1
|
Feng B, Guo H, Wang X, Hu X, Li C, Guo Y, Su J, Xuan Q, Song Q. Difluorocarbene-Enabled Dehydration of Primary Amides To Access Nitriles. Org Lett 2025; 27:2992-2996. [PMID: 40091224 DOI: 10.1021/acs.orglett.5c00629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
A cost-effective and environmentally friendly method for the direct conversion of primary amides to nitriles was developed using commercially available non-toxic ethyl bromodifluoroacetate as a difluorocarbene precursor under metal-free and ligand-free conditions. The reaction features high yields and tolerates various sensitive moieties, including alkyl, alkenyl, ether, sulfone, sulfoxide, heteroaryl, chloro, bromo, iodo, hydroxyl, nitro, and cyano groups, and late-stage modification of complex molecules is also feasible. Moreover, the present method is effective on large scales, showing potential for industrial application.
Collapse
Affiliation(s)
- Bofan Feng
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China
| | - Huosheng Guo
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China
| | - Xiaosha Wang
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, Fujian 361021, People's Republic of China
| | - Xinyuan Hu
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, Fujian 361021, People's Republic of China
| | - Chengbo Li
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, Fujian 361021, People's Republic of China
| | - Yu Guo
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China
| | - Jianke Su
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, Fujian 361021, People's Republic of China
| | - Qingqing Xuan
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, Fujian 361021, People's Republic of China
| | - Qiuling Song
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, Fujian 361021, People's Republic of China
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China
| |
Collapse
|
2
|
Zhang M, Zheng Y, Jin Y, Jiang H, Wu W. Palladium-catalyzed ligand-regulated divergent synthesis of pyrrole[2,3- b]indoles and ureas from 2-ethynylanilines and isocyanides. Chem Commun (Camb) 2024; 60:2950-2953. [PMID: 38375635 DOI: 10.1039/d3cc05387c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Herein, a palladium-catalyzed and ligand-controlled protocol for the divergent synthesis of pyrrole[2,3-b]indole and urea derivatives has been described. Pyrrole[2,3-b]indoles ("cyclization on" products) via tandem cyclization of o-alkynylanilines with isocyanides in the absence of a ligand and ureas ("cyclization off" products) via oxidative amination of anilines with isocyanides in the presence of a ligand were obtained both in moderate to good yields with high selectivity. In this chemistry, cyclic and acyclic products were easily accessed with the same starting materials under the regulation of the ligand.
Collapse
Affiliation(s)
- Min Zhang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Yongpeng Zheng
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Yangbin Jin
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Wanqing Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
3
|
Song XF, Zhang LJ, Zhang XG, Tu HY. Cu-Catalyzed Carbocyclization for General Synthesis of N-Containing Heterocyclics Enabled by BrCF 2COOEt as a C1 Source. J Org Chem 2024; 89:3403-3412. [PMID: 38331393 DOI: 10.1021/acs.joc.3c02827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
A practical and efficient copper-catalyzed carbocyclization of 2-functionalized anilines with ethyl bromodifluoroacetate has been developed. Ethyl bromodifluoroacetate is employed as the C1 source via quadruple cleavage in this transformation. This reaction can afford a variety of N-containing heterocyclics with satisfactory yields and excellent functional group compatibility.
Collapse
Affiliation(s)
- Xiao-Fang Song
- College of Safety Science and Engineering, Nanjing Tech University, Nanjing 210009, China
- School of Intelligent Manufacturing and Electronic Engineering, Wenzhou University of Technology, Wenzhou 325035, China
| | - Li-Jing Zhang
- College of Safety Science and Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Xing-Guo Zhang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Hai-Yong Tu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
4
|
Chen D, Bao Y, Yan S, Wang J, Zhang Y, Li G. Photocatalytic Multicomponent Annulation of Amide-Anchored 1,7-Diynes Enabled by Deconstruction of Bromotrichloromethane. Molecules 2024; 29:782. [PMID: 38398533 PMCID: PMC10893216 DOI: 10.3390/molecules29040782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
We present the first example of visible-light-mediated multicomponent annulation of 1,7-diynes by taking advantage of quadruple cleavage olf carbon-halogen bonds of BrCCl3 to generate a C1 synthon, which was adeptly applied to the preparation of skeletally diverse 3-benzoyl-quinolin-2(1H)-one acetates in moderate to good yields. Controlled experiments demonstrated that H2O acted as both oxygen and hydrogen sources, and gem-dichlorovinyl carbonyl compound exhibited as a critical intermediate in this process. The mechanistic pathway involves Kharasch-type addition/6-exo-dig cyclization/1,5-(SN")-substitution/elimination/binucleophilic 1,6-addition/proton transfer/tautomerization sequence.
Collapse
Affiliation(s)
- Daixiang Chen
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Yu Bao
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Shenghu Yan
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Jiayin Wang
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Yue Zhang
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Guigen Li
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA;
| |
Collapse
|
5
|
Sun B, Li PX, Jiang Y, Yang LL, Huang PY, Shen RP, Chen MJ, Wang JY, Jin C. Visible-Light-Induced Desaturative β-Alkoxyoxalylation of N-Aryl Cyclic Amines with Difluoromethyl Bromides and H 2O Via a Triple Cleavage Process. Org Lett 2023; 25:6773-6778. [PMID: 37655856 DOI: 10.1021/acs.orglett.3c02770] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
A visible-light-driven desaturative β-alkoxyoxalyation of N-aryl cyclic amines with difluoromethyl bromides and H2O has been reported. This tandem reaction is triggered by homolysis of the C-Br bond to produce the difuoroalkyl radical, which undergoes the subsequent defluorinated β-alkoxyoxalylation cascades to afford a wide range of β-ketoester/ketoamides substituted enamines. The prominent feature of this reaction contains photocatalyst-free, transition-metal free, and mild conditions. The 18O labeling experiment disclosed that H2O is the oxygen source of the carbonyl unit.
