Qiao
- Laboratoire de Synthèse Organique, CNRS UMR 7652, Ecole polytechnique, 91128, Palaiseau Cedex, France
| | - Jean Michalland
- Laboratoire de Synthèse Organique, CNRS UMR 7652, Ecole polytechnique, 91128, Palaiseau Cedex, France
| | - Qi Huang
- Laboratoire de Synthèse Organique, CNRS UMR 7652, Ecole polytechnique, 91128, Palaiseau Cedex, France
| | - Samir Z Zard
- Laboratoire de Synthèse Organique, CNRS UMR 7652, Ecole polytechnique, 91128, Palaiseau Cedex, France
| |
Collapse
|
3
|
Nakahara M, Kurahayashi K, Hanaya K, Sugai T, Higashibayashi S. One-Step Synthesis of Acylborons from Acyl Chlorides through Copper-Catalyzed Borylation with Polystyrene-Supported PPh 3 Ligand. Org Lett 2022; 24:5596-5601. [PMID: 35899907 DOI: 10.1021/acs.orglett.2c02305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We developed a one-step synthesis of acylborons from both readily available acyl chlorides and bis(pinacolato)diboron through copper(I)-catalyzed borylation. Under the reaction conditions using tBuOLi, polystyrene-supported triphenylphosphine as a copper ligand was found to promote the borylation of acyl chlorides while suppressing alcoholysis. This method enables the facile synthesis of potassium acyltrifluoroborates.
Collapse
Affiliation(s)
- Masataka Nakahara
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Kazuki Kurahayashi
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Kengo Hanaya
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Takeshi Sugai
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Shuhei Higashibayashi
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| |
Collapse
|
4
|
Zhang X, Friedrich A, Marder TB. Copper-Catalyzed Borylation of Acyl Chlorides with an Alkoxy Diboron Reagent: A Facile Route to Acylboron Compounds. Chemistry 2022; 28:e202201329. [PMID: 35510606 PMCID: PMC9400893 DOI: 10.1002/chem.202201329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Indexed: 12/15/2022]
Abstract
Herein, the copper-catalyzed borylation of readily available acyl chlorides with bis(pinacolato)diboron, (B2 pin2 ) or bis(neopentane glycolato)diboron (B2 neop2 ) is reported, which provides stable potassium acyltrifluoroborates (KATs) in good yields from the acylboronate esters. A variety of functional groups are tolerated under the mild reaction conditions (room temperature) and substrates containing different carbon-skeletons, such as aryl, heteroaryl and primary, secondary, tertiary alkyl are applicable. Acyl N-methyliminodiacetic acid (MIDA) boronates can also been accessed by modification of the workup procedures. This process is scalable and also amenable to the late-stage conversion of carboxylic acid-containing drugs into their acylboron analogues, which have been challenging to prepare previously. A catalytic mechanism is proposed based on in situ monitoring of the reaction between p-toluoyl chloride and an NHC-copper(I) boryl complex as well as the isolation of an unusual lithium acylBpinOBpin compound as a key intermediate.
Collapse
Affiliation(s)
- Xiaolei Zhang
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Alexandra Friedrich
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Todd B. Marder
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
5
|
Tung P, Schuhmacher A, Schilling PE, Bode JW, Mankad NP. Preparation of Potassium Acyltrifluoroborates (KATs) from Carboxylic Acids by Copper‐Catalyzed Borylation of Mixed Anhydrides**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202114513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Pinku Tung
- Department of Chemistry University of Illinois at Chicago 845 W. Taylor St. Chicago Il 60607 USA
| | - Anne Schuhmacher
- Laboratory of Organic Chemistry ETH Zurich Vladimir-Prelog-Weg 3 8093 Zurich Switzerland
| | - Philipp E. Schilling
- Laboratory of Organic Chemistry ETH Zurich Vladimir-Prelog-Weg 3 8093 Zurich Switzerland
| | - Jeffrey W. Bode
- Laboratory of Organic Chemistry ETH Zurich Vladimir-Prelog-Weg 3 8093 Zurich Switzerland
| | - Neal P. Mankad
- Department of Chemistry University of Illinois at Chicago 845 W. Taylor St. Chicago Il 60607 USA
| |
Collapse
|
6
|
Tung P, Schuhmacher A, Schilling PE, Bode JW, Mankad NP. Preparation of Potassium Acyltrifluoroborates (KATs) from Carboxylic Acids by Copper-Catalyzed Borylation of Mixed Anhydrides. Angew Chem Int Ed Engl 2021; 61:e202114513. [PMID: 34913236 DOI: 10.1002/anie.202114513] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Indexed: 12/28/2022]
Abstract
We report the preparation of potassium acyltrifluoroborates (KATs) from widely available carboxylic acids. Mixed anhydrides of carboxylic acids were prepared using isobutyl chloroformate and transformed to the corresponding KATs using a commercial copper catalyst, B2 (pin)2 , and aqueous KHF2 . This method allows for the facile preparation of aliphatic, aromatic, and amino acid-derived KATs and is compatible with a variety of functional groups including alkenes, esters, halides, nitriles, and protected amines.
