1
|
Amarloo F, Zhiani R, Motavalizadehkakhky A, Hosseiny M. Synthesis of new DFNS/ZnTiO 3 nanoparticles as a nanocatalyst for the reaction of quinazoline-2, 4(1H, 3H)-dione with CO 2. Sci Rep 2025; 15:11648. [PMID: 40185831 PMCID: PMC11971304 DOI: 10.1038/s41598-025-95930-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 03/25/2025] [Indexed: 04/07/2025] Open
Abstract
The conversion of CO2 into valuable materials through multicomponent reactions in the presence of nanocatalysts with high surface area and suitable efficiency has garnered significant attention. Herein, this study is focused on the synthesis and catalytic activity of DFNS-supported zinc titanate nanoparticles for the conversion of CO2 into quinazoline-2,4(1H,3H)-dione derivatives. ZnTiO3 was prepared by a sol-gel process, presenting a novel dandelion-like morphology that allows a significant increase in the surface area and catalytic activity. Detailed characterizations such as EDX for elemental composition, XRD for crystallinity, TEM and SEM for morphology, TGA for thermal stability, and FT-IR for bonding characteristics confirmed the excellent integration of ZnTiO3 into the DFNS. Under optimized conditions, our catalytic protocol achieved a maximum yield of 92% at 70 °C over 3 h in DMF solvent. Systematic optimization of reaction parameters such as solvent type and nanocatalyst loading showed the remarkable efficiency of this nanocatalyst under mild conditions, hence proving to be a strong alternative in the practices of green synthesis. Further tests for heterogeneity confirmed the effective operation of DFNS/ZnTiO3 as an enduring heterogeneous nanocatalyst, recyclability tests showing an 87% efficiency retention after ten cycles. These findings confirm the economic and ecological viability of the nanocatalyst; hence, DFNS/ZnTiO3 represents a versatile platform toward the advancement of CO2 conversion technologies into valued chemical precursors.
Collapse
Affiliation(s)
- Fatemeh Amarloo
- Department of Chemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Rahele Zhiani
- Department of Chemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran.
| | | | - Malihesadat Hosseiny
- Department of Chemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| |
Collapse
|
2
|
Senapati S, Kumar Hota S, Kloene L, Empel C, Murarka S, Koenigs RM. C-H Alkylation of Heterocycles via Light-Mediated Palladium Catalysis. Angew Chem Int Ed Engl 2025; 64:e202417107. [PMID: 39466675 DOI: 10.1002/anie.202417107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 10/30/2024]
Abstract
Methods enabling direct C-H alkylation of heterocycles are of fundamental importance in the late-stage modification of natural products, bioactive molecules, and medicinally relevant compounds. However, there is a scarcity of a general strategy for the direct C-H alkylation of a variety of heterocycles using commercially available alkyl surrogates. We report an operationally simple palladium-catalyzed direct C-H alkylation of heterocycles using alkyl halides under the visible light irradiation with good scalability and functional group tolerance. Our studies suggest that the photoinduced alkylation proceeds through a cascade of events comprising, site-selective alkyl radical addition, base-assisted deprotonation, and oxidation. A combination of experiments and computations was employed for the generalization of this strategy, which was successfully translated towards the modification of natural products and pharmaceuticals.
Collapse
Affiliation(s)
- Sudip Senapati
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074, Aachen, Germany
| | - Sudhir Kumar Hota
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, 342037, Rajasthan, India
| | - Lennard Kloene
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074, Aachen, Germany
| | - Claire Empel
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074, Aachen, Germany
| | - Sandip Murarka
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, 342037, Rajasthan, India
| | - Rene M Koenigs
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074, Aachen, Germany
| |
Collapse
|
3
|
Wang XS, Zhang YJ, Cao J, Xu LW. Photoinduced Palladium-Catalyzed Radical Germylative Arylation of Alkenes with Chlorogermanes. J Org Chem 2024; 89:12848-12852. [PMID: 39145490 DOI: 10.1021/acs.joc.4c01456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
We describe a visible light-induced palladium-catalyzed radical germylative arylation of alkenes with easily accessible chlorogermanes. This protocol provides expedient access to germanium-substituted indolin-2-ones in good to excellent yields under mild reaction conditions. The key step for this strategy lies in the reductive activation of germanium-chloride bonds with an excited palladium complex under visible light irradiation. The involvement of germanium radicals was evidenced by electron paramagnetic resonance spectroscopy experiments.
Collapse
Affiliation(s)
- Xue-Song Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China
| | - Yu-Jie Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China
| | - Jian Cao
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China
| | - Li-Wen Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Hangzhou 310024, P. R. China
| |
Collapse
|
4
|
Sarkar S, Cheung KPS, Gevorgyan V. Recent Advances in Visible Light Induced Palladium Catalysis. Angew Chem Int Ed Engl 2024; 63:e202311972. [PMID: 37957126 PMCID: PMC10922525 DOI: 10.1002/anie.202311972] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/15/2023]
Abstract
Visible light-induced Pd catalysis has emerged as a promising subfield of photocatalysis. The hybrid nature of Pd radical species has enabled a wide array of radical-based transformations otherwise challenging or unknown via conventional Pd chemistry. In parallel to the ongoing pursuit of alternative, readily available radical precursors, notable discoveries have demonstrated that photoexcitation can alter not only oxidative addition but also other elementary steps. This Minireview highlights the recent progress in this area.
Collapse
Affiliation(s)
- Sumon Sarkar
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080 (USA)
| | - Kelvin Pak Shing Cheung
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080 (USA)
| | - Vladimir Gevorgyan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080 (USA)
| |
Collapse
|
5
|
Long F, Jiang K, Song W, Luo W, Yin B. Photoinduced Pd-Catalyzed Dearomative 2,5-Difunctionalizition of Furans via Cascade C-C/C-O Bond Formation. Org Lett 2024; 26:1083-1087. [PMID: 38277672 DOI: 10.1021/acs.orglett.3c04345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
We report an efficient and mild approach for radical dearomatization via photoinduced palladium-catalyzed reaction of three components (i.e., furans, alcohols, and bromoalkanes). In this strategy, various functionalized spiro-heterocycles were prepared from furans in one step via cascade C-C/C-O bond formation under redox neutral conditions.
Collapse
Affiliation(s)
- Fen Long
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Kai Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Weiwei Song
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Wenkun Luo
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Biaolin Yin
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| |
Collapse
|
6
|
Hu GQ, Zhang WY, Liu YX, Liu JH, Zhao B. Visible Light-Accelerated Palladium-Catalyzed Thiocarbonylation Using Oxalic Acid Monothioester with Aryl/Alkenyl Sulfonium Salts. J Org Chem 2023; 88:14351-14356. [PMID: 37802501 DOI: 10.1021/acs.joc.3c01173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Herein, we present a decarboxylative thiocarbonylation of aryl and alkenyl sulfonium salts with oxalic acid monothioethers (OAMs), which can be achieved by visible light-accelerated palladium catalysis. Sulfonium salts are widely available, and OAM is an easily accessible and stored reagent; this mild reaction method can also be used for the synthesis of different types of thioester compounds. The reaction represents a new application of visible light-accelerated palladium catalysis in catalytic decarboxylative cross-couplings.