Collapse
Affiliation(s)
- Bin Sun
- College of Pharmaceutical Science, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Pei-Xuan Li
- College of Pharmaceutical Science, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yu Jiang
- College of Pharmaceutical Science, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Lu-Lu Yang
- College of Pharmaceutical Science, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Pan-Yi Huang
- College of Pharmaceutical Science, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Run-Pu Shen
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing 312000, P. R. China
| | - Mao-Jie Chen
- College of Pharmaceutical Science, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jia-Yang Wang
- School of Life Sciences, Huzhou University, Huzhou 313002, Zhejiang, P. R. China
| | - Can Jin
- College of Pharmaceutical Science, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
6
|
Abstract
ConspectusFluorine-containing compounds are extensively involved in various fields originating from intriguing and unique characteristics of fluorine atom; notably, in pharmaceuticals, the involvement of a fluorine atom or a fluorine-containing group is a chief technique for improving the pesticide effect and developing new drugs. Difluorocarbene, one of the most important and powerful fluorine-containing reagents, is widely employed and studied in many areas mainly to assemble gem-difluoromethyl molecules, including but not limited to the abundant reactions between difluorocarbene with nucleophilic substrates, Wittig reaction with ketones or aldehydes, cascade reaction with both a nucleophile and an electrophile, or [2+1] cycloaddition with alkenes or alkynes. However, its unconventional and intriguing protocols beyond as a difluoromethyl synthon have rarely been studied, and thus, it is highly desired given its abundance, inexpensiveness and peculiar properties. In this Account, we mainly discuss our discovery with unconventional transformations of difluorocarbene, instead of as a sole difluoromethyl source (different from other dihalocarbene), actually can serve as an electron acceptor to activate C-X bonds (X = N and O) and thus promote a myriad of fascinating transformations for the assembly of versatile valuable products with various aza-compounds (primary/secondary/tertiary amines as well as NH3 and NaNH2 and so on) and aliphatic ethers in the absence of transition metals and expensive ligands. Inspired by the electron-deficient characteristics of difluorocarbene, we first found that the isocyanides could be readily formed in situ when the unoccupied orbital of difluorocarbene meets the lone-pair of primary amines; in basic condition, a cascade defluorination and cyclizations could afford plethora of valuable N-containing heterocycles. Meanwhile, we disclosed that cyano anion could be accessible in situ as well when difluorocarbene and NaNH2 or NH3 were mixed up in suitable basic conditions, and thus a series of aryl nitrile compounds were obtained in the presence of Pd catalysis and ArI. Interestingly, when difluorocarbene encountered secondary amines, formamides were rendered under mild reactions. Of note, concomitant functionalizations of C and N moieties via cleavage of the unstrained C(sp3)-N bond in the absence of metal and oxidant are sparce, which indeed significantly add versatility and diversity to products. Gratifyingly, by uitilizing difluorocarbene and cyclic tertiary amines, we achieved difluorocarbene-mediated deconstructive functionalizations for the first time, showing successive C(sp3)-N bond scission of amines and simultaneous functionalization of C and N atoms which would be introduced into the products in the absence of transition metals and oxidants. This method provides a brand-new while very universal synthetic pathway to selectively cleave inert unactivated Csp3-N bonds, in which halodifluoromethyl reagents act as both C1 synthon and halo (Cl, Br, I) sources. Fascinatingly, nitrogen ylides are generated in situ from difluorocarbene and tertiary amines, and an intriguing and universal approach for deaminative arylation or alkenylation of tertiary amines was disclosed for the first time in appropriate basic conditions, which represents an intriguing reaction mode to lead to a formal transition-metal free Suzuki cross coupling. Besides, we also disclosed that difluorocarbene could proceed novel atom recombination to render meaningful 2-fluoroindoles or 3-(2,2-difluoroethyl)-2-fluoroindoles from ortho-vinylanilines, 3-fluorined oxindoles from 2-aminoarylketones, in which difluorocarbene acts as a C1 synthon and F1 source simultaneously. Last but not the least, we recently found that the lone-pair-electron of oxygen could trap difluorocarbene as well to form oxonium ylide, which eventually leads to C-O bond cleavage with the formation of difluoromethyl ethers.
Collapse
|
7
|
Chen S, Huang H, Li X, Ma X, Su J, Song Q. Difluorocarbene-Enabled Synthesis of 3-Alkenyl-2-oxindoles from ortho-Aminophenylacetylenes. Org Lett 2023; 25:1178-1182. [PMID: 36757765 DOI: 10.1021/acs.orglett.3c00150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Herein, we report a transition-metal-free [4 + 1] cyclization pathway from difluorocarbene and ortho-amino aryl alkynone, rendering an effective and universal strategy for the construction of 3-alkenyl-2-oxindoles. Our strategy starts from cheap and accessible ortho-amino aryl alkynone instead of the direct indole skeleton; moreover, in situ generated difluorocarbene from commercially available halogenated difluoroalkylative reagents enables the cleavage of a C-N bond and formation of new C-N bonds and C-C bonds.
Collapse
Affiliation(s)
- Shanglin Chen
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou 350108, Fujian, China
| | - Hua Huang
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen 361021, Fujian, China
| | - Xin Li
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen 361021, Fujian, China
| | - Xingxing Ma
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou 350108, Fujian, China
| | - Jianke Su
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen 361021, Fujian, China
| | - Qiuling Song
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou 350108, Fujian, China.,Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen 361021, Fujian, China.,State Key Laboratory of Organometallic Chemistry and Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| |
Collapse
|
8
|
Vinayagam V, Karre SK, Kasu SR, Srinath R, Naveen Babu Bathula HS, Sadhukhan SK. AlCl 3-Mediated CHF 2 Transfer and Cyclocondensation of Difluoromethoxy Functionalized o-Phenylenediamines to Access N-Substituted Benzimidazoles. Org Lett 2022; 24:6142-6147. [PMID: 35938941 DOI: 10.1021/acs.orglett.2c02231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, we report for the first time a transition-metal-free frustrated Lewis pair (FLP) catalyzed CHF2 group migration from an oxygen atom to the neighboring nitrogen atom, which led to the synthesis of N-substituted benzimidazoles at room temperature with excellent yields, broad functional group tolerance, and a short reaction time. The oxygen-attached difluoromethane acted as a C1 source in the synthesis of N-substituted benzimidazoles in the presence of AlCl3 by cleaving one C-O bond and two C-F bonds, resulting in formation of two new C-N bonds.
Collapse
Affiliation(s)
- Vinothkumar Vinayagam
- Curia India Pvt. Ltd (Formerly Albany Molecular Research, Hyderabad Research Centre), MN Park, Genome Valley, Shameerpet, RR District, Hyderabad 500078, India
| | - Satish Kumar Karre
- Curia India Pvt. Ltd (Formerly Albany Molecular Research, Hyderabad Research Centre), MN Park, Genome Valley, Shameerpet, RR District, Hyderabad 500078, India
| | - Sreenivasa Reddy Kasu
- Curia India Pvt. Ltd (Formerly Albany Molecular Research, Hyderabad Research Centre), MN Park, Genome Valley, Shameerpet, RR District, Hyderabad 500078, India
| | - Ravuri Srinath
- Curia India Pvt. Ltd (Formerly Albany Molecular Research, Hyderabad Research Centre), MN Park, Genome Valley, Shameerpet, RR District, Hyderabad 500078, India
| | - Hema Sundar Naveen Babu Bathula
- Curia India Pvt. Ltd (Formerly Albany Molecular Research, Hyderabad Research Centre), MN Park, Genome Valley, Shameerpet, RR District, Hyderabad 500078, India
| | - Subir Kumar Sadhukhan
- Curia India Pvt. Ltd (Formerly Albany Molecular Research, Hyderabad Research Centre), MN Park, Genome Valley, Shameerpet, RR District, Hyderabad 500078, India
| |
Collapse
|
9
|
Duan J, Choy PY, Gan KB, Kwong FY. N-Difluoromethylation of N-pyridyl-substituted anilines with ethyl bromodifluoroacetate. Org Biomol Chem 2022; 20:1883-1887. [PMID: 35171189 DOI: 10.1039/d2ob00119e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A general protocol for N-difluoromethylation of aniline derivatives is developed. Commercially available ethyl bromodifluoroacetate serves as a difluorocarbene source in the presence of a base. This carbene surrogate is attractive owing to its favorable stability, environmental friendliness and inexpensiveness. This reaction system features notable operational simplicity (bench top-grade solvents can be used without any pre-drying and do not require inert atmosphere protection). A wide range of functional groups in aniline derivatives are well-tolerated, and good-to-excellent product yields are generally obtained.