Collapse
Affiliation(s)
- Pinku Tung
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, Il 60607, USA
| | - Anne Schuhmacher
- Laboratory of Organic Chemistry, ETH Zurich, Vladimir-Prelog-Weg 3, 8093, Zurich, Switzerland
| | - Philipp E Schilling
- Laboratory of Organic Chemistry, ETH Zurich, Vladimir-Prelog-Weg 3, 8093, Zurich, Switzerland
| | - Jeffrey W Bode
- Laboratory of Organic Chemistry, ETH Zurich, Vladimir-Prelog-Weg 3, 8093, Zurich, Switzerland
| | - Neal P Mankad
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, Il 60607, USA
| |
Collapse
|
7
|
Tanriver M, Dzeng YC, Da Ros S, Lam E, Bode JW. Mechanism-Based Design of Quinoline Potassium Acyltrifluoroborates for Rapid Amide-Forming Ligations at Physiological pH. J Am Chem Soc 2021; 143:17557-17565. [PMID: 34647724 DOI: 10.1021/jacs.1c07354] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Potassium acyltrifluoroborates (KATs) undergo chemoselective amide-forming ligations with hydroxylamines. Under aqueous, acidic conditions these ligations can proceed rapidly, with rate constants of ∼20 M-1 s-1. The requirement for lower pH to obtain the fastest rates, however, limits their use with certain biomolecules and precludes in vivo applications. By mechanistic investigations into the KAT ligation, including kinetic studies, X-ray crystallography, and DFT calculations, we have identified a key role for a proton in accelerating the ligation. We applied this knowledge to the design and synthesis of 8-quinolyl acyltrifluoroborates, a new class of KATs that ligates with hydroxylamines at pH 7.4 with rate constants >4 M-1 s-1. We trace the enhanced rate at physiological pH to unexpectedly high basicity of the 8-quinoline-KATs, which leads to their protonation even under neutral conditions. This proton assists the formation of the key tetrahedral intermediate and activates the leaving groups on the hydroxylamine toward a concerted 1,2-BF3 shift that leads to the amide product. We demonstrate that the fast ligations at pH 7.4 can be carried out with a protein substrate at micromolar concentrations.
