1
|
Cui Z, Li H, Ding XH, Yu CH, Qiao EJ, Jin WB, Xu WY, Lyu X, Miao CB, Yang HT. Iron-Catalyzed [3 + 2] Annulation of O-Acyl Oximes with 2-Hydroxy-1-Naphthoates for the Synthesis of Benzo[g]indoles. Org Lett 2025. [PMID: 40434351 DOI: 10.1021/acs.orglett.5c00893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2025]
Abstract
An iron-catalyzed [3 + 2] annulation of O-acyl oximes with 2-hydroxy-1-naphthoates has been developed. This strategy features the simultaneous activation of both substrates to form two radical intermediates. Subsequent selective C-N radical coupling followed by sequential condensation and 1,3-ester migration affords 1H- or 3H-benzo[g]indoles. In terms of the O-acyl oximes derived from 4-oxocyclohexanone and 4-azacyclohexanone, further ring-opening furnishes 2-(2-hydroxyethyl)- or 2-(2-aminoethyl)-1H-benzo[g]indoles.
Collapse
Affiliation(s)
- Zhen Cui
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University; Changzhou, Jiangsu 213164, P. R. China
| | - Hui Li
- School of New Energy, NingBo University of Technology; Ningbo, Zhejiang 315211, P. R. China
| | - Xian-Heng Ding
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University; Changzhou, Jiangsu 213164, P. R. China
| | - Cang-Hai Yu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University; Changzhou, Jiangsu 213164, P. R. China
| | - En-Jun Qiao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University; Changzhou, Jiangsu 213164, P. R. China
| | - Wan-Bo Jin
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University; Changzhou, Jiangsu 213164, P. R. China
| | - Wen-Ya Xu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University; Changzhou, Jiangsu 213164, P. R. China
| | - Xinyu Lyu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University; Changzhou, Jiangsu 213164, P. R. China
| | - Chun-Bao Miao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University; Changzhou, Jiangsu 213164, P. R. China
| | - Hai-Tao Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University; Changzhou, Jiangsu 213164, P. R. China
| |
Collapse
|
2
|
Rachwalski K, Madden SJ, Ritchie N, French S, Bhando T, Girgis-Gabardo A, Tu M, Gordzevich R, Ives R, Guo AB, Johnson JW, Xu Y, Kapadia SB, Magolan J, Brown ED. A screen for cell envelope stress uncovers an inhibitor of prolipoprotein diacylglyceryl transferase, Lgt, in Escherichia coli. iScience 2024; 27:110894. [PMID: 39376497 PMCID: PMC11456916 DOI: 10.1016/j.isci.2024.110894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/25/2024] [Accepted: 09/03/2024] [Indexed: 10/09/2024] Open
Abstract
The increasing prevalence of antibiotic resistance demands the discovery of antibacterial chemical scaffolds with unique mechanisms of action. Phenotypic screening approaches, such as the use of reporters for bacterial cell stress, offer promise to identify compounds while providing strong hypotheses for follow-on mechanism of action studies. From a collection of ∼1,800 Escherichia coli GFP transcriptional reporter strains, we identified a reporter that is highly induced by cell envelope stress-pProm rcsA -GFP. After characterizing pProm rcsA -GFP induction, we assessed a collection of bioactive small molecules for reporter induction, identifying 24 compounds of interest. Spontaneous suppressors to one compound in particular, MAC-0452936, mapped to the gene encoding the essential prolipoprotein diacylglyceryl transferase, lgt. Lgt inhibition by MAC-0452936 inhibition was confirmed through genetic, phenotypic, and biochemical approaches. The oxime ester, MAC-0452936, represents a useful small molecule inhibitor of Lgt and highlights the potential of using pProm rcsA -GFP as a phenotypic screening tool.