Collapse
Affiliation(s)
- Guo-Qin Hu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Wen-Yan Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yong-Xin Liu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Jing-Hui Liu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Bin Zhao
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
7
|
Dong DQ, Tian BL, Yang H, Wei ZH, Yang SH, Zhou MY, Ding CZ, Wang YL, Gao JH, Wang SJ, Yang WC, Liu BT, Wang ZL. Visible light induced palladium-catalyzed reactions involving halogenated hydrocarbon (RX). MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
8
|
Wen Q, Yuan X, Zhou Q, Yang HJ, Jiang Q, Hu J, Guo CY. Efficient N-formylation of carbon dioxide and amines with alkanolamine as eco-friendly catalyst under mild conditions. J CO2 UTIL 2023. [DOI: 10.1016/j.jcou.2023.102398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
9
|
Pan YZ, Xia Q, Zhu JX, Wang YC, Liang Y, Wang H, Tang HT, Pan YM. Electrochemically Mediated Carboxylative Cyclization of Allylic/Homoallylic Amines with CO 2 at Ambient Pressure. Org Lett 2022; 24:8239-8243. [DOI: 10.1021/acs.orglett.2c03377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yong-Zhou Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, People’s Republic of China
| | - Qiang Xia
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, People’s Republic of China
| | - Jin-Xiu Zhu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, People’s Republic of China
| | - Ying-Chun Wang
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Ying Liang
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, People’s Republic of China
| | - Hengshan Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, People’s Republic of China
| | - Hai-Tao Tang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, People’s Republic of China
| | - Ying-Ming Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, People’s Republic of China
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| |
Collapse
|
10
|
Yadav P, Varma AA, A J P, Gopinath P. Photoredox mediated multicomponent reactions. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Pooja Yadav
- Indian Institute of Science Education and Research Tirupati Chemistry INDIA
| | - A Anagha Varma
- Indian Institute of Science Education and Research Tirupati Chemistry INDIA
| | - Punnya A J
- Indian Institute of Science Education and Research Tirupati Chemistry INDIA
| | - Purushothaman Gopinath
- Indian Institute of Science Education and Research Tirupati Chemistry Karkambadi Road 517507 Tirupati INDIA
| |
Collapse
|
11
|
Pei C, Yang Z, Koenigs RM. Photochemical palladium-catalyzed methylation and alkylation reactions in cascade reactions of isonitriles. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
12
|
Zheng Y, Lu W, Xie Z, Chen K, Xiang H, Yang H. Visible-Light-Induced, Palladium-Catalyzed Annulation of 1,3-Dienes to Construct Vinyl N-Heterocycles. Org Lett 2022; 24:5407-5411. [PMID: 35848222 DOI: 10.1021/acs.orglett.2c02101] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, a photoinduced palladium-catalyzed annulation of 1,3-dienes with bifunctional halognated alkylamines has been developed, offering a facile route to access a broad range of vinylpyrrolidines. The reactivity profile of this protocol was able to be readily manipulated to assemble vinylpyrrolidine and vinlysilaazacycle. Remarkably, the utility of this strategy was further illustrated in the construction of complex and biologically important molecules as well as the diversity-oriented transformations of the resulting product.
Collapse
Affiliation(s)
- Yu Zheng
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| | - Weidong Lu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| | - Zhenzhen Xie
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| | - Haoyue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, P. R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| |
Collapse
|
13
|
Hu KW, You X, Wen X, Yuan H, Xu QL, Lai Z. Synthesis of Functionalized Thiazolidin-2-imine and Oxazolidin-2-one Derivatives from p-Quinamines via [3 + 2] Annulation of Isothiocyanates and CO 2. J Org Chem 2022; 88:5052-5058. [PMID: 35880952 DOI: 10.1021/acs.joc.2c01031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An efficient and environmentally friendly synthetic approach to prepare thiazolidine-2-imine and oxazolidine-2-one derivatives has been developed. Thiazolidine-2-imines are synthesized in good to excellent yields by [3 + 2] annulation of p-quinamines with isothiocyanates under catalyst- and solvent-free conditions. Oxazolidine-2-ones are produced in good to excellent yields via [3 + 2] annulation of p-quinamines with CO2 using triethylenediamine (DABCO) as an organocatalyst. Furthermore, this strategy can be performed on a gram scale and tolerate a wide range of functional groups.
Collapse
Affiliation(s)
- Kai-Wen Hu
- School of Life Sciences and Health Engineering, Jiangnan University,1800 Lihu Avenue, 214122, Wuxi, China.,Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Xiao You
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Xiaoan Wen
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Haoliang Yuan
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Qing-Long Xu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Zengwei Lai
- School of Life Sciences and Health Engineering, Jiangnan University,1800 Lihu Avenue, 214122, Wuxi, China
| |
Collapse
|
14
|
Wang L, Qi C, Xiong W, Jiang H. Recent advances in fixation of CO2 into organic carbamates through multicomponent reaction strategies. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)64029-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Zhao G, Mukherjee U, Zhou L, Wu Y, Yao W, Mauro JN, Liu P, Ngai MY. C2-ketonylation of carbohydrates via excited-state palladium-catalyzed 1,2-spin-center shift. Chem Sci 2022; 13:6276-6282. [PMID: 35733909 PMCID: PMC9159084 DOI: 10.1039/d2sc01042a] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/01/2022] [Indexed: 11/21/2022] Open
Abstract
C2-ketonyl-2-deoxysugars, sugars with the C2-hydroxyl group replaced by a ketone side chain, are important carbohydrate mimetics in glycobiology and drug discovery studies; however, their preparation remains a vital challenge in organic synthesis. Here we report the first direct strategy to synthesize this class of glycomimetics from readily available 1-bromosugars and silyl enol ethers via an excited-state palladium-catalyzed 1,2-spin-center shift (SCS) process. This step-economic reaction features broad substrate scope, has a high functional group tolerance, and can be used in late-stage functionalization of natural product- and drug-glycoconjugates. Preliminary experimental and computational mechanistic studies suggested a non-chain radical mechanism involving photoexcited palladium species, a 1,2-SCS process, and a radical Mizoroki-Heck reaction.