Collapse
Affiliation(s)
- Matthias Tanriver
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich 8093, Switzerland
| | - Yi-Chung Dzeng
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich 8093, Switzerland
| | - Sara Da Ros
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich 8093, Switzerland
| | - Erwin Lam
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich 8093, Switzerland
| | - Jeffrey W Bode
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich 8093, Switzerland
| |
Collapse
|
8
|
Lai S, Takaesu N, Lin WX, Perrin DM. Suzuki coupling of aroyl-MIDA boronate esters – A preliminary report on scope and limitations. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Šterman A, Košmrlj J, Žigart N, Gobec S, Sosič I, Časar Z. Catalytic Approach to Diverse α‐Aminoboronic Acid Derivatives by Iridium‐Catalyzed Hydrogenation of Trifluoroborate‐Iminiums. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Andrej Šterman
- University of Ljubljana Faculty of Pharmacy Aškerčeva cesta 7 SI-1000 Ljubljana Slovenia
| | - Janez Košmrlj
- University of Ljubljana Faculty of Chemistry and Chemical Technology Večna pot 113 1000 Ljubljana Slovenia
| | - Nina Žigart
- Lek Pharmaceuticals d.d. Sandoz Development Center Slovenia Verovškova ulica 57 1526 Ljubljana Slovenia
| | - Stanislav Gobec
- University of Ljubljana Faculty of Pharmacy Aškerčeva cesta 7 SI-1000 Ljubljana Slovenia
| | - Izidor Sosič
- University of Ljubljana Faculty of Pharmacy Aškerčeva cesta 7 SI-1000 Ljubljana Slovenia
| | - Zdenko Časar
- University of Ljubljana Faculty of Pharmacy Aškerčeva cesta 7 SI-1000 Ljubljana Slovenia
- Lek Pharmaceuticals d.d. Sandoz Development Center Slovenia Verovškova ulica 57 1526 Ljubljana Slovenia
| |
Collapse
|
10
|
Deng X, Zhou G, Han X, Ullah K, Srinivasan R. Rapid Access to Diverse Potassium Acyltrifluoroborates (KATs) through Late-Stage Chemoselective Cross-Coupling Reactions. Org Lett 2021; 23:1886-1890. [PMID: 33591764 DOI: 10.1021/acs.orglett.1c00305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Potassium acyltrifluoroborates (KATs) are opening up new avenues in chemical biology, materials science, and synthetic organic chemistry due to their intriguing reactivities. However, the synthesis of these compounds remains mostly complicated and time-consuming. Herein, we have developed chemoselective Pd-catalyzed approaches for the late-stage diversification of arenes bearing prefunctionalized KATs. These approaches feature chemoselective cross-coupling, rapid diversification, functional group tolerance, mild reaction conditions, simple operation, and high yields.
Collapse
Affiliation(s)
- Xingwang Deng
- School of Pharmaceutical Science and Technology (SPST), Tianjin University, Building 24, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Guan Zhou
- School of Pharmaceutical Science and Technology (SPST), Tianjin University, Building 24, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Xiao Han
- School of Pharmaceutical Science and Technology (SPST), Tianjin University, Building 24, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Khadim Ullah
- School of Pharmaceutical Science and Technology (SPST), Tianjin University, Building 24, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Rajavel Srinivasan
- School of Pharmaceutical Science and Technology (SPST), Tianjin University, Building 24, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China.,Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856
| |
Collapse
|
11
|
Schuhmacher A, Ryan SJ, Bode JW. Katalytische Synthese von Kaliumacyltrifluoroboraten (KATs) aus Boronsäuren und dem Thioimidat‐KAT‐Transferreagenz. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Anne Schuhmacher
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3 8093 Zürich Schweiz
| | | | - Jeffrey W. Bode
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3 8093 Zürich Schweiz
| |
Collapse
|
12
|
Schuhmacher A, Ryan SJ, Bode JW. Catalytic Synthesis of Potassium Acyltrifluoroborates (KATs) from Boronic Acids and the Thioimidate KAT Transfer Reagent. Angew Chem Int Ed Engl 2021; 60:3918-3922. [PMID: 33231353 DOI: 10.1002/anie.202014581] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Indexed: 12/22/2022]
Abstract
We report the synthesis of potassium acyltrifluoroborates (KATs) by a palladium-catalyzed cross-coupling of boronic acids and the thioimidate KAT transfer reagent. The combination of widely available aryl- and vinylboronic acids with commercially available thioimidate 1 using catalytic PdII and a CuII additive enables the preparation of KATs in high yields and with good functional group tolerance. This formal insertion of CO into organoboronic acids can also be applied to boronic acid pinacol esters and potassium organotrifluoroborates using a slightly modified procedure. The cross-coupling can be telescoped into the one-pot synthesis of amides and α-aminotrifluoroborates by exploiting the unique chemistry of KATs and their trifluoroborate iminium (TIM) derivatives.