Collapse
Affiliation(s)
- Jindian Duan
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P.R. China.,College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Pui Ying Choy
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, P.R. China.
| | - Kin Boon Gan
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, P.R. China.
| | - Fuk Yee Kwong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P.R. China.,Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, P.R. China.
| |
Collapse
|
10
|
Sheng H, Su J, Li X, Li X, Song Q. Double Capture of Difluorocarbene by 2-Aminostyrenes Enables the Construction of 3-(2,2-Difluoroethyl)-2-fluoroindoles. Org Lett 2021; 23:7781-7786. [PMID: 34617770 DOI: 10.1021/acs.orglett.1c02816] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report herein an efficient strategy to construct 3-(2,2-difluoroethyl)-2-fluoroindoles from activated o-aminostyrenes with ethyl bromodi-fluoroacetate as a difluorocarbene source. Through double capture of a difluorocarbene, two different types of fluorine motifs are incorporated into the products with simultaneous construction of one C-N and two C-C bonds, without the need for transition metals. This reaction features high efficiency and excellent functional group compatibility and has great potential in the late-stage modifications of pharmaceutical molecules and natural products.
Collapse
Affiliation(s)
- Heyun Sheng
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Jianke Su
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Xin Li
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Xue Li
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Qiuling Song
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, Fujian 361021, China.,Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China.,State Key Laboratory of Organometallic Chemistry and Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
11
|
Abstract
AbstractThe unique properties of fluorine-containing organic compounds make fluorine substitution attractive for the development of pharmaceuticals and various specialty materials, which have inspired the evolution of diverse C-F bond activation techniques. Although many advances have been made in functionalizations of activated C-F bonds utilizing transition metal complexes, there are fewer approaches available for nonactivated C-F bonds due to the difficulty in oxidative addition of transition metals to the inert C-F bonds. In this regard, using Lewis acid to abstract the fluoride and light/radical initiator to generate the radical intermediate have emerged as powerful tools for activating those inert C-F bonds. Meanwhile, these transition-metal-free processes are greener, economical, and for the pharmaceutical industry, without heavy metal residues. This review provides an overview of recent C-F bond activations and functionalizations under transition-metal-free conditions. The key mechanisms involved are demonstrated and discussed in detail. Finally, a brief discussion on the existing limitations of this field and our perspective are presented.
Collapse
|
12
|
Su J, Hu X, Huang H, Guo Y, Song Q. Difluorocarbene enables to access 2-fluoroindoles from ortho-vinylanilines. Nat Commun 2021; 12:4986. [PMID: 34404806 PMCID: PMC8371155 DOI: 10.1038/s41467-021-25313-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023] Open
Abstract
2-Fluoroindoles as an important structural scaffold are widely existing in many bioactive or therapeutic agents. Despite their potential usefulness, efficient constructions of 2-fluoroindole derivatives are very sparce. The development of straightforward synthetic approaches to access 2-fluoroindoles is highly desirable for studying their fundamental properties and applications. Herein, we report an efficient and general strategy for the construction of 2-fluoroindoles in which a wide variety of 2-fluoroindoles were accessed with high efficiency and chemoselectivity. Instead of starting from indole skeletons, our strategy constructs indole scaffolds alongside the incorporation of fluorine atom on C2 position in a formal [4+1] cyclization from readily accessible ortho-vinylanilines and difluorocarbene. In our protocol, commercially accessible halodifluoroalkylative reagents provide one carbon and one fluorine atom by cleaving one C-N tertiary bond and forming one C-N bond and one C-C double bond with ortho-vinylanilines. Downstream transformations on 2-fluoroindoles lead to various valuable bioactive molecules which demonstrated significant synthetic advantages over previous reports. And mechanistic studies suggest that the reaction undergoes a cascade difluorocarbene-trapping and intramolecular Michael addition reaction followed by Csp3-F bond cleavage.
Collapse
Affiliation(s)
- Jianke Su
- grid.411404.40000 0000 8895 903XInstitute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, Fujian China
| | - Xinyuan Hu
- grid.411404.40000 0000 8895 903XInstitute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, Fujian China
| | - Hua Huang
- grid.411404.40000 0000 8895 903XInstitute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, Fujian China
| | - Yu Guo
- grid.411404.40000 0000 8895 903XInstitute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, Fujian China
| | - Qiuling Song
- grid.411404.40000 0000 8895 903XInstitute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, Fujian China ,grid.411604.60000 0001 0130 6528Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian China
| |
Collapse
|
13
|
Wang Y, Zhou Y, Ma X, Song Q. Solvent-Dependent Cyclization of 2-Alkynylanilines and ClCF 2COONa for the Divergent Assembly of N-(Quinolin-2-yl)amides and Quinolin-2(1 H)-ones. Org Lett 2021; 23:5599-5604. [PMID: 34259006 DOI: 10.1021/acs.orglett.1c01484] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Herein, we present an expedient Cu-catalyzed [5 + 1] cyclization of 2-alkynylanilines and ClCF2COONa to divergent construction of N-(quinolin-2-yl)amides and quinolin-2(1H)-ones by regulating the reaction solvents. Notably, nitrile acts as a solvent and performs the Ritter reactions. ClCF2COONa is used as a C1 synthon in this transformation, which also represents the first example for utilization of ClCF2COONa as an efficient desiliconization reagent. The current protocol involves in situ generation of isocyanide, copper-activated alkyne, Ritter reaction and protonation.