Collapse
Affiliation(s)
- Gaoyuan Zhao
- Department of Chemistry, Institute of Chemical Biology and Drug Discovery, The State University of New York at Stony Brook Stony Brook New York 11794 USA
| | - Upasana Mukherjee
- Department of Chemistry, Institute of Chemical Biology and Drug Discovery, The State University of New York at Stony Brook Stony Brook New York 11794 USA
| | - Lin Zhou
- Department of Chemistry, Department of Chemical and Petroleum Engineering, University of Pittsburgh Pittsburgh Pennsylvania 15260 USA
| | - Yue Wu
- Department of Chemistry, Department of Chemical and Petroleum Engineering, University of Pittsburgh Pittsburgh Pennsylvania 15260 USA
| | - Wang Yao
- Department of Chemistry, Institute of Chemical Biology and Drug Discovery, The State University of New York at Stony Brook Stony Brook New York 11794 USA
| | - Jaclyn N Mauro
- Department of Chemistry, Institute of Chemical Biology and Drug Discovery, The State University of New York at Stony Brook Stony Brook New York 11794 USA
| | - Peng Liu
- Department of Chemistry, Department of Chemical and Petroleum Engineering, University of Pittsburgh Pittsburgh Pennsylvania 15260 USA
| | - Ming-Yu Ngai
- Department of Chemistry, Institute of Chemical Biology and Drug Discovery, The State University of New York at Stony Brook Stony Brook New York 11794 USA
| |
Collapse
|
16
|
Recent Advances in the Synthesis of Five-Membered Cyclic Carbonates and Carbamates from Allylic or Propargylic Substrates and CO2. Catalysts 2022. [DOI: 10.3390/catal12050547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The organic carbamates and carbonates are highly desirable compounds that have found a wide range of applications in drug design, medicinal chemistry, material science, and the polymer industry. The development of new catalytic carbonate and carbamate forming reactions, which employ carbon dioxide as a cheap, green, abundant, and easily available reagent, would thus represent an ideal substitution for existing methods. In this review, the advancements in the catalytic conversion of allylic and propargylic alcohols and amines to corresponding five-membered cyclic carbonates and carbamates are summarized. Both the metal- and the organocatalyzed methods are reviewed, as well as the proposed mechanisms and key intermediates of the illustrated carbonate and carbamate forming reactions.
Collapse
|
17
|
Yao W, Zhao G, Wu Y, Zhou L, Mukherjee U, Liu P, Ngai MY. Excited-State Palladium-Catalyzed Radical Migratory Mizoroki-Heck Reaction Enables C2-Alkenylation of Carbohydrates. J Am Chem Soc 2022; 144:3353-3359. [PMID: 35188768 PMCID: PMC8970705 DOI: 10.1021/jacs.1c13299] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Excited-state palladium catalysis has emerged as a promising strategy for developing novel and valuable reactions. Herein, we report the first excited-state Pd-catalyzed 1,2-radical migratory Mizoroki-Heck reaction that enables C2-alkenylation of carbohydrates using readily available 1-bromosugars and alkenes. The reaction tolerates a wide variety of functional groups and complex molecular architectures, including derivatives of natural products and marketed drugs. Preliminary mechanistic studies and DFT calculations suggest the involvement of visible-light-induced photoexcitation of Pd species, 1,2-spin-centered-shift (SCS) process, and Heck-type cross-coupling reaction. The reaction expands the reactivity profile of excited-state Pd catalysis and provides a streamlined protocol for the preparation of a wide variety of C2-alkenylated carbohydrate mimetics to aid the discovery and development of new therapeutics, agrochemicals, and materials.
Collapse
Affiliation(s)
- Wang Yao
- Department of Chemistry, State University of New York, Stony Brook, New York, 11794, United States
| | - Gaoyuan Zhao
- Department of Chemistry, State University of New York, Stony Brook, New York, 11794, United States
| | - Yue Wu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Lin Zhou
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Upasana Mukherjee
- Department of Chemistry, State University of New York, Stony Brook, New York, 11794, United States
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States;,Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Ming-Yu Ngai
- Department of Chemistry, State University of New York, Stony Brook, New York, 11794, United States;,Institute of Chemical Biology and Drug Discovery, State University of New York, Stony Brook, New York 11794, United States
| |
Collapse
|
18
|
de Winter TM, Ho J, Alridge CJ, Jessop PG. CO 2-Assisted asymmetric hydrogenation of prochiral allylamines. RSC Adv 2022; 12:6755-6761. [PMID: 35424608 PMCID: PMC8981594 DOI: 10.1039/d2ra00263a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/12/2022] [Indexed: 11/21/2022] Open
Abstract
A new methodology for the asymmetric hydrogenation of allylamines takes advantage of a reversible reaction between amines and carbon dioxide (CO2) to suppress unwanted side reactions. The effects of various parameters (pressure, time, solvent, and base additives) on the enantioselectivity and conversion of the reaction were studied. The homogeneously-catalyzed asymmetric hydrogenation of 2-arylprop-2-en-1-amine resulted in complete conversion and up to 82% enantiomeric excess (ee). Added base, if chosen carefully, improves the enantioselectivity and chemoselectivity of the overall reaction. CO2 can act as an in situ protecting group for the asymmetric hydrogenation of allylamines.![]()
Collapse
Affiliation(s)
| | - Jaddie Ho
- Department of Chemistry, Queen's University Kingston ON K7L 3N6 Canada
| | | | - Philip G Jessop
- Department of Chemistry, Queen's University Kingston ON K7L 3N6 Canada
| |
Collapse
|
19
|
Murtaza A, Qamar MA, Saleem K, Hardwick T, Zia Ul Haq, Shirinfar B, Ahmed N. Renewable Electricity Enables Green Routes to Fine Chemicals and Pharmaceuticals. CHEM REC 2022; 22:e202100296. [PMID: 35103382 DOI: 10.1002/tcr.202100296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 12/29/2022]
Abstract
Syntheses of chemicals using renewable electricity and when generating high atom economies are considered green and sustainable processes. In the present state of affairs, electrochemical manufacturing of fine chemicals and pharmaceuticals is not as common place as it could be and therefore, merits more attention. There is also a need to turn attention toward the electrochemical synthesis of valuable chemicals from recyclable greenhouse gases that can accelerate the process of circular economy. CO2 emissions are the major contributor to human-induced global warming. CO2 conversion into chemicals is a valuable application of its utilisation and will contribute to circular economy while maintaining environmental sustainability. Herein, we present an overview of electro-carboxylation, including mechanistic aspects, which forms carboxylic acids using molecular carbon dioxide. We also discuss atom economies of electrochemical fluorination, methoxylation and amide formation reactions.
Collapse
Affiliation(s)
- Ayesha Murtaza
- Department of Chemistry, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Muhammad Awais Qamar
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, Gansu, China
| | - Kaynat Saleem
- Department of Chemistry, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Tomas Hardwick
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.,National Graphene Institute, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.,Department of Materials, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Zia Ul Haq
- Chemical Engineering department, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan
| | | | - Nisar Ahmed
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| |
Collapse
|
20
|
Abstract
In recent years, visible light-induced transition metal catalysis has emerged as a new paradigm in organic photocatalysis, which has led to the discovery of unprecedented transformations as well as the improvement of known reactions. In this subfield of photocatalysis, a transition metal complex serves a double duty by harvesting photon energy and then enabling bond forming/breaking events mostly via a single catalytic cycle, thus contrasting the established dual photocatalysis in which an exogenous photosensitizer is employed. In addition, this approach often synergistically combines catalyst-substrate interaction with photoinduced process, a feature that is uncommon in conventional photoredox chemistry. This Review describes the early development and recent advances of this emerging field.
Collapse
Affiliation(s)
- Kelvin Pak Shing Cheung
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Sumon Sarkar
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Vladimir Gevorgyan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
21
|
Kancherla R, Muralirajan K, Rueping M. Excited-state palladium-catalysed reductive alkylation of imines: scope and mechanism. Chem Sci 2022; 13:8583-8589. [PMID: 35974758 PMCID: PMC9337745 DOI: 10.1039/d2sc02363f] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/01/2022] [Indexed: 11/21/2022] Open
Abstract
Palladium catalysis induced by visible-light irradiation is a promising tool for promoting unusual chemical reactivity. Here, the hybrid alkyl radical/Pd(i) species generated is used to promote the reductive alkylation of imines.