Collapse
Affiliation(s)
- Kenneth Rachwalski
- Institute of Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Sean J. Madden
- Institute of Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Nicole Ritchie
- Institute of Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Shawn French
- Institute of Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Timsy Bhando
- Institute of Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Adele Girgis-Gabardo
- Institute of Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Megan Tu
- Institute of Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Rodion Gordzevich
- Institute of Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Rowan Ives
- Institute of Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Amelia B.Y. Guo
- Institute of Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Jarrod W. Johnson
- Institute of Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Yiming Xu
- Department of Biochemical and Cellular Pharmacology, Genentech, South San Francisco, CA, USA
| | | | - Jakob Magolan
- Institute of Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Eric D. Brown
- Institute of Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
3
|
Wu Y, Liu Y, Kong Y, Wu M, Wang D, Shang Y, He X. Modular Assembly of Pyrrolo[3,4- c]isoquinolines through Rh-Catalyzed Cascade C-H Activation/Annulation of O-Methyl Aryloximes with Maleimides. J Org Chem 2024; 89:8447-8457. [PMID: 38832810 DOI: 10.1021/acs.joc.4c00324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
An efficient and practical strategy for the construction of pyrrolo[3,4-c]isoquinolines via Rh(III)-catalyzed cascade C-H activation and subsequential annulation process from easily available O-methyl aryloximes and maleimides has been disclosed. This facile protocol does not require any inert atmosphere protection with good efficiency in a low loading of catalyst and exhibits good functional group tolerance and broad substrate scope. Notably, the as-prepared products show potential photophysical properties.
Collapse
Affiliation(s)
- Yinsong Wu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China
| | - Yanan Liu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China
| | - Yangzilin Kong
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China
| | - Mengdi Wu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China
| | - Demao Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China
| | - Xinwei He
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China
| |
Collapse
|
4
|
Yousefnejad F, Gholami F, Larijani B, Mahdavi M. Oxime Esters: Flexible Building Blocks for Heterocycle Formation. Top Curr Chem (Cham) 2023; 381:17. [PMID: 37202650 DOI: 10.1007/s41061-023-00431-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 04/28/2023] [Indexed: 05/20/2023]
Abstract
Oxime esters as the applicable building blocks, internal oxidizing agents, and directing groups in the synthesis of -, S-, and O-containing heterocycle scaffolds have gained great attention in the last decade. This review provides an overview of recent advances in the cyclization of oxime esters with various functional group reagents under transition metal and transition metal-free catalyzed conditions. Moreover, the mechanistic aspects of these protocols are explained in detail.
Collapse
Affiliation(s)
- Faeze Yousefnejad
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Fatemeh Gholami
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Jiang HM, Zhao YL, Sun Q, Ouyang XH, Li JH. Recent Advances in N-O Bond Cleavage of Oximes and Hydroxylamines to Construct N-Heterocycle. Molecules 2023; 28:molecules28041775. [PMID: 36838760 PMCID: PMC9964420 DOI: 10.3390/molecules28041775] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
Oximes and hydroxylamines are a very important class of skeletons that not only widely exist in natural products and drug molecules, but also a class of synthon, which have been widely used in industrial production. Due to weak N-O σ bonds of oximes and hydroxylamines, they can be easily transformed into other functional groups by N-O bond cleavage. Therefore, the synthesis of N-heterocycle by using oximes and hydroxylamines as nitrogen sources has attracted wide attention. Recent advances for the synthesis of N-heterocycle through transition-metal-catalyzed and radical-mediated cyclization classified by the type of nitrogen sources and rings are summarized. In this paper, the recent advances in the N-O bond cleavage of oximes and hydroxylamines are reviewed. We hope that this review provides a new perspective on this field, and also provides a reference to develop environmentally friendly and sustainable methods.
Collapse
Affiliation(s)
- Hui-Min Jiang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Yi-Lin Zhao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Qing Sun
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Xuan-Hui Ouyang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- Correspondence: (X.-H.O.); (J.-H.L.)
| | - Jin-Heng Li
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
- Correspondence: (X.-H.O.); (J.-H.L.)
| |
Collapse
|
6
|
Li Q, Yan K, Zhu Y, Qi G, Wang Y, Hao WJ, Jiang B. Rh(III)-Catalyzed annulative aldehydic C-H functionalization for accessing ring-fluorinated benzo[b]azepin-5-ones. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Yan H, Xu G, Gu M, Zhang S, Wu Q, Meng J, Zhu N, Fang Z, Duan J, Guo K. Copper-catalyzed [4+2] oxidative annulation of α,β-unsaturated ketoxime acetates with ethyl trifluoropyruvate. Chem Commun (Camb) 2022; 58:6757-6760. [PMID: 35611963 DOI: 10.1039/d2cc01573k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A novel route for tandem C-N/C-O formation via copper-catalyzed [4+2] oxidative annulation of α,β-unsaturated ketoxime acetates with ethyl trifluoropyruvate to synthesize valuable trifluoromethyl-containing 2H-1,3-oxazines in moderate to good yields is developed. This procedure represents the first [4+2] oxidative annulation of oxime derivatives with activated CO bonds and provides an alternative route towards functionalized 2H-1,3-oxazines.