Collapse
Affiliation(s)
- Ya Wang
- Institute of Next Generation Matter Transformation, College of Materials Science & Engineering, Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, People's Republic of China
| | - Yao Zhou
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, Hubei 435002, People's Republic of China
| | - Xingxing Ma
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China
| | - Qiuling Song
- Institute of Next Generation Matter Transformation, College of Materials Science & Engineering, Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, People's Republic of China.,Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China.,State Key Laboratory of Organometallic Chemistry and Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| |
Collapse
|
14
|
[4+1] cyclization of benzohydrazide and ClCF2COONa towards 1,3,4-oxadiazoles and 1,3,4-oxadiazoles-d5. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.08.089] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Li Y, Sun N, Zhang C, Hao M. Base‐Promoted
Formylation and
N
‐Difluoromethylation
of Azaindoles with Ethyl Bromodifluoroacetate as a Carbon Source. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yang Li
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, School of Environmental and Chemical Engineering, Xi'an Polytechnic University Xi'an Shaanxi 710048 China
| | - Ning Sun
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, School of Environmental and Chemical Engineering, Xi'an Polytechnic University Xi'an Shaanxi 710048 China
| | - Cai‐Lin Zhang
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, School of Environmental and Chemical Engineering, Xi'an Polytechnic University Xi'an Shaanxi 710048 China
| | - Meng Hao
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, School of Environmental and Chemical Engineering, Xi'an Polytechnic University Xi'an Shaanxi 710048 China
| |
Collapse
|
16
|
Zhou S, Hou X, Yang K, Guo M, Zhao W, Tang X, Wang G. Direct Synthesis of N-Difluoromethyl-2-pyridones from Pyridines. J Org Chem 2021; 86:6879-6887. [PMID: 33905251 DOI: 10.1021/acs.joc.1c00228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel method for the synthesis of N-difluoromethyl-2-pyridones was described. This protocol enables the synthesis of N-difluoromethyl-2-pyridones from readily available pyridines using mild reaction conditions that are compatible with a wide range of functional groups. The preliminary mechanistic study revealed that N-difluoromethylpyridinium salts were the key intermediates to complete this conversion.
Collapse
Affiliation(s)
- Sen Zhou
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Xiaoya Hou
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Kai Yang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Minjie Guo
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Wentao Zhao
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Xiangyang Tang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Guangwei Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
17
|
Chen H, Wang L, Liu Y, Guo M, Zhao W, Tang X, Wang G. Copper Catalyzed Direct Synthesis of Unsymmetrically Substituted Oxalamides From Bromodifluoroacetamide and Tertiary Amines. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hongtai Chen
- Department of Chemistry, School of Science Tianjin University 135 Yaguan Road Tianjin 300072 P. R. China
| | - Lianxin Wang
- Department of Chemistry, School of Science Tianjin University 135 Yaguan Road Tianjin 300072 P. R. China
| | - Yujie Liu
- Department of Chemistry, School of Science Tianjin University 135 Yaguan Road Tianjin 300072 P. R. China
| | - Minjie Guo
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology Tianjin University 92 Weijin Road Tianjin 300072 P. R. China
| | - Wentao Zhao
- Department of Chemistry, School of Science Tianjin University 135 Yaguan Road Tianjin 300072 P. R. China
| | - Xiangyang Tang
- Department of Chemistry, School of Science Tianjin University 135 Yaguan Road Tianjin 300072 P. R. China
| | - Guangwei Wang
- Department of Chemistry, School of Science Tianjin University 135 Yaguan Road Tianjin 300072 P. R. China
| |
Collapse
|
18
|
Liu X, Sheng H, Zhou Y, Song Q. Pd-Catalyzed Assembly of Fluoren-9-ones by Merging of C–H Activation and Difluorocarbene Transfer. Org Lett 2021; 23:2543-2547. [DOI: 10.1021/acs.orglett.1c00467] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaobing Liu
- Institute of Next Generation Matter Transformation, College of Materials Science & Engineering and College of Chemical Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen 361021, Fujian, P. R. China
| | - Heyun Sheng
- Institute of Next Generation Matter Transformation, College of Materials Science & Engineering and College of Chemical Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen 361021, Fujian, P. R. China
| | - Yao Zhou
- College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, Hubei, P. R. China
| | - Qiuling Song
- Institute of Next Generation Matter Transformation, College of Materials Science & Engineering and College of Chemical Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen 361021, Fujian, P. R. China
- Fujian University Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, P. R. China
- State Key Laboratory of Organometallic Chemistry and Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
19
|
Gao B, Ni Y, Liu X, Jiang T, Yan Q, Yang R, Zhang X. Copper‐Catalyzed Difluoroalkylation‐Thiolation of Alkenes Promoted by Na
2
S
2
O
5. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Bao Gao
- Department of Applied Chemistry Anhui Agricultural University Hefei 230036 People's Republic of China
| | - Yingjie Ni
- Department of Applied Chemistry Anhui Agricultural University Hefei 230036 People's Republic of China
| | - Xiaojun Liu
- Department of Applied Chemistry Anhui Agricultural University Hefei 230036 People's Republic of China
| | - Tao Jiang
- Department of Applied Chemistry Anhui Agricultural University Hefei 230036 People's Republic of China
| | - Qian Yan
- Department of Applied Chemistry Anhui Agricultural University Hefei 230036 People's Republic of China
| | - Ruiting Yang
- Department of Applied Chemistry Anhui Agricultural University Hefei 230036 People's Republic of China
| | - Xiuli Zhang
- Department of Applied Chemistry Anhui Agricultural University Hefei 230036 People's Republic of China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Shanghai 200032 PR China
| |
Collapse
|
20
|
Zhou S, Sun ZY, Zhu K, Zhao W, Tang X, Guo M, Wang G. Metal-Free Difunctionalization of Pyridines: Selective Construction of N-CF 2H and N-CHO Dihydropyridines. Org Lett 2021; 23:2205-2211. [PMID: 33635677 DOI: 10.1021/acs.orglett.1c00352] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The reactivity of N-difluoromethylpyridinium salts is seldom explored because of their instability and low availability. Here we present a novel nucleophilic addition of N-difluoromethylpyridinium salts with nitroalkanes to synthesize N-CF2H-dihydropyridines and N-CHO-dihydropyridines in a highly efficient and regioselective pathway. This protocol exhibits good functional group tolerance and good to excellent yields.
Collapse
Affiliation(s)
- Sen Zhou
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Ze-Ying Sun
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Kongying Zhu
- Nuclear Magnetic Resonance Testing Center, Tianjin University, Tianjin 300072, P. R. China
| | - Wentao Zhao
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Xiangyang Tang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Minjie Guo
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Guangwei Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
21
|
Jin S, Li SJ, Ma X, Su J, Chen H, Lan Y, Song Q. Elemental-Sulfur-Enabled Divergent Synthesis of Disulfides, Diselenides, and Polythiophenes from β-CF 3 -1,3-Enynes. Angew Chem Int Ed Engl 2021; 60:881-888. [PMID: 32985082 DOI: 10.1002/anie.202009194] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/15/2020] [Indexed: 02/03/2023]
Abstract
Divergent synthesis for precise constructions of cyclic unsymmetrical diaryl disulfides or diselenides and polythiophenes from CF3 -containing 1,3-enynes and S8 was developed when the ortho group is F, Cl, Br, and NO2 on aromatic rings. Meanwhile, disulfides (diselenides) were also quickly constructed when the ortho group is H. These transformations undergo cascade thiophene construction/selective C3-position thiolation process, featuring simple operations, divergent synthesis, broad substrate scope, readily available starting materials, and valuable products. A novel plausible radical annulation process was proposed and validated by DFT calculations for the first time. A series of derivatizations about the thiophene (TBT) and disulfides were also well-represented.