Collapse
Affiliation(s)
- Rajesh Kancherla
- KAUST Catalysis Center, KCC, King Abdullah University of Science and Technology, KAUST, Thuwal 23955-6900, Saudi Arabia
| | - Krishnamoorthy Muralirajan
- KAUST Catalysis Center, KCC, King Abdullah University of Science and Technology, KAUST, Thuwal 23955-6900, Saudi Arabia
| | - Magnus Rueping
- KAUST Catalysis Center, KCC, King Abdullah University of Science and Technology, KAUST, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
22
|
Veltri L, Amuso R, Mancuso R, Gabriele B. Advances in Palladium-Catalyzed Carboxylation Reactions. Molecules 2022; 27:262. [PMID: 35011494 PMCID: PMC8746634 DOI: 10.3390/molecules27010262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 11/16/2022] Open
Abstract
In this short review, we highlight the advancements in the field of palladium-catalyzed carbon dioxide utilization for the synthesis of high value added organic molecules. The review is structured on the basis of the kind of substrate undergoing the Pd-catalyzed carboxylation process. Accordingly, after the introductory section, the main sections of the review will illustrate Pd-catalyzed carboxylation of olefinic substrates, acetylenic substrates, and other substrates (aryl halides and triflates).
Collapse
Affiliation(s)
- Lucia Veltri
- Laboratory of Industrial and Synthetic Organic Chemistry (LISOC), Department of Chemistry and Chemical Technologies, University of Calabria, Via Pietro Bucci 12/C, 87036 Arcavacata di Rende, Italy; (R.A.); (R.M.)
| | | | | | - Bartolo Gabriele
- Laboratory of Industrial and Synthetic Organic Chemistry (LISOC), Department of Chemistry and Chemical Technologies, University of Calabria, Via Pietro Bucci 12/C, 87036 Arcavacata di Rende, Italy; (R.A.); (R.M.)
| |
Collapse
|
23
|
Peng CC, Wu LJ, Pi SF. Palladium-catalyzed difunctionalization/dearomatization of N-benzylacrylamides with α-carbonyl alkyl bromides: facile access to azaspirocyclohexadienones. Org Biomol Chem 2021; 19:7602-7606. [PMID: 34524329 DOI: 10.1039/d1ob01405f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An efficient palladium-catalyzed difunctionalization/dearomatization of N-benzylacrylamides with α-carbonyl alkyl bromides as alkyl radical precursors has been described. Various α-carbonyl alkyl bromides, including α-bromoalkyl esters and ketones, reacted smoothly to provide important azaspirocyclohexadienones in moderate to excellent yields. In addition, mechanistic studies suggested that the reaction proceeded via a radical pathway.
Collapse
Affiliation(s)
- Chuan-Chong Peng
- Institute of Applied Chemistry, Central South University of Forestry and Technology, Changsha, 410004, China.
| | - Li-Jun Wu
- Institute of Applied Chemistry, Central South University of Forestry and Technology, Changsha, 410004, China.
| | - Shao-Feng Pi
- School of Materials and Chemical Engineering, Hunan Provincial Key Laboratory of Environmental Catalysis & Waste Recycling, Hunan Institute of Engineering, Xiangtan, 411104, China.
| |
Collapse
|
24
|
Muralirajan K, Kancherla R, Gimnkhan A, Rueping M. Unactivated Alkyl Chloride Reactivity in Excited-State Palladium Catalysis. Org Lett 2021; 23:6905-6910. [PMID: 34432470 DOI: 10.1021/acs.orglett.1c02467] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Excited-state palladium catalysis is an efficient process for the alkylation of diverse organic compounds via the generation of alkyl radicals from alkyl bromides and iodides. However, the generation of alkyl radicals from more stable alkyl chlorides remains challenging. Herein, we demonstrate the excited-state palladium-catalyzed synthesis of oxindoles and isoquinolinediones via alkylation/annulation reaction by overcoming inherent limitations associated with unactivated C(sp3)-Cl bond activation at room temperature.
Collapse
Affiliation(s)
- Krishnamoorthy Muralirajan
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Rajesh Kancherla
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Aidana Gimnkhan
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Magnus Rueping
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
25
|
Maquilón C, Della Monica F, Limburg B, Kleij AW. Photocatalytic Synthesis of Substituted Cyclic Carbonate Monomers for Ring‐Opening Polymerization. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100654] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Cristina Maquilón
- Institute of Chemical Research of Catalonia (ICIQ) the Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 - Tarragona Spain
| | - Francesco Della Monica
- Institute of Chemical Research of Catalonia (ICIQ) the Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 - Tarragona Spain
| | - Bart Limburg
- Institute of Chemical Research of Catalonia (ICIQ) the Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 - Tarragona Spain
| | - Arjan W. Kleij
- Institute of Chemical Research of Catalonia (ICIQ) the Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 - Tarragona Spain
- Catalan Institute of Research and Advanced Studies (ICREA) Pg. Lluís Companys 23 08010 Barcelona Spain
| |
Collapse
|
26
|
Du J, Wang X, Wang H, Wei J, Huang X, Song J, Zhang J. Photoinduced Palladium-Catalyzed Intermolecular Radical Cascade Cyclization of N-Arylacrylamides with Unactivated Alkyl Bromides. Org Lett 2021; 23:5631-5635. [PMID: 34236201 DOI: 10.1021/acs.orglett.1c01698] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A mild visible-light-induced Pd-catalyzed intermolecular radical cascade reaction of N-arylacrylamides with unactivated alkyl bromides is disclosed. Photoexcited Pd complexes transfer a single electron in this protocol, and hybrid alkyl Pd-radical species are involved as the key reaction intermediates. Sophisticated bioactive oxindole derivatives bearing various substituents and substitution patterns can be efficiently afforded through this approach.