Collapse
Affiliation(s)
- Anne Schuhmacher
- Laboratory of Organic Chemistry, ETH Zurich, Vladimir-Prelog-Weg 3, 8093, Zurich, Switzerland
| | - Sarah J Ryan
- Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Jeffrey W Bode
- Laboratory of Organic Chemistry, ETH Zurich, Vladimir-Prelog-Weg 3, 8093, Zurich, Switzerland
| |
Collapse
|
13
|
Cheng LJ, Zhao S, Mankad NP. One-Step Synthesis of Acylboron Compounds via Copper-Catalyzed Carbonylative Borylation of Alkyl Halides*. Angew Chem Int Ed Engl 2021; 60:2094-2098. [PMID: 33090619 DOI: 10.1002/anie.202012373] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Indexed: 01/11/2023]
Abstract
A copper-catalyzed carbonylative borylation of unactivated alkyl halides has been developed, enabling efficient synthesis of aliphatic potassium acyltrifluoroborates (KATs) in high yields by treating the in situ formed tetracoordinated acylboron intermediates with aqueous KHF2 . A variety of functional groups are tolerated under the mild reaction conditions, and primary, secondary, and tertiary alkyl halides are all applicable. In addition, this method also provides facile access to N-methyliminodiacetyl (MIDA) acylboronates as well as α-methylated potassium acyltrifluoroborates in a one-pot manner. Mechanistic studies indicate a radical atom transfer carbonylation (ATC) mechanism to form acyl halide intermediates that are subsequently borylated by (NHC)CuBpin.
Collapse
Affiliation(s)
- Li-Jie Cheng
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, IL, 60607, USA
| | - Siling Zhao
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, IL, 60607, USA
| | - Neal P Mankad
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, IL, 60607, USA
| |
Collapse
|
14
|
Cheng L, Zhao S, Mankad NP. One‐Step Synthesis of Acylboron Compounds via Copper‐Catalyzed Carbonylative Borylation of Alkyl Halides**. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012373] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Li‐Jie Cheng
- Department of Chemistry University of Illinois at Chicago 845 W. Taylor St. Chicago IL 60607 USA
| | - Siling Zhao
- Department of Chemistry University of Illinois at Chicago 845 W. Taylor St. Chicago IL 60607 USA
| | - Neal P. Mankad
- Department of Chemistry University of Illinois at Chicago 845 W. Taylor St. Chicago IL 60607 USA
| |
Collapse
|
15
|
Song H, Wu D, Mazunin D, Liu SM, Sato Y, Broguiere N, Zenobi‐Wong M, Bode JW. Post‐Assembly Photomasking of Potassium Acyltrifluoroborates (KATs) for Two‐Photon 3D Patterning of PEG‐Hydrogels. Helv Chim Acta 2020. [DOI: 10.1002/hlca.202000172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Haewon Song
- Laboratorium für Organische Chemie Department of Chemistry and Applied Biosciences, ETH Zürich CH-8093 Zürich Switzerland
| | - Dino Wu
- Laboratorium für Organische Chemie Department of Chemistry and Applied Biosciences, ETH Zürich CH-8093 Zürich Switzerland
| | - Dimitry Mazunin
- Laboratorium für Organische Chemie Department of Chemistry and Applied Biosciences, ETH Zürich CH-8093 Zürich Switzerland
| | - Sizhou M. Liu
- Laboratorium für Organische Chemie Department of Chemistry and Applied Biosciences, ETH Zürich CH-8093 Zürich Switzerland
| | - Yoshikatsu Sato
- Institute of Transformative Bio-Molecules Nagoya University Nagoya Aichi 464-8601 Japan
| | - Nicolas Broguiere
- Tissue Engineering and Biofabrication Laboratory Department of Health Sciences & Technology, ETH Zürich CH-8093 Zürich Switzerland
| | - Marcy Zenobi‐Wong
- Tissue Engineering and Biofabrication Laboratory Department of Health Sciences & Technology, ETH Zürich CH-8093 Zürich Switzerland
| | - Jeffrey W. Bode
- Laboratorium für Organische Chemie Department of Chemistry and Applied Biosciences, ETH Zürich CH-8093 Zürich Switzerland
- Institute of Transformative Bio-Molecules Nagoya University Nagoya Aichi 464-8601 Japan
| |
Collapse
|
16
|
Wu D, Taguchi J, Tanriver M, Bode JW. Synthesis of Acylboron Compounds. Angew Chem Int Ed Engl 2020; 59:16847-16858. [PMID: 32510826 DOI: 10.1002/anie.202005050] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Indexed: 12/11/2022]
Abstract
Acylboron compounds are emerging as versatile functional groups with applications in multiple research fields. Their synthesis, however, is still challenging and requires innovative methods. This Minireview provides an overview on the obstacles of acylboron synthesis and highlights notable advances within the last three years on new strategies to overcome the challenges posed by the formation of acyl-boron bonds.