Collapse
Affiliation(s)
- Huan Yan
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Gaochen Xu
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Meng Gu
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Sai Zhang
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Qinghuan Wu
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Jingjing Meng
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Ning Zhu
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Jindian Duan
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| |
Collapse
|
8
|
Redox-neutral C–H acylation of indole with ketene by manganese catalysis. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
9
|
Miao CB, Guan HR, Tang Y, Wang K, Ren WL, Lyu X, Yao C, Yang HT. Copper-Catalyzed Bisannulations of Malonate-Tethered O-Acyl Oximes with Pyridine, Pyrazine, Pyridazine, and Quinoline Derivatives for the Construction of Dihydroindolizine-Fused Pyrrolidinones and Analogues. Org Lett 2021; 23:8699-8704. [PMID: 34723547 DOI: 10.1021/acs.orglett.1c03078] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A copper-catalyzed bisannulation reaction of malonate-tethered O-acyl oximes with pyridine, pyrazine, pyridazine, and quinoline derivatives has been developed for the concise synthesis of structurally novel dihydroindolizine-fused pyrrolidinones and their analogues. The present reaction shows excellent regioselectivity and stereoselectivity. Theoretical calculations reveal that the coordination effect of the carbonyl group in the nucleophilic substrate determines the excellent regioselectivity. Further functionalization of the generated dihydroindolizine-fused pyrrolidinone could be easily realized through substitution, Michael addition, selective aminolysis, and hydrolysis reactions.
Collapse
Affiliation(s)
- Chun-Bao Miao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Hong-Rong Guan
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - YiHan Tang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Kun Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Wen-Long Ren
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | | | - ChangSheng Yao
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Hai-Tao Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| |
Collapse
|
10
|
Wang K, Guan HR, Ren WL, Yang HT, Miao CB. Copper-Catalyzed Cascade Annulation of Malonate-Tethered O-Acyl Oximes with Cyclic 1,3-Dicarbonyl Compounds for the Synthesis of Spiro-Pentacyclic Derivatives. J Org Chem 2021; 86:12309-12317. [PMID: 34369761 DOI: 10.1021/acs.joc.1c01122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A copper-catalyzed cascade annulation of malonate-tethered O-acyl oximes with cyclic 1,3-dicarbonyl compounds has been developed for the rapid synthesis of spiro-pentacyclic derivatives. This reaction allows the one-step formation of five C-C/N/O bonds and an angular tricyclic core under very mild conditions and shows excellent regioselectivity and stereoselectivity.
Collapse
Affiliation(s)
- Kun Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Hong-Rong Guan
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Wen-Long Ren
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Hai-Tao Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Chun-Bao Miao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| |
Collapse
|
11
|
Yang Z, Zhou H, He M, Li J, Yang Z, Wu Y. One‐pot Synthesis of 3‐Acylsilane‐Substituted Isoquinolines via Rhodium (III)‐Catalyzed C−H Activation/Annulation of
O
‐pivaloyl Oximes With Acryloylsilanes. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zengbao Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University No. 17 Southern Renmin Road 610041 Chengdu Sichuan P. R. China
| | - Hui Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University No. 17 Southern Renmin Road 610041 Chengdu Sichuan P. R. China
| | - Maoyao He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University No. 17 Southern Renmin Road 610041 Chengdu Sichuan P. R. China
| | - Jianglian Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University No. 17 Southern Renmin Road 610041 Chengdu Sichuan P. R. China
| | - Zhongzhen Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University No. 17 Southern Renmin Road 610041 Chengdu Sichuan P. R. China
| | - Yong Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University No. 17 Southern Renmin Road 610041 Chengdu Sichuan P. R. China
| |
Collapse
|
12
|
Wan T, Pi C, Wu Y, Cui X. Rh(III)-Catalyzed [4 + 2] Annulation of 3-Aryl-5-isoxazolone with Maleimides or Maleic Ester. Org Lett 2020; 22:6484-6488. [DOI: 10.1021/acs.orglett.0c02283] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ting Wan
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Chao Pi
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Yangjie Wu