Collapse
Affiliation(s)
- Shengnan Jin
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at, Huaqiao University, 668 Jimei Blvd, Xiamen, Fujian, 361021, P. R. China
| | - Shi-Jun Li
- College of Chemistry, and Institute of Green Catalysis, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan, 450001, P. R. China
| | - Xingxing Ma
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| | - Jianke Su
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at, Huaqiao University, 668 Jimei Blvd, Xiamen, Fujian, 361021, P. R. China
| | - Haohua Chen
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 400030, P. R. China
| | - Yu Lan
- College of Chemistry, and Institute of Green Catalysis, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan, 450001, P. R. China.,School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 400030, P. R. China
| | - Qiuling Song
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at, Huaqiao University, 668 Jimei Blvd, Xiamen, Fujian, 361021, P. R. China.,Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| |
Collapse
|
22
|
Abstract
This review highlights the state-of-the-art advances in C(sp3)–H functionalization involving isocyanides through the synergistic combination of isocyanide insertion and C(sp3)–H bond activation.
Collapse
Affiliation(s)
- Weixiang Wang
- Department of Chemistry
- Innovative Drug Research Center
- School of Medicine
- Shanghai University
- Shanghai 200444
| | - Tianqi Liu
- Department of Chemistry
- Innovative Drug Research Center
- School of Medicine
- Shanghai University
- Shanghai 200444
| | - Chang-Hua Ding
- Department of Chemistry
- Innovative Drug Research Center
- School of Medicine
- Shanghai University
- Shanghai 200444
| | - Bin Xu
- Department of Chemistry
- Innovative Drug Research Center
- School of Medicine
- Shanghai University
- Shanghai 200444
| |
Collapse
|
23
|
Cankařová N, Krchňák V. Isocyanide Multicomponent Reactions on Solid Phase: State of the Art and Future Application. Int J Mol Sci 2020; 21:E9160. [PMID: 33271974 PMCID: PMC7729642 DOI: 10.3390/ijms21239160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 01/17/2023] Open
Abstract
Drug discovery efforts largely depend on access to structural diversity. Multicomponent reactions allow for time-efficient chemical transformations and provide advanced intermediates with three or four points of diversification for further expansion to a structural variety of organic molecules. This review is aimed at solid-phase syntheses of small molecules involving isocyanide-based multicomponent reactions. The majority of all reported syntheses employ the Ugi four-component reaction. The review also covers the Passerini and Groebke-Blackburn-Bienaymé reactions. To date, the main advantages of the solid-phase approach are the ability to prepare chemical libraries intended for biological screening and elimination of the isocyanide odor. However, the potential of multicomponent reactions has not been fully exploited. The unexplored avenues of these reactions, including chiral frameworks, DNA-encoded libraries, eco-friendly synthesis, and chiral auxiliary reactions, are briefly outlined.
Collapse
Affiliation(s)
- Naděžda Cankařová
- Department of Organic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 779 00 Olomouc, Czech Republic;
| | - Viktor Krchňák
- Department of Organic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 779 00 Olomouc, Czech Republic;
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Center, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
24
|
Liu Y, Luo W, Wang Z, Zhao Y, Zhao J, Xu X, Wang C, Li P. Visible-Light Photoredox-Catalyzed Formal [5 + 1] Cycloaddition of N-Tosyl Vinylaziridines with Difluoroalkyl Halides. Org Lett 2020; 22:9658-9664. [PMID: 33236913 DOI: 10.1021/acs.orglett.0c03718] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A visible-light photoredox-catalyzed formal [5 + 1] cycloaddition of N-tosyl vinylaziridines with difluoroalkyl halides as unique C1 synthons was developed. The procedure provides an efficient and practical method to synthesize diverse pyridines in moderate to good yields. The reaction underwent a radical-initiated kinetically controlled ring-opening of vinylaziridines and involved a key α,β-unsaturated imine intermediate, followed by an E2 elimination, a 6π electrocyclization, and defluorinated aromatization.
Collapse
Affiliation(s)
- Yantao Liu
- Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Wen Luo
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Zhenjie Wang
- Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Yuxin Zhao
- Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Jingjing Zhao
- Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Xuejun Xu
- Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Chaojie Wang
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Pan Li
- Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People's Republic of China.,Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, People's Republic of China
| |
Collapse
|
25
|
Hou X, Zhou S, Li Y, Guo M, Zhao W, Tang X, Wang G. Synthesis of Indolizines from Pyridinium Salts and Ethyl Bromodifluoroacetate. Org Lett 2020; 22:9313-9318. [DOI: 10.1021/acs.orglett.0c03540] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xiaoya Hou
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Sen Zhou
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Yuli Li
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Minjie Guo
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Wentao Zhao
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Xiangyang Tang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Guangwei Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
26
|
Jin S, Li S, Ma X, Su J, Chen H, Lan Y, Song Q. Elemental‐Sulfur‐Enabled Divergent Synthesis of Disulfides, Diselenides, and Polythiophenes from β‐CF
3
‐1,3‐Enynes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shengnan Jin
- Institute of Next Generation Matter Transformation College of Material Sciences Engineering at Huaqiao University 668 Jimei Blvd Xiamen Fujian 361021 P. R. China
| | - Shi‐Jun Li
- College of Chemistry, and Institute of Green Catalysis Zhengzhou University 100 Science Avenue Zhengzhou Henan 450001 P. R. China
| | - Xingxing Ma
- Key Laboratory of Molecule Synthesis and Function Discovery Fujian Province University College of Chemistry at Fuzhou University Fuzhou Fujian 350108 P. R. China
| | - Jianke Su
- Institute of Next Generation Matter Transformation College of Material Sciences Engineering at Huaqiao University 668 Jimei Blvd Xiamen Fujian 361021 P. R. China
| | - Haohua Chen
- School of Chemistry and Chemical Engineering Chongqing Key Laboratory of Theoretical and Computational Chemistry Chongqing University Chongqing 400030 P. R. China
| | - Yu Lan
- College of Chemistry, and Institute of Green Catalysis Zhengzhou University 100 Science Avenue Zhengzhou Henan 450001 P. R. China
- School of Chemistry and Chemical Engineering Chongqing Key Laboratory of Theoretical and Computational Chemistry Chongqing University Chongqing 400030 P. R. China
| | - Qiuling Song
- Institute of Next Generation Matter Transformation College of Material Sciences Engineering at Huaqiao University 668 Jimei Blvd Xiamen Fujian 361021 P. R. China
- Key Laboratory of Molecule Synthesis and Function Discovery Fujian Province University College of Chemistry at Fuzhou University Fuzhou Fujian 350108 P. R. China
| |
Collapse
|
27
|
Ma X, Song Q. Recent progress on selective deconstructive modes of halodifluoromethyl and trifluoromethyl-containing reagents. Chem Soc Rev 2020; 49:9197-9219. [PMID: 33146196 DOI: 10.1039/d0cs00604a] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Halodifluoromethyl and trifluoromethyl-containing compounds are widely employed in organic chemistry, pharmaceuticals and materials science. Therefore, their applications and transformations have received significant attention during the past few decades. The single, double, triple and quadruple cleavage of halodifluoromethyl compounds and various deconstructive modes of trifluoromethyl-containing compounds could generate a variety of synthons to prepare more valuable products. Herein, we summarize the most significant achievements in this field with an intriguing focus on results from the last decade.
