1
|
Chen D, Lepori C, Guillot R, Gil R, Bezzenine S, Hannedouche J. A Rationally Designed Iron(II) Catalyst for C(sp 3)-C(sp 2) and C(sp 3)-C(sp 3) Suzuki-Miyaura Cross-Coupling. Angew Chem Int Ed Engl 2024; 63:e202408419. [PMID: 38774966 DOI: 10.1002/anie.202408419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Indexed: 07/02/2024]
Abstract
Despite the paramount importance of the Suzuki-Miyaura coupling (SMC) in academia and industry, and the great promise of iron to offer sustainable catalysis, iron-catalyzed SMC involving sp3-hybridized partners is still in its infancy. We herein report the development of a versatile, well-defined electron-deficient anilido-aldimine iron(II) catalyst. This catalyst effectively performed C(sp3)-C(sp2) and C(sp3)-C(sp3) SMC of alkyl halide electrophiles and (hetero)aryl boronic ester and alkyl borane nucleophiles respectively, in the presence of a lithium amide base. These couplings operated under mild reaction conditions and displayed wide functional group compatibility including various medicinally relevant N-, O- and S-based heterocycles. They also tolerated primary, secondary and tertiary alkyl halides (Br, Cl, I), electron-neutral, -rich and -poor boronic esters and primary and secondary alkyl boranes. Our methodology could be directly and efficiently applied to synthesize key intermediates relevant to pharmaceuticals and a potential drug candidate. For C(sp3)-C(sp2) couplings, radical probe experiments militated in favor of a carbon-centered radical derived from the electrophile. At the same time, reactions run with a pre-formed activated boron nucleophile coupled to competition experiments supported the involvement of neutral, rather than an anionic, (hetero)aryl boronic ester in the key transmetalation step.
Collapse
Affiliation(s)
- Donghuang Chen
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Saclay, CNRS, 17 avenue des Sciences, 91400, Orsay, France
| | - Clément Lepori
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Saclay, CNRS, 17 avenue des Sciences, 91400, Orsay, France
| | - Régis Guillot
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Saclay, CNRS, 17 avenue des Sciences, 91400, Orsay, France
| | - Richard Gil
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Saclay, CNRS, 17 avenue des Sciences, 91400, Orsay, France
| | - Sophie Bezzenine
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Saclay, CNRS, 17 avenue des Sciences, 91400, Orsay, France
| | - Jérôme Hannedouche
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Saclay, CNRS, 17 avenue des Sciences, 91400, Orsay, France
| |
Collapse
|
2
|
Lu S, Agata R, Nomura S, Matsuda H, Isozaki K, Nakamura M. Regioselective Propargylic Suzuki-Miyaura Coupling by SciPROP-Iron Catalyst. J Org Chem 2024; 89:8385-8396. [PMID: 38684935 DOI: 10.1021/acs.joc.4c00168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The iron-catalyzed Suzuki-Miyaura cross-coupling of secondary propargyl electrophiles with lithium organoborates has been established. A propyl-bridged bulky bisphosphine ligand, SciPROP-TB, cooperated with the bulky TIPS substituent at the alkyne terminal position to achieve the cross-coupling reaction with exclusive propargylic selectivity. The reaction features high functional group compatibility, regioselectivity, and yield with a broad substrate scope. The reaction of an optically active chiral propargyl bromide proceeds with complete racemization, supporting a mechanism involving propargyl radical formation.