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Xiuling Cui
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450052, P. R. China
| |
Collapse
|
13
|
Zhang Q, Xiong Q, Li M, Xiong W, Shi B, Lan Y, Lu L, Xiao W. Palladium‐Catalyzed Asymmetric [8+2] Dipolar Cycloadditions of Vinyl Carbamates and Photogenerated Ketenes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005313] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Qun‐Liang Zhang
- CCNU-uOttawa Joint Research Centre Key Laboratory of Pesticide & Chemical Biology Ministry of Education College of Chemistry Central China Normal University 152 Luoyu Road Wuhan Hubei 430079 China
| | - Qin Xiong
- School of Chemistry and Chemical Engineering Chongqing University Chongqing 400030 China
| | - Miao‐Miao Li
- CCNU-uOttawa Joint Research Centre Key Laboratory of Pesticide & Chemical Biology Ministry of Education College of Chemistry Central China Normal University 152 Luoyu Road Wuhan Hubei 430079 China
| | - Wei Xiong
- CCNU-uOttawa Joint Research Centre Key Laboratory of Pesticide & Chemical Biology Ministry of Education College of Chemistry Central China Normal University 152 Luoyu Road Wuhan Hubei 430079 China
| | - Bin Shi
- CCNU-uOttawa Joint Research Centre Key Laboratory of Pesticide & Chemical Biology Ministry of Education College of Chemistry Central China Normal University 152 Luoyu Road Wuhan Hubei 430079 China
| | - Yu Lan
- School of Chemistry and Chemical Engineering Chongqing University Chongqing 400030 China
- College of Chemistry, and Institute of Green Catalysis Zhengzhou University Zhengzhou Henan 450001 China
| | - Liang‐Qiu Lu
- CCNU-uOttawa Joint Research Centre Key Laboratory of Pesticide & Chemical Biology Ministry of Education College of Chemistry Central China Normal University 152 Luoyu Road Wuhan Hubei 430079 China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Lanzhou Institute of Chemical Physics (LICP) Chinese Academy of Sciences Lanzhou 730000 P. R. China
| | - Wen‐Jing Xiao
- CCNU-uOttawa Joint Research Centre Key Laboratory of Pesticide & Chemical Biology Ministry of Education College of Chemistry Central China Normal University 152 Luoyu Road Wuhan Hubei 430079 China
| |
Collapse
|
14
|
Zhang Q, Xiong Q, Li M, Xiong W, Shi B, Lan Y, Lu L, Xiao W. Palladium‐Catalyzed Asymmetric [8+2] Dipolar Cycloadditions of Vinyl Carbamates and Photogenerated Ketenes. Angew Chem Int Ed Engl 2020; 59:14096-14100. [DOI: 10.1002/anie.202005313] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Indexed: 01/13/2023]
Affiliation(s)
- Qun‐Liang Zhang
- CCNU-uOttawa Joint Research Centre Key Laboratory of Pesticide & Chemical Biology Ministry of Education College of Chemistry Central China Normal University 152 Luoyu Road Wuhan Hubei 430079 China
| | - Qin Xiong
- School of Chemistry and Chemical Engineering Chongqing University Chongqing 400030 China
| | - Miao‐Miao Li
- CCNU-uOttawa Joint Research Centre Key Laboratory of Pesticide & Chemical Biology Ministry of Education College of Chemistry Central China Normal University 152 Luoyu Road Wuhan Hubei 430079 China
| | - Wei Xiong
- CCNU-uOttawa Joint Research Centre Key Laboratory of Pesticide & Chemical Biology Ministry of Education College of Chemistry Central China Normal University 152 Luoyu Road Wuhan Hubei 430079 China
| | - Bin Shi
- CCNU-uOttawa Joint Research Centre Key Laboratory of Pesticide & Chemical Biology Ministry of Education College of Chemistry Central China Normal University 152 Luoyu Road Wuhan Hubei 430079 China
| | - Yu Lan
- School of Chemistry and Chemical Engineering Chongqing University Chongqing 400030 China
- College of Chemistry, and Institute of Green Catalysis Zhengzhou University Zhengzhou Henan 450001 China
| | - Liang‐Qiu Lu
- CCNU-uOttawa Joint Research Centre Key Laboratory of Pesticide & Chemical Biology Ministry of Education College of Chemistry Central China Normal University 152 Luoyu Road Wuhan Hubei 430079 China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Lanzhou Institute of Chemical Physics (LICP) Chinese Academy of Sciences Lanzhou 730000 P. R. China
| | - Wen‐Jing Xiao
- CCNU-uOttawa Joint Research Centre Key Laboratory of Pesticide & Chemical Biology Ministry of Education College of Chemistry Central China Normal University 152 Luoyu Road Wuhan Hubei 430079 China
| |
Collapse
|
15
|
Cheng Y, Han X, Li J, Zhou Y, Liu H. A removable directing group-assisted Rh(iii)-catalyzed direct C–H bond activation/annulation cascade to synthesize highly fused isoquinolines. Org Chem Front 2020. [DOI: 10.1039/d0qo00786b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A removable directing group-assisted Rh(iii)-catalyzed direct C–H bond activation/annulation cascade was developed to synthesize highly fused isoquinolines with good to excellent yields and a good functional group tolerance.