Collapse
Affiliation(s)
- Dino Wu
- Laboratory of Organic Chemistry, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Jumpei Taguchi
- Laboratory of Organic Chemistry, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Matthias Tanriver
- Laboratory of Organic Chemistry, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Jeffrey W Bode
- Laboratory of Organic Chemistry, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| |
Collapse
|
17
|
Lebedev Y, Apte C, Cheng S, Lavigne C, Lough A, Aspuru-Guzik A, Seferos DS, Yudin AK. Boramidine: A Versatile Structural Motif for the Design of Fluorescent Heterocycles. J Am Chem Soc 2020; 142:13544-13549. [PMID: 32602711 DOI: 10.1021/jacs.0c05410] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sodium cyanoborohydride-derived N-alkylnitriliumboranes were found to be versatile precursors for the synthesis of novel boron-containing heterocycles. The reaction between N-alkylnitriliumboranes and 2-aminopyridines, imidazoles, oxazoles, or isoxazoles leads to the incorporation of the [B-C] motif into a five-membered boramidine, which exists as a mixture of Z and E isomers. The resulting heterocycles are blue fluorescent in both the solid state and in solution with ca. 2700-8400 cm-1 Stokes shifts and quantum yields in the 65-74% range in water and in the 42-84% range in organic solvents. The combination of photophysical properties, structural tunability, stability, and solubility in various media is expected to find application in a range of disciplines.
Collapse
Affiliation(s)
- Yury Lebedev
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George, Toronto, ON M5S3H6, Canada
| | - Chirag Apte
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George, Toronto, ON M5S3H6, Canada
| | - Susan Cheng
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George, Toronto, ON M5S3H6, Canada
| | - Cyrille Lavigne
- Department of Computer Science, University of Toronto, 214 College Street, Toronto, ON M5T3A1, Canada
| | - Alan Lough
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George, Toronto, ON M5S3H6, Canada
| | - Alán Aspuru-Guzik
- Department of Computer Science, University of Toronto, 214 College Street, Toronto, ON M5T3A1, Canada.,Chemical Physics Theory Group, Department of Chemistry, University of Toronto, 80 St. George, Toronto, ON M5S3H6, Canada.,Vector Institute for Artificial Intelligence, 661 University Avenue, Suite 710, Toronto, ON M5G1M1, Canada.,Lebovic Fellow, Canadian Institute for Advanced Research (CIFAR), 661 University Avenue, Toronto, ON M5G1M1, Canada
| | - Dwight S Seferos
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George, Toronto, ON M5S3H6, Canada.,Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S3E5, Canada
| | - Andrei K Yudin
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George, Toronto, ON M5S3H6, Canada
| |
Collapse
|
18
|
Šterman A, Sosič I, Gobec S, Časar Z. Recent Advances in the Synthesis of Acylboranes and Their Widening Applicability. ACS OMEGA 2020; 5:17868-17875. [PMID: 32743157 PMCID: PMC7391254 DOI: 10.1021/acsomega.0c02391] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 06/29/2020] [Indexed: 05/27/2023]
Abstract
The most common types of acylboranes are acyltrifluoroborates, acyl MIDA-boronates, and monofluoroacylboronates. Because of the increasing importance of these compounds in the past decade, we highlight the recently reported synthetic strategies to access acylboranes. In addition, an expanding array of their applications has been discovered, based on either the ability of acylboranes to enter rapid amide-forming ligations or the retained ketone-like character of the carbonyl group. Therefore, we also describe ground-breaking achievements where acylboranes were successfully put to use, such as their utility in biochemical, material, and medicinal sciences.