Collapse
Affiliation(s)
- Juan Du
- International Joint Research Centre for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China.,College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Xing Wang
- International Joint Research Centre for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Hongling Wang
- International Joint Research Centre for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Jinhu Wei
- International Joint Research Centre for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Xuan Huang
- International Joint Research Centre for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Jun Song
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Junmin Zhang
- International Joint Research Centre for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| |
Collapse
|
27
|
Wei X, Wang X. Au@Cellulose/DFNS for synthesis of thiazolidin-2-ones from arylamines, elemental sulfur and CO2. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Ye JH, Ju T, Huang H, Liao LL, Yu DG. Radical Carboxylative Cyclizations and Carboxylations with CO 2. Acc Chem Res 2021; 54:2518-2531. [PMID: 33956436 DOI: 10.1021/acs.accounts.1c00135] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Carbon dioxide (CO2) is not only a greenhouse gas and a common waste product but also an inexpensive, readily available, and renewable carbon resource. It is an important one-carbon (C1) building block in organic synthesis for the construction of valuable compounds. However, its utilization is challenging owing to its thermodynamic stability and kinetic inertness. Although significant progress has been achieved, many limitations remain in this field with regard to the substrate scope, reaction system, and activation strategies.Since 2015, our group has focused on CO2 utilization in organic synthesis. We are also interested in the vast possibilities of radical chemistry, although the high reactivity of radicals presents challenges in controlling selectivity. We hope to develop highly useful CO2 transformations involving radicals by achieving a balance of reactivity and selectivity under mild reaction conditions. Over the past 6 years, we along with other experts have disclosed radical-type carboxylative cyclizations and carboxylations using CO2.We initiated our research by realizing the Cu-catalyzed radical-type oxytrifluoromethylation of allylamines and heteroaryl methylamines to generate valuable 2-oxazolidones with various radical precursors. Apart from Cu catalysis, visible-light photoredox catalysis is also a powerful method to achieve efficient carboxylative cyclization. In these cases, single-electron-oxidation-promoted C-O bond formation between benzylic radicals and carbamates is the key step.Since carboxylic acids exist widely in natural products and bioactive drugs and serve as important bulk chemicals in industry, we realized further visible-light-promoted carboxylations with CO2 to construct such chemicals. We have achieved the selective umpolung carboxylations of imines, enamides, tetraalkylammonium salts, and oxime esters by successive single-electron-transfer (SSET) reduction. Using this strategy, we have also realized the dearomative arylcarboxylation of indoles with CO2. In addition to the incorporation of 1 equiv of CO2 per substrate, we have recently developed a visible-light photoredox-catalyzed dicarboxylation of alkenes, allenes, and (hetero)arenes via SSET reduction, which allows the incorporation of two CO2 molecules into organic compounds to generate valuable diacids as polymer precursors.In addition to the two-electron activation of CO2, we sought to develop new strategies to realize efficient and selective transformations via single-electron activation of CO2. Inspired by the hypothetical electron-transfer mechanism of iron-sulfur proteins, we have realized the visible-light-driven thiocarboxylation of alkenes with CO2 using catalytic iron salts as promoters. The in-situ-generated Fe/S complexes are likely able to reduce CO2 to its radical anion, which could react with alkenes to give a stabilized carbon radical. Moreover, we have also disclosed charge-transfer complex (CTC) formation between thiolate and acrylate/styrene to realize the visible-light-driven hydrocarboxylation of alkenes with CO2 via generation of a CO2 or alkene radical anion. On the basis of this novel CTC, the visible-light-driven organocatalytic hydrocarboxylation of alkenes with CO2 has also been realized using a Hantzsch ester as an effective reductant.
Collapse
Affiliation(s)
- Jian-Heng Ye
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Tao Ju
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - He Huang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Li-Li Liao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Da-Gang Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
29
|
Yang Z, Koenigs RM. Photoinduced Palladium-Catalyzed Dicarbofunctionalization of Terminal Alkynes. Chemistry 2021; 27:3694-3699. [PMID: 33427348 PMCID: PMC7986663 DOI: 10.1002/chem.202005391] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Indexed: 01/26/2023]
Abstract
Herein, a conceptually distinct approach was developed that allowed for the dicarbofunctionalization of alkynes at room temperature using simple, bench-stable alkyl iodides and a second molecule of alkyne as coupling partner. Specifically, the photochemical activation of palladium complexes enabled this strategic dicarbofunctionalization via addition of alkyl radicals from secondary and tertiary alkyl iodides and formation of an intermediate palladium vinyl complex that could undergo subsequent Sonogashira reaction with a second alkyne molecule. This alkylation-alkynylation sequence allowed the one-step synthesis of 1,3-enynes including heteroarenes and biologically active compounds with high efficiency without exogenous photosensitizers or oxidants and now opens up pathways towards cascade reactions via photochemical palladium catalysis.
Collapse
Affiliation(s)
- Zhen Yang
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Rene M. Koenigs
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| |
Collapse
|
30
|
Xu Y, Shao Y, Ahlquist MSG, Yu H, Fu Y. Pivotal Electron Delivery Effect of the Cobalt Catalyst in Photocarboxylation of Alkynes: A DFT Calculation. J Org Chem 2021; 86:1540-1548. [PMID: 33353304 DOI: 10.1021/acs.joc.0c02393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photocarboxylation of alkyne with carbon dioxide represents a highly attractive strategy to prepare functionalized alkenes with high efficiency and atomic economy. However, the reaction mechanism, especially the sequence of elementary steps (leading to different reaction pathways), reaction modes of the H-transfer step and carboxylation step, spin and charge states of the cobalt catalyst, etc., is still an open question. Herein, density functional theory calculations are carried out to probe the mechanism of the Ir/Co-catalyzed photocarboxylation of alkynes. The overall catalytic cycle mainly consists of four steps: reductive-quenching of the Ir catalyst, hydrogen transfer (rate-determining step), outer sphere carboxylation, and the final catalyst regeneration step. Importantly, the cobalt catalyst can facilitate the H-transfer by an uncommon hydride coupled electron transfer (HCET) process. The pivotal electron delivery effect of the Co center enables a facile H-transfer to the α-C(alkyne) of the aryl group, resulting in the high regioselectivity for β-carboxylation.
Collapse
Affiliation(s)
- Yuantai Xu
- Department of Chemistry, Center for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, People's Republic of China.,Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Yifan Shao
- Department of Chemistry, Center for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, People's Republic of China
| | - Mårten S G Ahlquist
- Department of Theoretical Chemistry & Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 10691 Stockholm, Sweden
| | - Haizhu Yu
- Department of Chemistry, Center for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, People's Republic of China
| | - Yao Fu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| |
Collapse
|
31
|
Cheng Y, Yu S, He Y, An G, Li G, Yang Z. C4-arylation and domino C4-arylation/3,2-carbonyl migration of indoles by tuning Pd catalytic modes: Pd(i)-Pd(ii) catalysis vs. Pd(ii) catalysis. Chem Sci 2021; 12:3216-3225. [PMID: 34164090 PMCID: PMC8179361 DOI: 10.1039/d0sc05409g] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/07/2021] [Indexed: 12/14/2022] Open
Abstract
Efficient C4-arylation and domino C4-arylation/3,2-carbonyl migration of indoles have been developed. The former route enables C4-arylation in a highly efficient and mild manner and the latter route provides an alternative straightforward protocol for synthesis of C2/C4 disubstituted indoles. The mechanism studies imply that the different reaction pathways were tuned by the distinct acid additives, which led to either the Pd(i)-Pd(ii) pathway or Pd(ii) catalysis.