Collapse
Affiliation(s)
- Yilang Cheng
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai
- China
| | - Xu Han
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai
- China
| | - Junyou Li
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai
- China
| | - Yu Zhou
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai
- China
| | - Hong Liu
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai
- China
| |
Collapse
|
16
|
Rh(III)-Catalyzed C–H Bond Activation for the Construction of Heterocycles with sp3-Carbon Centers. Catalysts 2019. [DOI: 10.3390/catal9100823] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Rh(III)-catalyzed C–H activation features mild reaction conditions, good functional group tolerance, high reaction efficiency, and regioselectivity. Recently, it has attracted tremendous attention and has been employed to synthesize various heterocycles, such as indoles, isoquinolines, isoquinolones, pyrroles, pyridines, and polyheterocycles, which are important privileged structures in biological molecules, natural products, and agrochemicals. In this short review, we attempt to present an overview of recent advances in Rh(III)-mediated C–H bond activation to generate diverse heterocyclic scaffolds with sp3 carbon centers.
Collapse
|
17
|
Li T, Liu C, Wu S, Chen C, Zhu B. Rhodium(iii)-catalyzed unreactive C(sp 3)-H alkenylation of N-alkyl-1H-pyrazoles with alkynes. Org Biomol Chem 2019; 17:7679-7683. [PMID: 31386754 DOI: 10.1039/c9ob01531k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The first example of pyrazole-directed rhodium(iii)-catalyzed unreactive C(sp3)-H alkenylation with alkynes has been described, which showed a relatively broad substrate scope with good functional group compatibility. Moreover, we demonstrated that the transitive coordinating center pyrazole could be easily removed under mild conditions.
Collapse
Affiliation(s)
- Tongyu Li
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.
| | - Chang Liu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.
| | - Shaonan Wu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.
| | - Chen Chen
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.
| | - Bolin Zhu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.
| |
Collapse
|
18
|
Li Y, Chen H, Qu LB, Houk KN, Lan Y. Origin of Regiochemical Control in Rh(III)/Rh(V)-Catalyzed Reactions of Unsaturated Oximes and Alkenes to Form Pyrdines. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02085] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yingzi Li
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
- Department of Chemistry and Biochemistry, University of California—Los Angeles, Los Angeles, California 90095-1569, United States
| | - Haohua Chen
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, P. R. China
| | - Ling-Bo Qu
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - K. N. Houk
- Department of Chemistry and Biochemistry, University of California—Los Angeles, Los Angeles, California 90095-1569, United States
| | - Yu Lan
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, P. R. China
| |
Collapse
|
19
|
Bai D, Xia J, Song F, Li X, Liu B, Liu L, Zheng G, Yang X, Sun J, Li X. Rhodium(iii)-catalyzed diverse [4 + 1] annulation of arenes with 1,3-enynes via sp 3/sp 2 C-H activation and 1,4-rhodium migration. Chem Sci 2019; 10:3987-3993. [PMID: 31015939 PMCID: PMC6457175 DOI: 10.1039/c9sc00545e] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 02/21/2019] [Indexed: 01/24/2023] Open
Abstract
Nitrogen-rich heterocyclic compounds have a profound impact on human health. Despite the numerous synthetic methods, diversified, step-economic, and general synthesis of heterocycles remains limited. C-H bond functionalization catalyzed by rhodium(iii) cyclopentadienyls has proven to be a powerful strategy in the synthesis of diversified heterocycles. Herein we describe rhodium(iii)-catalyzed sp2 and sp3 C-H activation-oxidative annulations between aromatic substrates and 1,3-enynes, where alkenyl-to-allyl 1,4-rhodium(iii) migration enabled the generation of electrophilic rhodium(iii) π-allyls via remote C-H functionalization. Subsequent nucleophilic trapping of these species by various sp2-hybridized N-nucleophiles delivered three classes (external salts, inner salts, and neutral azacycles) of five-membered azacycles bearing a tetrasubstituted saturated carbon center, as a result of [4 + 1] annulation with the alkyne being a one-carbon synthon. All the reactions proceeded under relatively mild conditions with broad substrate scope, high efficiency, and excellent regioselectivity. The synthetic applications of this protocol have also been demonstrated, and experimental studies have been performed to support the proposed mechanism.