Collapse
Affiliation(s)
- Andrej Šterman
- University
of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Izidor Sosič
- University
of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Stanislav Gobec
- University
of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Zdenko Časar
- University
of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
- Lek
Pharmaceuticals d.d., Sandoz Development Center Slovenia, Verovškova ulica 57, 1526 Ljubljana, Slovenia
| |
Collapse
|
19
|
Affiliation(s)
- Dino Wu
- Laboratory of Organic Chemistry Eidgenössische Technische Hochschule (ETH) Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Jumpei Taguchi
- Laboratory of Organic Chemistry Eidgenössische Technische Hochschule (ETH) Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Matthias Tanriver
- Laboratory of Organic Chemistry Eidgenössische Technische Hochschule (ETH) Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Jeffrey W. Bode
- Laboratory of Organic Chemistry Eidgenössische Technische Hochschule (ETH) Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| |
Collapse
|
20
|
Schuhmacher A, Shiro T, Ryan SJ, Bode JW. Synthesis of secondary and tertiary amides without coupling agents from amines and potassium acyltrifluoroborates (KATs). Chem Sci 2020; 11:7609-7614. [PMID: 34094137 PMCID: PMC8152719 DOI: 10.1039/d0sc01330g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Although highly effective for most amide syntheses, the activation of carboxylic acids requires the use of problematic coupling reagents and is often poorly suited for challenging cases such as N-methyl amino acids. As an alternative to both secondary and tertiary amides, we report their convenient synthesis by the rapid oxidation of trifluoroborate iminiums (TIMs). TIMs are easily prepared by acid-promoted condensation of potassium acyltrifluoroborates (KATs) and amines and are cleanly and rapidly oxidized to amides with hydrogen peroxide. The overall transformation can be conducted either as a one-pot procedure or via isolation of the TIM. The unique nature of the neutral, zwitterionic TIMs makes possible the preparation of tertiary amides via an iminium species that would not be accessible from other carbonyl derivatives and can be conducted in the presence of unprotected functional groups including acids, alcohols and thioethers. In preliminary studies, this approach was applied to the late-stage modifications of long peptides and the iterative synthesis of short, N-methylated peptides without the need for coupling agents. Oxidative amidation of potassium acyltrifluoroborates (KATs) and amines via trifluoroborate iminiums (TIMs) delivers amides without coupling agents. This unusual approach to amides can be applied for the late-stage modification of bioactive molecules and for solid-phase peptide synthesis.![]()
Collapse
Affiliation(s)
- Anne Schuhmacher
- Laboratory of Organic Chemistry, Eidgenössische Technische Hochschule (ETH) Zurich Vladimir-Prelog-Weg 3 8093 Zurich Switzerland
| | - Tomoya Shiro
- Laboratory of Organic Chemistry, Eidgenössische Technische Hochschule (ETH) Zurich Vladimir-Prelog-Weg 3 8093 Zurich Switzerland
| | - Sarah J Ryan
- Small Molecule Design and Development, Eli Lilly and Company Indianapolis IN 46285 USA
| | - Jeffrey W Bode
- Laboratory of Organic Chemistry, Eidgenössische Technische Hochschule (ETH) Zurich Vladimir-Prelog-Weg 3 8093 Zurich Switzerland
| |
Collapse
|
21
|
Taguchi J, Matsuura S, Seki T, Ito H. Synthesis and Tunable Optical Properties of C,N-Chelated Borate Luminophores Derived from Potassium Acyltrifluoroborates. Chemistry 2020; 26:2450-2455. [PMID: 31863512 DOI: 10.1002/chem.201904983] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Indexed: 12/12/2022]
Abstract
A new class of borate luminophores has been synthesized by a simple two-step reaction using potassium acyltrifluoroborates (KATs) as starting materials. The hydrazones obtained from reactions between KATs and 2-hydrazinopyridines followed by a cyclization resulted in the unprecedented formation of C,N-chelated six-membered bora-heterocycles. Under consideration of the results of DFT and TD-DFT calculations, four luminophores based on such bora-heterocycles are designed and synthesized, which exhibit a tunable fluorescence range from blue to red in the solid state. Moreover, one of the luminophores exhibits mechanofluorochromism from blue to yellow/green. As a result of the aforementioned mechanochromism of one of these luminophores, white-color emission was achieved by simply mixing the four luminophores.