Collapse
Affiliation(s)
- Xingxing Ma
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University Fuzhou, Fujian, 350108, China
| | | |
Collapse
|
28
|
Su J, Ma X, Ou Z, Song Q. Deconstructive Functionalizations of Unstrained Carbon-Nitrogen Cleavage Enabled by Difluorocarbene. ACS CENTRAL SCIENCE 2020; 6:1819-1826. [PMID: 33145418 PMCID: PMC7596867 DOI: 10.1021/acscentsci.0c00779] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Indexed: 05/03/2023]
Abstract
Transition-metal- or oxidant-promoted deconstructive functionalizations of noncyclic carbon-nitrogen bonds are well established, usually only leaving one moiety functionalized toward the final product. In contrast, concomitant C- and N-functionalizations via the unstrained C(sp3)-N bond under metal- and oxidant-free conditions are very rare, which would favorably confer versatility and product diversity. Disclosed herein is the first difluorocarbene-induced deconstructive functionalizations embodying successive C(sp3)-N bond cleavage of cyclic amines and synchronous functionalization of both constituent atoms which would be preserved in the eventual molecular outputs under transition-metal-free and oxidant-free conditions. Correspondent access to deuterated formamides with ample isotopic incorporation was demonstrated by a switch to heavy water which is conceivably useful in pharmaceutical sciences. The current strategy remarkably administers a very convenient, operationally simple and novel method toward molecular diversity from readily available starting materials. Therefore, we project that these findings would be of broad interest to research endeavors encompassing fluorine chemistry, carbene chemistry, C-N bond activation, as well as medicinal chemistry.
Collapse
Affiliation(s)
- Jianke Su
- Institute of Next
Generation Matter Transformation, College of Material Sciences &
Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China
| | - Xingxing Ma
- Institute of Next
Generation Matter Transformation, College of Material Sciences &
Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China
| | - Zongliang Ou
- Institute of Next
Generation Matter Transformation, College of Material Sciences &
Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China
| | - Qiuling Song
- Institute of Next
Generation Matter Transformation, College of Material Sciences &
Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at
Fuzhou University, Fuzhou, Fujian 350108, China
| |
Collapse
|
29
|
Huang K, Liu JB, Chen ZF, Wang YC, Yadav S, Qiu G. Palladium-Catalyzed Imidoylation-Triggered [2 + 2 + 1] Cyclization of Internal Alkyne with Isocyanides. Org Lett 2020; 22:5931-5935. [PMID: 32662274 DOI: 10.1021/acs.orglett.0c02019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this work, a palladium-catalyzed [2 + 2 + 1] cyclization of internal alkynes with double isocyanides is described. This facile procedure is efficient for synthesizing various pyrrolo[3,2-c]quinolin-2-amines. The reaction worked well with a broad reaction scope. In the process, it is believed that sequential double isocyanide insertion, 6-exo-dig cyclization of alkyne, and addition of an imino group are involved.
Collapse
Affiliation(s)
- Keke Huang
- School of Metallurgical and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China.,College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China
| | - Jin-Biao Liu
- School of Metallurgical and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Zhi-Feng Chen
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China
| | - Yu-Chao Wang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China
| | - Sarita Yadav
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China
| | - Guanyinsheng Qiu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China
| |
Collapse
|
30
|
Ma X, Yu X, Huang H, Zhou Y, Song Q. Synthesis of Thiazoles and Isothiazoles via Three-Component Reaction of Enaminoesters, Sulfur, and Bromodifluoroacetamides/Esters. Org Lett 2020; 22:5284-5288. [DOI: 10.1021/acs.orglett.0c01275] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xingxing Ma
- Institute of Next Generation Matter Transformation, College of Materials Science & Engineering, Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China
| | - Xiaoxia Yu
- Institute of Next Generation Matter Transformation, College of Materials Science & Engineering, Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China
| | - Hua Huang
- Institute of Next Generation Matter Transformation, College of Materials Science & Engineering, Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China
| | - Yao Zhou
- College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, Hubei 435002, China
| | - Qiuling Song
- Institute of Next Generation Matter Transformation, College of Materials Science & Engineering, Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China
| |
Collapse
|
31
|
Wang Y, Zhou Y, Song Q. [3+1+1] type cyclization of ClCF2COONa for the assembly of imidazoles and tetrazoles via in situ generated isocyanides. Chem Commun (Camb) 2020; 56:6106-6109. [DOI: 10.1039/d0cc01919d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A facile synthesis of imidazoles and tetrazoles via [3+1+1] type cyclization of ClCF2COONa is developed.
Collapse
Affiliation(s)
- Ya Wang
- Institute of Next Generation Matter Transformation
- College of Materials Science & Engineering at Huaqiao University
- 668 Jimei Blvd, Xiamen
- Fujian
- P. R. China
| | - Yao Zhou
- College of Chemistry and Chemical Engineering
- Hubei Normal University
- Huangshi 435002
- P. R. China
| | - Qiuling Song
- Institute of Next Generation Matter Transformation
- College of Materials Science & Engineering at Huaqiao University
- 668 Jimei Blvd, Xiamen
- Fujian
- P. R. China
| |
Collapse
|
32
|
Zhang W, Lin JH, Zhang P, Xiao JC. A convenient reagent for the conversion of aldoximes into nitriles and isonitriles. Chem Commun (Camb) 2020; 56:6221-6224. [DOI: 10.1039/d0cc00188k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Described herein is the convenient transformation of aldoximes into nitriles or isonitriles by slightly modifying reaction conditions.
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory of Organofluorine Chemistry
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
- Shanghai
| | - Jin-Hong Lin
- Key Laboratory of Organofluorine Chemistry
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
- Shanghai
| | - Pengfei Zhang
- NHC Key Laboratory of Cancer Proteomics
- Department of Oncology
- Xiangya Hospital
- Central South University
- Changsha
| | - Ji-Chang Xiao
- Key Laboratory of Organofluorine Chemistry
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
- Shanghai
| |
Collapse
|
33
|
Yu C, Ma X, Song Q. Palladium-catalyzed cyanation of aryl halides with in situ generated CN− from ClCF2H and NaNH2. Org Chem Front 2020. [DOI: 10.1039/d0qo00775g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient Pd-catalyzed cyanation of aryl halides with in situ generated CN− anions is described.