Collapse
Affiliation(s)
- Yaohang Cheng
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University No. 74, Xuefu Road, Nangang District Harbin 150080 People's Republic of China
| | - Shijie Yu
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University No. 74, Xuefu Road, Nangang District Harbin 150080 People's Republic of China
| | - Yuhang He
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University No. 74, Xuefu Road, Nangang District Harbin 150080 People's Republic of China
| | - Guanghui An
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University No. 74, Xuefu Road, Nangang District Harbin 150080 People's Republic of China
| | - Guangming Li
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University No. 74, Xuefu Road, Nangang District Harbin 150080 People's Republic of China
| | - Zhenyu Yang
- School of Pharmaceutical and Materials Engineering, Taizhou University 1139 Shifu Avenue Taizhou 318000 China
| |
Collapse
|
32
|
Recent advances in the synthesis of heterocycles and pharmaceuticals from the photo/electrochemical fixation of carbon dioxide. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2020.116142] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
33
|
Shamsa F, Motavalizadehkakhky A, Zhiani R, Mehrzad J, Hosseiny MS. ZnO nanoparticles supported on dendritic fibrous nanosilica as efficient catalysts for the one-pot synthesis of quinazoline-2,4(1 H,3 H)-diones. RSC Adv 2021; 11:37103-37111. [PMID: 35496431 PMCID: PMC9043541 DOI: 10.1039/d1ra07197a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/02/2021] [Indexed: 12/22/2022] Open
Abstract
The transmutation of waste into valuable materials has a special place in green chemistry. Herein, we report the preparation of quinazoline-2,4(1H,3H)-diones from 2-iodoaniline, isocyanides, and carbon dioxide in the presence of ZnO NPs stably placed on the surface of dendritic fibrous nanosilica by cellulose (DFNS/cellulose-ZnO) as a catalyst. This is a great economic strategy to create three bonds in a one-pot multicomponent reaction step employing functional groups. To prepare the catalyst, the dendritic fibrous nanosilica surface was first activated using cellulose as a substrate to support ZnO NPs. Cellulose acts as a stabilizing and reducing agent for the ZnO nanocatalyst and eliminates the need for a reducing agent. The structure of the prepared DFNS/cellulose-ZnO was examined by various methods, including thermogravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and inductively coupled plasma (ICP). The largest amount of quinazoline-2,4(1H,3H)-diones was obtained under ideal situations in the presence of 5 mg of DFNS/cellulose-ZnO under carbon dioxide (1 atm) utilizing a balloon set at 70 °C for 3 hours. The substance was reused for ten consecutive runs and the quinazoline-2,4(1H,3H)-dione content was more than 92% each time. This indicates the potential for application in the green and economic production of quinazoline-2,4(1H,3H)-diones, especially from low-cost feedstocks. The transmutation of waste into valuable materials has a special place in green chemistry.![]()
Collapse
Affiliation(s)
- Farzaneh Shamsa
- Department of Chemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Alireza Motavalizadehkakhky
- Department of Chemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
- Advanced Research Center for Chemistry Biochemistry & Nanomaterial, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Rahele Zhiani
- Department of Chemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
- New Materials Technology and Processing Research Center, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Jamshid Mehrzad
- Department of Biochemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | | |
Collapse
|
34
|
Zhang W, Lin S. Electroreductive Carbofunctionalization of Alkenes with Alkyl Bromides via a Radical-Polar Crossover Mechanism. J Am Chem Soc 2020; 142:20661-20670. [PMID: 33231074 PMCID: PMC7951757 DOI: 10.1021/jacs.0c08532] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Electrochemistry grants direct access to reactive intermediates (radicals and ions) in a controlled fashion toward selective organic transformations. This feature has been demonstrated in a variety of alkene functionalization reactions, most of which proceed via an anodic oxidation pathway. In this report, we further expand the scope of electrochemistry to the reductive functionalization of alkenes. In particular, the strategic choice of reagents and reaction conditions enabled a radical-polar crossover pathway wherein two distinct electrophiles can be added across an alkene in a highly chemo- and regioselective fashion. Specifically, we used this strategy in the intermolecular carboformylation, anti-Markovnikov hydroalkylation, and carbocarboxylation of alkenes-reactions with rare precedents in the literature-by means of the electroreductive generation of alkyl radical and carbanion intermediates. These reactions employ readily available starting materials (alkyl halides, alkenes, etc.) and simple, transition-metal-free conditions and display broad substrate scope and good tolerance of functional groups. A uniform protocol can be used to achieve all three transformations by simply altering the reaction medium. This development provides a new avenue for constructing Csp3-Csp3 bonds.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| | - Song Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| |
Collapse
|
35
|
Jiang YX, Chen L, Ran CK, Song L, Zhang W, Liao LL, Yu DG. Visible-Light Photoredox-Catalyzed Ring-Opening Carboxylation of Cyclic Oxime Esters with CO 2. CHEMSUSCHEM 2020; 13:6312-6317. [PMID: 33017513 DOI: 10.1002/cssc.202002032] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/22/2020] [Indexed: 06/11/2023]
Abstract
The carboxylation of cyclic oxime esters with carbon dioxide via visible-light photoredox catalysis is demonstrated for the first time. A variety of cyclic oxime esters undergo ring-opening C-C bond cleavage and carboxylation to give cyanoalkyl-containing carboxylic acids in moderate to good yields. Moreover, this methodology features mild reaction conditions (room temperature, 1 atm), wide substrate scope, good functional group tolerance as well as facile derivations of products. Mechanistic studies indicate that the benzylic radicals and anions might be the key intermediates.
Collapse
Affiliation(s)
- Yuan-Xu Jiang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Liang Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Chuan-Kun Ran
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Lei Song
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Wei Zhang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Li-Li Liao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Da-Gang Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, School of Chemistry and Molecular Engineering, 3663N Zhongshan Road, Shanghai, 200062, P. R. China
| |
Collapse
|
36
|
Bellotti P, Koy M, Gutheil C, Heuvel S, Glorius F. Three-component three-bond forming cascade via palladium photoredox catalysis. Chem Sci 2020; 12:1810-1817. [PMID: 34163944 PMCID: PMC8179282 DOI: 10.1039/d0sc05551d] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/06/2020] [Indexed: 12/18/2022] Open
Abstract
A highly modular radical cascade strategy based upon radical cyclisation/allylic substitution sequence between alkyl/aryl bromides, 1,3-dienes and nucleophiles ranging from sulfinates to amines, phenols and 1,3-dicarbonyls is described (>80 examples). Palladium phosphine complexes - which merge properties of photo- and cross coupling-catalysts - allow to forge three bonds with complete 1,4-selectivity and stereocontrol, delivering highly value added carbocyclic and heterocyclic motifs that can feature - inter alia - vicinal quaternary centers, free protic groups, gem-difluoro motifs and strained rings. Furthermore, a flow chemistry approach was for the first time applied in palladium-photocatalysed endeavors involving radicals.
Collapse
Affiliation(s)
- Peter Bellotti
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Maximilian Koy
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Christian Gutheil
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Steffen Heuvel
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| |
Collapse
|
37
|
Pradhan S, Roy S, Sahoo B, Chatterjee I. Utilization of CO 2 Feedstock for Organic Synthesis by Visible-Light Photoredox Catalysis. Chemistry 2020; 27:2254-2269. [PMID: 32931070 DOI: 10.1002/chem.202003685] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/08/2020] [Indexed: 12/20/2022]
Abstract
CO2 is a highly abundant, green, and sustainable carbon feedstock. Despite its kinetic inertness and thermodynamic stability, the development of various catalytic techniques has enabled the conversion of CO2 to value-added products such as carboxylic acids, amino acids, and heterocyclic compounds, where visible-light photocatalysis has emerged to be an efficient promoter of these processes. This Minireview covers the progress in the areas of CO2 incorporation onto organic matters based on the combined venture of renewable resources of CO2 and light energy with significant emphasis on the last three years' developments.