Collapse
Affiliation(s)
- Jumpei Taguchi
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Kita 13 Nishi 8 Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| | - Satsuki Matsuura
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Kita 13 Nishi 8 Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| | - Tomohiro Seki
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Kita 13 Nishi 8 Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| | - Hajime Ito
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Kita 13 Nishi 8 Kita-ku, Sapporo, Hokkaido, 060-8628, Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 13 Nishi 8 Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| |
Collapse
|
22
|
Wu D, Fohn NA, Bode JW. Catalytic Synthesis of Potassium Acyltrifluoroborates (KATs) through Chemoselective Cross-Coupling with a Bifunctional Reagent. Angew Chem Int Ed Engl 2019; 58:11058-11062. [PMID: 31070291 DOI: 10.1002/anie.201904576] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Indexed: 12/14/2022]
Abstract
Potassium acyltrifluoroborates (KATs) are increasingly important functional groups, and general methods for their preparation are of great current interest. We report a bifunctional iminium reagent bearing both a tin nucleophile and a trifluoroborate, which was applied in chemoselective Pd0 -catalyzed Migita-Kosugi-Stille cross-coupling reactions owith aryl and vinyl halides. This method gives access to previously inaccessible aromatic and α,β-unsaturated acyltrifluoroborates, including precursors to amino-acid derived KATs.
Collapse
Affiliation(s)
- Dino Wu
- Laboratory of Organic Chemistry, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Nicole A Fohn
- Laboratory of Organic Chemistry, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Jeffrey W Bode
- Laboratory of Organic Chemistry, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| |
Collapse
|
23
|
Wu D, Fohn NA, Bode JW. Katalytische Synthese von Kaliumacyltrifluoroboraten mithilfe chemoselektiver Kreuzkupplung eines bifunktionalen Reagenzes. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904576] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Dino Wu
- Laboratorium für Organische ChemieEidgenössische Technische Hochschule (ETH) Zürich Vladimir-Prelog-Weg 3 8093 Zürich Schweiz
| | - Nicole A. Fohn
- Laboratorium für Organische ChemieEidgenössische Technische Hochschule (ETH) Zürich Vladimir-Prelog-Weg 3 8093 Zürich Schweiz
| | - Jeffrey W. Bode
- Laboratorium für Organische ChemieEidgenössische Technische Hochschule (ETH) Zürich Vladimir-Prelog-Weg 3 8093 Zürich Schweiz
| |
Collapse
|
24
|
Lin S, Wang L, Aminoleslami N, Lao Y, Yagel C, Sharma A. A modular and concise approach to MIDA acylboronates via chemoselective oxidation of unsymmetrical geminal diborylalkanes: unlocking access to a novel class of acylborons. Chem Sci 2019; 10:4684-4691. [PMID: 31123579 PMCID: PMC6495705 DOI: 10.1039/c9sc00378a] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/20/2019] [Indexed: 12/23/2022] Open
Abstract
Novel and mild synthesis of MIDA acylboronates including a novel class of acylborons and first chemoselective oxidation of geminal diborylalkanes.
Acylboronates represent a very intriguing and rare class of organoboronates. Synthesis of these compounds from readily available substrates under mild conditions and access to novel classes of acylborons has been challenging. We report a novel and concise route to various MIDA acylboronates from terminal alkynes/alkenes or vinyl boronic esters using unsymmetrical geminal diborylalkanes as key intermediates. The high modularity and mild conditions of this strategy allowed a facile access to acylboronates possessing aliphatic, aromatic as well as the rarer heteroaromatic, alkynyl and α,β-unsaturated scaffolds. To the best of our knowledge, this is the first report of chemoselective oxidation of geminal diborons as well as synthesis of an α,β-unsaturated acylboronate.
Collapse
Affiliation(s)
- Shengjia Lin
- Department of Chemistry and Chemical Biology , Stevens Institute of Technology , Hoboken , NJ 07030 , USA .
| | - Lucia Wang
- Department of Chemistry and Chemical Biology , Stevens Institute of Technology , Hoboken , NJ 07030 , USA .
| | - Negin Aminoleslami
- Department of Chemistry and Chemical Biology , Stevens Institute of Technology , Hoboken , NJ 07030 , USA .
| | - Yanting Lao
- Department of Chemistry and Chemical Biology , Stevens Institute of Technology , Hoboken , NJ 07030 , USA .
| | - Chelsea Yagel
- Department of Chemistry and Chemical Biology , Stevens Institute of Technology , Hoboken , NJ 07030 , USA .
| | - Abhishek Sharma
- Department of Chemistry and Chemical Biology , Stevens Institute of Technology , Hoboken , NJ 07030 , USA .