Collapse
Affiliation(s)
- Changjiang Yu
- Institute of Next Generation Matter Transformation
- College of Chemical Engineering at Huaqiao University
- Xiamen
- P. R. China
| | - Xingxing Ma
- Institute of Next Generation Matter Transformation
- College of Chemical Engineering at Huaqiao University
- Xiamen
- P. R. China
| | - Qiuling Song
- Institute of Next Generation Matter Transformation
- College of Chemical Engineering at Huaqiao University
- Xiamen
- P. R. China
| |
Collapse
|
34
|
Ma X, Huang H, Su J, Song Z, Nakano T, Song Q. Synthesis of CF
2
H‐Containing Oxime Ethers Derivatives from ClCF
2
H,
tert
‐Butyl Nitrile and Indoles. CHINESE J CHEM 2019. [DOI: 10.1002/cjoc.201900401] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xingxing Ma
- Institute of Next Generation Matter Transformation, College of Materials Science & EngineeringHuaqiao University, 668 Jimei Blvd Xiamen Fujian 361021 China
| | - Hua Huang
- Institute of Next Generation Matter Transformation, College of Materials Science & EngineeringHuaqiao University, 668 Jimei Blvd Xiamen Fujian 361021 China
| | - Jianke Su
- Institute of Next Generation Matter Transformation, College of Materials Science & EngineeringHuaqiao University, 668 Jimei Blvd Xiamen Fujian 361021 China
| | - Zhiyi Song
- Institute for Catalysis (ICAT), Hokkaido University, N 21, W 10, Kita‐ku Sapporo 001‐0021 Japan
| | - Tamaki Nakano
- Institute for Catalysis (ICAT), Hokkaido University, N 21, W 10, Kita‐ku Sapporo 001‐0021 Japan
| | - Qiuling Song
- Institute of Next Generation Matter Transformation, College of Materials Science & EngineeringHuaqiao University, 668 Jimei Blvd Xiamen Fujian 361021 China
- Key Laboratory of Molecule Synthesis and Function DiscoveryFujian Province University, College of Chemistry, Fuzhou University Fuzhou Fujian 350108 China
- State Key Laboratroy of Organometallic Chemistry, Shanghai Institute of Organic ChemistryChinese Academy of Sciences Shanghai 200032 China
| |
Collapse
|
35
|
Yan Y, Cui C, Wang J, Li S, Tang L, Liu Y. Transition metal-free C-F/C-Cl/C-C cleavage of ClCF 2COONa for the synthesis of heterocycles. Org Biomol Chem 2019; 17:8071-8074. [PMID: 31464338 DOI: 10.1039/c9ob01641d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A transition metal-free and external oxidant-free annulation of substrates having two nitrogen-nucleophilic sites with ClCF2COONa was demonstrated, affording a series of 1,3,5-triazines and quinazolinones in up to 96% yields. Notably, ClCF2COONa was employed as the C1 synthon for valuable heterocycles. Using this protocol, two C-N bonds were formed in one pot via the cleavage of two C-F bonds, one C-Cl bond and one C-C bond. This method avoided the use of a transition metal and an oxidant and generated low toxicity inorganic waste.
Collapse
Affiliation(s)
- Yizhe Yan
- School of Food and Biological Engineering, Henan Collaborative Innovation Center of Food Production and Safety, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou, 450000, P. R. China.
| | - Chang Cui
- School of Food and Biological Engineering, Henan Collaborative Innovation Center of Food Production and Safety, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou, 450000, P. R. China.
| | - Jianyong Wang
- School of Light Industry and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Shaoqing Li
- School of Food and Biological Engineering, Henan Collaborative Innovation Center of Food Production and Safety, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou, 450000, P. R. China.
| | - Lin Tang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, 464000, P. R. China
| | - Yanqi Liu
- School of Food and Biological Engineering, Henan Collaborative Innovation Center of Food Production and Safety, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou, 450000, P. R. China.
| |
Collapse
|
36
|
A visible-light-irradiated electron donor-acceptor complex-promoted radical reaction system for the C H perfluoroalkylation of quinolin-4-ols. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.151046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Ma X, Song Q. tert-Butyl Nitrite Mediated Synthesis of Fluorinated O-Alkyloxime Ether Derivatives. Org Lett 2019; 21:7375-7379. [PMID: 31465233 DOI: 10.1021/acs.orglett.9b02689] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A tert-butyl nitrite (TBN)-mediated synthesis of fluorinated O-alkyloxime ether derivatives with bromodifluoroalkyl reagents as the fluorine sources has been developed. A variety of halodifluorinated compounds were found compatible, delivering the desired products in moderate to excellent yields. This transformation features a simple operation, can be done in air, and found to involve radicals. This protocol represents a straightforward approach to access various fluorinated O-alkyloxime ether derivatives.
Collapse
Affiliation(s)
- Xingxing Ma
- Institute of Next Generation Matter Transformation, College of Materials Science & Engineering , Huaqiao University , 668 Jimei Blvd , Xiamen , Fujian 361021 , China
| | - Qiuling Song
- Institute of Next Generation Matter Transformation, College of Materials Science & Engineering , Huaqiao University , 668 Jimei Blvd , Xiamen , Fujian 361021 , China.,Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University , College of Chemistry at Fuzhou University , Fuzhou , Fujian 350108 , China.,State Key Laboratroy of Organometallic Chemistry , Shanghai Institute of Organic Chemistry , CAS, Shanghai , 200032 , China
| |
Collapse
|
38
|
Ma X, Su J, Zhang X, Song Q. Chlorodifluoromethane as a C1 Synthon in the Assembly of N-Containing Compounds. iScience 2019; 19:1-13. [PMID: 31344644 PMCID: PMC6658997 DOI: 10.1016/j.isci.2019.07.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/09/2019] [Accepted: 07/02/2019] [Indexed: 12/03/2022] Open
Abstract
The development of C1 synthons to afford the products that add one extra carbon has become an important research theme in the past decade, and significant progress has been achieved with CO2, CO, HCOOH, and others as C1 units. Despite the great advance, the search for new C1 synthons that display unique reactivity, complement to the current C1 sources, and add more value to C1 chemistry is still desirable. Herein, we report a quadruple cleavage of chlorodifluoromethane to yield a C1 source, which was successfully employed in the construction of various N-containing compounds especially with pharmaceutical molecules under mild conditions. This strategy provides a useful method for late-stage modification of pharmaceutical compounds. Four bonds in ClCF2H were orderly cleaved under basic conditions in the absence of transition metals. Preliminary mechanistic studies revealed that (E)-N-phenylformimidoyl fluoride intermediate is involved in this process by in situ1H NMR studies and control experiments. Quadruple cleavage of ClCF2H to afford a C1 synthon The cleavage of two stable C(sp3)-F bonds in aliphatic gem-difluoroalkanes Enrich C1 chemistry, green chemistry, and fluorine chemistry Various N-containing compounds were afforded via different role of ClCF2H
Collapse
Affiliation(s)
- Xingxing Ma
- The Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China
| | - Jianke Su
- The Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China
| | - Xingang Zhang
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS, Shanghai 200032, China.