Collapse
Affiliation(s)
- Suman Pradhan
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab, 140001, India
| | - Sourav Roy
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab, 140001, India
| | - Basudev Sahoo
- School of Chemistry, Indian Institute of Science Education and, Research (IISER) Thiruvananthapuram, Maruthamala PO, Vithura, Thiruvananthapuram, 695551, Kerala, India
| | - Indranil Chatterjee
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab, 140001, India
| |
Collapse
|
38
|
Wu X, Xiao G, Ding Y, Zhan Y, Zhao Y, Chen R, Loh TP. Palladium-Catalyzed Intermolecular Polarity-Mismatched Addition of Unactivated Alkyl Radicals to Unactivated Alkenes. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Xiaojin Wu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Guanlin Xiao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
- Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou 510095, China
| | - Yalan Ding
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ying Zhan
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yao Zhao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Rizhi Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Teck-Peng Loh
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637616, Singapore
| |
Collapse
|
39
|
Xiong TK, Li XJ, Zhang M, Liang Y. Organic synthesis of fixed CO 2 using nitrogen as a nucleophilic center. Org Biomol Chem 2020; 18:7774-7788. [PMID: 32966496 DOI: 10.1039/d0ob01590c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In this review, recent progress in the application of CO2 as an electrophilic reagent and nitrogen as a nucleophilic center under different catalytic conditions in organic synthesis is summarized. The used catalytic methods in the reactions of CO2 and nitrogen are classified as metal catalysis, metal-free catalysis, photocatalysis and electrocatalysis. Various catalytic conditions have been used to solve the problems of thermodynamic properties and stability of CO2. The transformation mechanisms of these reactions are discussed.
Collapse
Affiliation(s)
- Ting-Kai Xiong
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, People's Republic of China.
| | | | | | | |
Collapse
|
40
|
Song L, Fu D, Chen L, Jiang Y, Ye J, Zhu L, Lan Y, Fu Q, Yu D. Visible‐Light Photoredox‐Catalyzed Remote Difunctionalizing Carboxylation of Unactivated Alkenes with CO
2. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008630] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Lei Song
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Dong‐Min Fu
- College of Chemistry and Institute of Green Catalysis Zhengzhou University Zhengzhou 450001 P. R. China
| | - Liang Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Yuan‐Xu Jiang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Jian‐Heng Ye
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Lei Zhu
- School of Chemistry and Chemical Engineering Chongqing Key Laboratory of Theoretical and Computational Chemistry Chongqing University Chongqing 400030 P. R. China
| | - Yu Lan
- College of Chemistry and Institute of Green Catalysis Zhengzhou University Zhengzhou 450001 P. R. China
- School of Chemistry and Chemical Engineering Chongqing Key Laboratory of Theoretical and Computational Chemistry Chongqing University Chongqing 400030 P. R. China
| | - Qiang Fu
- School of Pharmacy Southwest Medical University Luzhou 646000 P. R. China
| | - Da‐Gang Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
- Beijing National Laboratory for Molecular Sciences Beijing 100190 P. R. China
| |
Collapse
|
41
|
Song L, Fu DM, Chen L, Jiang YX, Ye JH, Zhu L, Lan Y, Fu Q, Yu DG. Visible-Light Photoredox-Catalyzed Remote Difunctionalizing Carboxylation of Unactivated Alkenes with CO 2. Angew Chem Int Ed Engl 2020; 59:21121-21128. [PMID: 32750191 DOI: 10.1002/anie.202008630] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Indexed: 02/03/2023]
Abstract
Remote difunctionalization of unactivated alkenes is challenging but a highly attractive tactic to install two functional groups across long distances. Reported herein is the first remote difunctionalization of alkenes with CO2 . This visible-light photoredox catalysis strategy provides a facile method to synthesize a series of carboxylic acids bearing valuable fluorine- or phosphorus-containing functional groups. Moreover, this versatile protocol shows mild reaction conditions, broad substrate scope, and good functional-group tolerance. Based on DFT calculations, a radical adds to an unactivated alkene to smoothly form a new carbon radical, followed by a 1,5-hydrogen atom-transfer process, the rate-limiting step, generating a more stable benzylic radical. The reduction of the benzylic radicals by an IrII species generates the corresponding benzylic carbanions as the key intermediates, which further undergo nucleophilic attack with CO2 to generate carboxylates.
Collapse
Affiliation(s)
- Lei Song
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Dong-Min Fu
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Liang Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Yuan-Xu Jiang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Jian-Heng Ye
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Lei Zhu
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 400030, P. R. China
| | - Yu Lan
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou, 450001, P. R. China.,School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 400030, P. R. China
| | - Qiang Fu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, P. R. China
| | - Da-Gang Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China.,Beijing National Laboratory for Molecular Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
42
|
Crespi S, Fagnoni M. Generation of Alkyl Radicals: From the Tyranny of Tin to the Photon Democracy. Chem Rev 2020; 120:9790-9833. [PMID: 32786419 PMCID: PMC8009483 DOI: 10.1021/acs.chemrev.0c00278] [Citation(s) in RCA: 234] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Indexed: 01/09/2023]
Abstract
Alkyl radicals are key intermediates in organic synthesis. Their classic generation from alkyl halides has a severe drawback due to the employment of toxic tin hydrides to the point that "flight from the tyranny of tin" in radical processes was considered for a long time an unavoidable issue. This review summarizes the main alternative approaches for the generation of unstabilized alkyl radicals, using photons as traceless promoters. The recent development in photochemical and photocatalyzed processes enabled the discovery of a plethora of new alkyl radical precursors, opening the world of radical chemistry to a broader community, thus allowing a new era of photon democracy.
Collapse
Affiliation(s)
- Stefano Crespi
- Stratingh
Institute for Chemistry, Center for Systems
Chemistry University of Groningen, Nijenborgh 4, 9747
AG Groningen, The Netherlands
| | - Maurizio Fagnoni
- PhotoGreen
Lab, Department of Chemistry, V. Le Taramelli 10, 27100 Pavia, Italy
| |
Collapse
|
43
|
Zhang Z, Ye JH, Ju T, Liao LL, Huang H, Gui YY, Zhou WJ, Yu DG. Visible-Light-Driven Catalytic Reductive Carboxylation with CO2. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03127] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Zhen Zhang
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, P. R. China
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Jian-Heng Ye
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Tao Ju
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Li-Li Liao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - He Huang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Yong-Yuan Gui
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Wen-Jun Zhou
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
- College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang 641100, P. R. China
| | - Da-Gang Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
44
|
Copper/DTBP-Promoted Oxyselenation of Propargylic Amines with Diselenides and CO 2: Synthesis of Selenyl 2-Oxazolidinones. J Org Chem 2020; 85:10924-10933. [PMID: 32786223 DOI: 10.1021/acs.joc.0c01519] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A highly efficient electrophilic oxyselenation of propargylic amines with diselenides and CO2 under atmospheric pressure promoted by copper/DTBP is reported. Various biologically important selenyl 2-oxazolidinones were produced in moderate to excellent yields. The developed method features a broad substrate scope, easy scalability, and mild reaction conditions.