Collapse
Affiliation(s)
- Siming Lu
- International Research Center of Elements Science, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Ryosuke Agata
- International Research Center of Elements Science, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Satsuki Nomura
- International Research Center of Elements Science, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Hiroshi Matsuda
- International Research Center of Elements Science, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Katsuhiro Isozaki
- International Research Center of Elements Science, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Masaharu Nakamura
- International Research Center of Elements Science, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
3
|
Chen W, Xia J, Huang J, Zhou L, Wu G. Chemoselective C-H Hydroxylation and Borylation of N-Phenylbenzamides using BBr 3. Org Lett 2024. [PMID: 38780154 DOI: 10.1021/acs.orglett.4c01244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
A novel metal-free chemoselective C-H hydroxylation and borylation of N-phenylbenzamides using BBr3 is described. The protocol generates the corresponding phenols and arylboronic esters in moderate to excellent yields under mild conditions with brilliant chemoselectivity. Additionally, this strategy can be realized in one pot, and several potential bioactive derivatives can be synthesized efficiently. Density functional theory calculations certify that the preferred pathway for this metal-free C-H hydroxylation process is the formation of a five-membered boracycle.
Collapse
Affiliation(s)
- Weiming Chen
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, P. R. China
| | - Jiatao Xia
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, P. R. China
| | - Jiuzhong Huang
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, P. R. China
| | - Lianlian Zhou
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, P. R. China
| | - Gaorong Wu
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, P. R. China
| |
Collapse
|
4
|
Zhou Y, Qiu L, Li J, Xie W. A General Copper Catalytic System for Suzuki-Miyaura Cross-Coupling of Unactivated Secondary and Primary Alkyl Halides with Arylborons. J Am Chem Soc 2023; 145:28146-28155. [PMID: 38085645 DOI: 10.1021/jacs.3c10628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Suzuki-Miyaura cross-couplings (SMC) are powerful tools for the construction of carbon-carbon bonds. However, the couplings of sp3-hybridized alkyl halides with arylborons often encounter several problematic issues such as sluggish oxidation addition of alkyl halides and competitive β-hydride elimination side pathways of metal-alkyl species. In precedent reports, copper is mainly utilized for the coupling of sp2-aryl halides, and the cross-couplings with unactivated alkyl halides are far less reported. Herein, we demonstrate that a high-efficiency copper system enabled the coupling of arylborons with various unactivated secondary and primary alkyl halides including bromides, iodides, and even robust chlorides. The present system features broad scope, excellent functionality tolerance, scalability, and practicality. Moreover, the current system could be applied for the late-stage functionalization of complex molecules in moderate to high efficiency.
Collapse
Affiliation(s)
- Yonglei Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Liping Qiu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Jian Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Weilong Xie
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
5
|
King A, Wang J, Liu T, Raghavan A, Tomson NC, Zhukhovitskiy AV. Influence of Metal Identity and Complex Nuclearity in Kumada Cross-Coupling Polymerizations with a Pyridine Diimine-Based Ligand Scaffold. ACS POLYMERS AU 2023; 3:475-481. [PMID: 38107419 PMCID: PMC10722565 DOI: 10.1021/acspolymersau.3c00022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 12/19/2023]
Abstract
Cross-coupling polymerizations have fundamentally changed the field of conjugated polymers (CPs) by expanding the scope of accessible materials. Despite the prevalence of cross-coupling in CP synthesis, almost all polymerizations rely on mononuclear Ni or Pd catalysts. Here, we report a systematic exploration of mono- and dinuclear Fe and Ni precatalysts with a pyridine diimine ligand scaffold for Kumada cross-coupling polymerization of a donor thiophene and an acceptor benzotriazole monomers. We observe that variation of the metal identity from Ni to Fe produces contrasting polymerization mechanisms, while complex nuclearity has a minimal impact on reactivity. Specifically, Fe complexes appear to catalyze step-growth Kumada polymerizations and can readily access both Csp2-Csp3 and Csp2-Csp2 cross-couplings, while Ni complexes catalyze chain-growth polymerizations and predominantly Csp2-Csp2 cross-couplings. Thus, our work sheds light on important design parameters for transition metal complexes used in cross-coupling polymerizations, demonstrates the viability of iron catalysis in Kumada polymerization, and opens the door to novel polymer compositions.