| | - Qiuling Song
- The Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China; State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS, Shanghai 200032, China; Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
39
|
Deng S, Chen H, Ma X, Zhou Y, Yang K, Lan Y, Song Q. S 8-Catalyzed triple cleavage of bromodifluoro compounds for the assembly of N-containing heterocycles. Chem Sci 2019; 10:6828-6833. [PMID: 31391905 PMCID: PMC6657413 DOI: 10.1039/c9sc01333d] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 05/31/2019] [Indexed: 12/15/2022] Open
Abstract
An unprecedented S8-catalyzed selective triple-cleavage of bromodifluoroacetamides is disclosed for the first time.
An unprecedented S8-catalyzed selective triple-cleavage of bromodifluoroacetamides is disclosed for the first time. Valuable 2-amido substituted benzimidazoles, benzoxazoles and benzothiazoles were obtained in good to excellent yields in a cascade protocol in this strategy. Mechanistic studies suggested that a C2 source was generated in situ by selective cleavage of three C–X bonds, including two inert C(sp3)–F bonds on bromodifluoroacetamides, while leaving C–C bonds intact. This strategy will undoubtedly further consummate the role of halo difluoro compounds and enrich both fluorine chemistry and pharmaceutical sciences.
Collapse
Affiliation(s)
- Shuilin Deng
- Institute of Next Generation Matter Transformation , College of Chemical Engineering , College of Material Sciences Engineering at Huaqiao University , 668 Jimei Boulevard , Xiamen , Fujian 361021 , China .
| | - Haohua Chen
- School of Chemistry and Chemical Engineering , Chongqing University , Chongqing 400030 , P. R. China
| | - Xingxing Ma
- Institute of Next Generation Matter Transformation , College of Chemical Engineering , College of Material Sciences Engineering at Huaqiao University , 668 Jimei Boulevard , Xiamen , Fujian 361021 , China .
| | - Yao Zhou
- Institute of Next Generation Matter Transformation , College of Chemical Engineering , College of Material Sciences Engineering at Huaqiao University , 668 Jimei Boulevard , Xiamen , Fujian 361021 , China .
| | - Kai Yang
- College of Chemistry , Fuzhou University , Fuzhou , Fujian 350108 , China
| | - Yu Lan
- School of Chemistry and Chemical Engineering , Chongqing University , Chongqing 400030 , P. R. China.,College of Chemistry and Molecular Engineering , Zhengzhou University , Zhengzhou 450001 , P. R. China
| | - Qiuling Song
- Institute of Next Generation Matter Transformation , College of Chemical Engineering , College of Material Sciences Engineering at Huaqiao University , 668 Jimei Boulevard , Xiamen , Fujian 361021 , China . .,College of Chemistry , Fuzhou University , Fuzhou , Fujian 350108 , China.,State Key Laboratroy of Organometallic Chemistry , Shanghai Institute of Organic Chemistry , Chinese Academy of Sciences , Shanghai 200032 , P. R. China
| |
Collapse
|
40
|
Xu ZW, Xu WY, Pei XJ, Tang F, Feng YS. An efficient method for the N-formylation of amines under catalyst- and additive-free conditions. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.03.071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
41
|
Yu C, Su J, Ma X, Zhou Y, Song Q. Difluoromethylation of Tosylhydrazone Compounds with Chlorodifluoromethane under Mild Conditions. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900074] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Changjiang Yu
- Institute of Next Generation Matter Transformation, College of Materials Science & EngineeringHuaqiao University 668 Jimei Blvd Xiamen, Fujian 361021 P. R. China
| | - Jianke Su
- Institute of Next Generation Matter Transformation, College of Materials Science & EngineeringHuaqiao University 668 Jimei Blvd Xiamen, Fujian 361021 P. R. China
| | - Xingxing Ma
- Institute of Next Generation Matter Transformation, College of Materials Science & EngineeringHuaqiao University 668 Jimei Blvd Xiamen, Fujian 361021 P. R. China
| | - Yao Zhou
- Institute of Next Generation Matter Transformation, College of Materials Science & EngineeringHuaqiao University 668 Jimei Blvd Xiamen, Fujian 361021 P. R. China
| | - Qiuling Song
- Institute of Next Generation Matter Transformation, College of Materials Science & EngineeringHuaqiao University 668 Jimei Blvd Xiamen, Fujian 361021 P. R. China
- College of ChemistryFuzhou University Fujian 350116 P. R. China
| |
Collapse
|
42
|
Liu Z, Zhu G, Gao W, Yang L, Ji H, Tong L, Tang B. Copper-catalyzed regioselective cyclization of vinyl azides by gem-difluoromethylene for trisubstituted pyridines. Org Chem Front 2019. [DOI: 10.1039/c8qo01212a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A novel copper-catalyzed cyclization of readily available vinyl azides with gem-difluoromethylene is described.
Collapse
Affiliation(s)
- Zhenhua Liu
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Guangyu Zhu
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Wen Gao
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Lin Yang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Huimin Ji
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Lili Tong
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Bo Tang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| |
Collapse
|
43
|
Yu X, Zhou Y, Ma X, Song Q. Transition metal-free assembly of 1,3,5-triazines using ethyl bromodifluoroacetate as C1 source. Chem Commun (Camb) 2019; 55:8079-8082. [DOI: 10.1039/c9cc03534f] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transition-metal and oxidant-free annulation of amidine to access 2,4-disubstituted-1,3,5-triazines using ethyl bromodifluoroacetate as C1 source via quadruple cleavage.
Collapse
Affiliation(s)
- Xiaoxia Yu
- Institute of Next Generation Matter Transformation
- College of Chemical Engineering and College of Materials Science & Engineering at Huaqiao University
- Xiamen
- P. R. China
| | - Yao Zhou
- Institute of Next Generation Matter Transformation
- College of Chemical Engineering and College of Materials Science & Engineering at Huaqiao University
- Xiamen
- P. R. China
| | - Xingxing Ma
- Institute of Next Generation Matter Transformation
- College of Chemical Engineering and College of Materials Science & Engineering at Huaqiao University
- Xiamen
- P. R. China
| | - Qiuling Song
- Institute of Next Generation Matter Transformation
- College of Chemical Engineering and College of Materials Science & Engineering at Huaqiao University
- Xiamen
- P. R. China
- College of Chemistry
| |
Collapse
|