Collapse
|
45
|
Cheng WM, Shang R. Transition Metal-Catalyzed Organic Reactions under Visible Light: Recent Developments and Future Perspectives. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01979] [Citation(s) in RCA: 211] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Wan-Min Cheng
- College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Rui Shang
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
46
|
Ratushnyy M, Kvasovs N, Sarkar S, Gevorgyan V. Visible‐Light‐Induced Palladium‐Catalyzed Generation of Aryl Radicals from Aryl Triflates. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915962] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Maxim Ratushnyy
- Department of Chemistry University of Illinois at Chicago 845 W. Taylor Street Chicago IL 60607-7061 USA
- Department of Chemistry and Biochemistry University of Texas at Dallas 800 West Campbell, BSB13 Richardson TX 75080 USA
| | - Nikita Kvasovs
- Department of Chemistry University of Illinois at Chicago 845 W. Taylor Street Chicago IL 60607-7061 USA
- Department of Chemistry and Biochemistry University of Texas at Dallas 800 West Campbell, BSB13 Richardson TX 75080 USA
| | - Sumon Sarkar
- Department of Chemistry University of Illinois at Chicago 845 W. Taylor Street Chicago IL 60607-7061 USA
- Department of Chemistry and Biochemistry University of Texas at Dallas 800 West Campbell, BSB13 Richardson TX 75080 USA
| | - Vladimir Gevorgyan
- Department of Chemistry University of Illinois at Chicago 845 W. Taylor Street Chicago IL 60607-7061 USA
- Department of Chemistry and Biochemistry University of Texas at Dallas 800 West Campbell, BSB13 Richardson TX 75080 USA
| |
Collapse
|
47
|
Ratushnyy M, Kvasovs N, Sarkar S, Gevorgyan V. Visible-Light-Induced Palladium-Catalyzed Generation of Aryl Radicals from Aryl Triflates. Angew Chem Int Ed Engl 2020; 59:10316-10320. [PMID: 32155303 PMCID: PMC7446712 DOI: 10.1002/anie.201915962] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Indexed: 12/31/2022]
Abstract
A mild visible-light-induced Pd-catalyzed intramolecular C-H arylation of amides is reported. The method operates by cleavage of a C(sp2 )-O bond, leading to hybrid aryl Pd-radical intermediates. The following 1,5-hydrogen atom translocation, intramolecular cyclization, and rearomatization steps lead to valuable oxindole and isoindoline-1-one motifs. Notably, this method provides access to products with readily enolizable functional groups that are incompatible with traditional Pd-catalyzed conditions.
Collapse
Affiliation(s)
- Maxim Ratushnyy
- Department of Chemistry,University of Illinois at Chicago 845 W. Taylor Street, Chicago, IL 60607-7061 (USA)
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 West Campbell, BSB13, Richardson, TX 75080 (USA)
| | - Nikita Kvasovs
- Department of Chemistry,University of Illinois at Chicago 845 W. Taylor Street, Chicago, IL 60607-7061 (USA)
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 West Campbell, BSB13, Richardson, TX 75080 (USA)
| | - Sumon Sarkar
- Department of Chemistry,University of Illinois at Chicago 845 W. Taylor Street, Chicago, IL 60607-7061 (USA)
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 West Campbell, BSB13, Richardson, TX 75080 (USA)
| | - Vladimir Gevorgyan
- Department of Chemistry,University of Illinois at Chicago 845 W. Taylor Street, Chicago, IL 60607-7061 (USA)
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 West Campbell, BSB13, Richardson, TX 75080 (USA)
| |
Collapse
|
48
|
Huang HM, Bellotti P, Pflüger PM, Schwarz JL, Heidrich B, Glorius F. Three-Component, Interrupted Radical Heck/Allylic Substitution Cascade Involving Unactivated Alkyl Bromides. J Am Chem Soc 2020; 142:10173-10183. [PMID: 32379432 DOI: 10.1021/jacs.0c03239] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Developing efficient and selective strategies to approach complex architectures containing (multi)stereogenic centers has been a long-standing synthetic challenge in both academia and industry. Catalytic cascade reactions represent a powerful means of rapidly leveraging molecular complexity from simple feedstocks. Unfortunately, carrying out cascade Heck-type reactions involving unactivated (tertiary) alkyl halides remains an unmet challenge owing to unavoidable β-hydride elimination. Herein, we show that a modular, practical, and general palladium-catalyzed, radical three-component coupling can indeed overcome the aforementioned limitations through an interrupted Heck/allylic substitution sequence mediated by visible light. Selective 1,4-difunctionalization of unactivated 1,3-dienes, such as butadiene, has been achieved by employing different commercially available nitrogen-, oxygen-, sulfur-, or carbon-based nucleophiles and unactivated alkyl bromides (>130 examples, mostly >95:5 E/Z, >20:1 rr). Sequential C(sp3)-C(sp3) and C-X (N, O, S) bonds have been constructed efficiently with a broad scope and high functional group tolerance. The flexibility and versatility of the strategy have been illustrated in a gram-scale reaction and streamlined syntheses of complex ether, sulfone, and tertiary amine products, some of which would be difficult to access via currently established methods.
Collapse
Affiliation(s)
- Huan-Ming Huang
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Peter Bellotti
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Philipp M Pflüger
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - J Luca Schwarz
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Bastian Heidrich
- MEET Battery Research Center, Institute of Physical Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 46, 48149 Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| |
Collapse
|
49
|
Wang H, Gao Y, Zhou C, Li G. Visible-Light-Driven Reductive Carboarylation of Styrenes with CO2 and Aryl Halides. J Am Chem Soc 2020; 142:8122-8129. [DOI: 10.1021/jacs.0c03144] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Hao Wang
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
- Fujian College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuzhen Gao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
| | - Chunlin Zhou
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
- Fujian College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gang Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
- Fujian College, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
50
|
Fan H, Wan Y, Pan P, Cai W, Liu S, Liu C, Zhang Y. A cascade approach to 3D cyclic carbamates via an ionic decarboxylative functionalization of olefinic oxamic acids. Chem Commun (Camb) 2020; 56:86-89. [DOI: 10.1039/c9cc07709j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An m-CPBA-mediated intramolecular epoxidation-decarboxylative alkoxylation cascade reaction of olefinic oxamic acids has been developed.
Collapse
Affiliation(s)
- Huaqiang Fan
- State Key Laboratory of Bioengineering Reactor
- Shanghai Key Laboratory of New Drug Design and School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Yi Wan
- State Key Laboratory of Bioengineering Reactor
- Shanghai Key Laboratory of New Drug Design and School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Peng Pan
- State Key Laboratory of Bioengineering Reactor
- Shanghai Key Laboratory of New Drug Design and School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Wenbin Cai
- State Key Laboratory of Bioengineering Reactor
- Shanghai Key Laboratory of New Drug Design and School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Shihui Liu
- State Key Laboratory of Bioengineering Reactor
- Shanghai Key Laboratory of New Drug Design and School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Chuanxu Liu
- Department of Hematology
- Xinhua Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai
- P. R. China
| | - Yongqiang Zhang
- State Key Laboratory of Bioengineering Reactor
- Shanghai Key Laboratory of New Drug Design and School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| |
Collapse
|