Collapse
Affiliation(s)
- Dachang Bai
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation , School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang 453007 , China
| | - Jintao Xia
- Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian 116023 , China .
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Fangfang Song
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation , School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang 453007 , China
| | - Xueyan Li
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation , School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang 453007 , China
| | - Bingxian Liu
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation , School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang 453007 , China
| | - Lihong Liu
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation , School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang 453007 , China
| | - Guangfan Zheng
- School of Chemistry and Chemical Engineering , Shaanxi Normal University (SNNU) , Xi'an 710062 , China .
| | - Xifa Yang
- Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian 116023 , China .
| | - Jiaqiong Sun
- School of Chemistry and Chemical Engineering , Shaanxi Normal University (SNNU) , Xi'an 710062 , China .
| | - Xingwei Li
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation , School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang 453007 , China
- Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian 116023 , China .
- School of Chemistry and Chemical Engineering , Shaanxi Normal University (SNNU) , Xi'an 710062 , China .
| |
Collapse
|
20
|
Li XC, Du C, Zhang H, Niu JL, Song MP. Cp*-Free Cobalt-Catalyzed C–H Activation/Annulations by Traceless N,O-Bidentate Directing Group: Access to Isoquinolines. Org Lett 2019; 21:2863-2866. [DOI: 10.1021/acs.orglett.9b00866] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiao-Cai Li
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Cong Du
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - He Zhang
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Jun-Long Niu
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Mao-Ping Song
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
21
|
Zhang J, Shan C, Zhang T, Song J, Liu T, Lan Y. Computational advances aiding mechanistic understanding of silver-catalyzed carbene/nitrene/silylene transfer reactions. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2018.12.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
22
|
Wang Q, Lou J, Huang Z, Yu Z. Rhodium(III)-Catalyzed Annulation of Acetophenone O-Acetyl Oximes with Allenoates through Arene C–H Activation: An Access to Isoquinolines. J Org Chem 2019; 84:2083-2092. [DOI: 10.1021/acs.joc.8b03092] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Quannan Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Jiang Lou
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Zilong Huang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Zhengkun Yu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, People’s Republic of China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, People’s Republic of China
| |
Collapse
|
23
|
Wang H, Xu H, Li B, Wang B. Annulation of β-Enaminonitriles with Alkynes via RhIII-Catalyzed C–H Activation: Direct Access to Highly Substituted 1-Naphthylamines and Naphtho[1,8-bc]pyridines. Org Lett 2018; 20:5640-5643. [DOI: 10.1021/acs.orglett.8b02341] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Haili Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hong Xu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Bin Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Baiquan Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
24
|
Zhou W, Mei YL, Li B, Guan ZY, Deng QH. Synthesis of β-Alkyl 2-Hydroxychalcones by Rhodium-Catalyzed Coupling of N-Phenoxyacetamides and Nonterminal Propargyl Alcohols. Org Lett 2018; 20:5808-5812. [DOI: 10.1021/acs.orglett.8b02504] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Wei Zhou
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Yan-Le Mei
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Bin Li
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Zhen-Yu Guan
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Qing-Hai Deng
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, P. R. China
| |
Collapse
|