| |
Collapse
|
25
|
Taguchi J, Takeuchi T, Takahashi R, Masero F, Ito H. Concise Synthesis of Potassium Acyltrifluoroborates from Aldehydes through Copper(I)-Catalyzed Borylation/Oxidation. Angew Chem Int Ed Engl 2019; 58:7299-7303. [PMID: 30844125 DOI: 10.1002/anie.201901748] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Indexed: 12/12/2022]
Abstract
Potassium acyltrifluoroborates (KATs) were prepared through copper(I)-catalyzed borylation of aldehydes and subsequent oxidation. This synthetic route is characterized by the wide range of aldehydes accessible, favorable step economy, mild reaction conditions, and tolerance of various functional groups, and it enables the facile generation of a range of KATs, for example, bearing halide, sulfide, acetal, or ester moieties. Moreover, this method was applied to the three-step synthesis of various α-amino acid analogues that bear a KAT moiety on the C-terminus by using naturally occurring amino acids as the starting material.
Collapse
Affiliation(s)
- Jumpei Taguchi
- Division of Applied Chemistry, Graduate School of Engineering Hokkaido University, Kita 13 Nishi 8 Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| | - Takumi Takeuchi
- Division of Applied Chemistry, Graduate School of Engineering Hokkaido University, Kita 13 Nishi 8 Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| | - Rina Takahashi
- Division of Applied Chemistry, Graduate School of Engineering Hokkaido University, Kita 13 Nishi 8 Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| | - Fabio Masero
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Bioscience, ETH Zürich, 8093, Zürich, Switzerland
| | - Hajime Ito
- Division of Applied Chemistry, Graduate School of Engineering Hokkaido University, Kita 13 Nishi 8 Kita-ku, Sapporo, Hokkaido, 060-8628, Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 13 Nishi 8 Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| |
Collapse
|
26
|
Taguchi J, Takeuchi T, Takahashi R, Masero F, Ito H. Concise Synthesis of Potassium Acyltrifluoroborates from Aldehydes through Copper(I)‐Catalyzed Borylation/Oxidation. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901748] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jumpei Taguchi
- Division of Applied ChemistryGraduate School of Engineering Hokkaido University Kita 13 Nishi 8 Kita-ku Sapporo Hokkaido 060-8628 Japan
| | - Takumi Takeuchi
- Division of Applied ChemistryGraduate School of Engineering Hokkaido University Kita 13 Nishi 8 Kita-ku Sapporo Hokkaido 060-8628 Japan
| | - Rina Takahashi
- Division of Applied ChemistryGraduate School of Engineering Hokkaido University Kita 13 Nishi 8 Kita-ku Sapporo Hokkaido 060-8628 Japan
| | - Fabio Masero
- Laboratorium für Organische ChemieDepartment of Chemistry and Applied BioscienceETH Zürich 8093 Zürich Switzerland
| | - Hajime Ito
- Division of Applied ChemistryGraduate School of Engineering Hokkaido University Kita 13 Nishi 8 Kita-ku Sapporo Hokkaido 060-8628 Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD)Hokkaido University Kita 13 Nishi 8 Kita-ku Sapporo Hokkaido 060-8628 Japan
| |
Collapse
|
27
|
Šterman A, Sosič I, Gobec S, Časar Z. Synthesis of aminoboronic acid derivatives: an update on recent advances. Org Chem Front 2019. [DOI: 10.1039/c9qo00626e] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Aminoboronic acids and their derivatives are particularly useful as drugs, probes and synthons. Recent developments in their synthesis are highlighted.
Collapse
Affiliation(s)
- Andrej Šterman
- University of Ljubljana
- Faculty of Pharmacy
- Chair of Medicinal Chemistry
- SI-1000 Ljubljana
- Slovenia
| | - Izidor Sosič
- University of Ljubljana
- Faculty of Pharmacy
- Chair of Medicinal Chemistry
- SI-1000 Ljubljana
- Slovenia
| | - Stanislav Gobec
- University of Ljubljana
- Faculty of Pharmacy
- Chair of Medicinal Chemistry
- SI-1000 Ljubljana
- Slovenia
| | - Zdenko Časar
- University of Ljubljana
- Faculty of Pharmacy
- Chair of Medicinal Chemistry
- SI-1000 Ljubljana
- Slovenia
| |
Collapse
|