Collapse
Affiliation(s)
- Andrew
J. King
- Department
of Chemistry, University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27514, United States
| | - Jiashu Wang
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Tianchang Liu
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Adharsh Raghavan
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Neil C. Tomson
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Aleksandr V. Zhukhovitskiy
- Department
of Chemistry, University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27514, United States
| |
Collapse
|
6
|
Mills LR, Gygi D, Simmons EM, Wisniewski SR, Kim J, Chirik PJ. Mechanistic Investigations of Phenoxyimine-Cobalt(II)-Catalyzed C(sp 2)-C(sp 3) Suzuki-Miyaura Cross-Coupling. J Am Chem Soc 2023; 145:17029-17041. [PMID: 37490763 DOI: 10.1021/jacs.3c02103] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
The mechanism of phenoxyimine (FI)-cobalt-catalyzed C(sp2)-C(sp3) Suzuki-Miyaura cross-coupling was studied using a combination of kinetic measurements and catalytic and stoichiometric experiments. A series of dimeric (FI)cobalt(II) bromide complexes, [(4-CF3PhFI)CoBr]2, [(4-OMePhFI)CoBr]2, and [(2,6-diiPrPhFI)CoBr]2, were isolated and characterized by 1H and 19F NMR spectroscopies, solution and solid-state magnetic susceptibility, electron paramagnetic resonance (EPR) spectroscopy, X-ray crystallography, and diffusion-ordered NMR spectroscopy (DOSY). One complex, [(4-CF3PhFI)CoBr]2, was explored as a single-component precatalyst for C(sp2)-C(sp3) Suzuki-Miyaura cross-coupling. Addition of potassium methoxide to [(4-CF3PhFI)CoBr]2 generated the corresponding (FI)cobalt(II) methoxide complex as determined by 1H and 19F NMR and EPR spectroscopies. These spectroscopic signatures were used to identify this compound as the resting state during catalytic C(sp2)-C(sp3) coupling. Variable time normalization analysis (VTNA) of in situ catalytic 19F NMR spectroscopic data was used to establish an experimental rate law that was first-order in a (FI)cobalt(II) precatalyst, zeroth-order in the alkyl halide, and first-order in an activated potassium methoxide-aryl boronate complex. These findings are consistent with turnover-limiting transmetalation that occurs prior to activation of the alkyl bromide electrophile. The involvement of boronate intermediates in transmetalation was corroborated by Hammett studies of electronically differentiated aryl boronic esters. Together, a cobalt(II)/cobalt(III) catalytic cycle was proposed that proceeds through a "boronate"-type mechanism.
Collapse
Affiliation(s)
- L Reginald Mills
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - David Gygi
- Chemical Process Development, Bristol Myers Squibb Company, New Brunswick, New Jersey 08903, United States
| | - Eric M Simmons
- Chemical Process Development, Bristol Myers Squibb Company, New Brunswick, New Jersey 08903, United States
| | - Steven R Wisniewski
- Chemical Process Development, Bristol Myers Squibb Company, New Brunswick, New Jersey 08903, United States
| | - Junho Kim
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Paul J Chirik
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
7
|
Molyneux S, Goss RJM. Fully Aqueous and Air-Compatible Cross-Coupling of Primary Alkyl Halides with Aryl Boronic Species: A Possible and Facile Method. ACS Catal 2023; 13:6365-6374. [PMID: 37180963 PMCID: PMC10167655 DOI: 10.1021/acscatal.3c00252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/04/2023] [Indexed: 05/16/2023]
Abstract
Aqueous transformations confer many advantages, including decreased environmental impact and increased opportunity for biomolecule modulation. Although several studies have been conducted to enable the cross-coupling of aryl halides in aqueous conditions, until now a process for the cross-coupling of primary alkyl halides in aqueous conditions was missing from the catalytic toolbox and considered impossible. Alkyl halide coupling in water suffers from severe problems. The reasons for this include the strong propensity for β-hydride elimination, the need for highly air- and water-sensitive catalysts and reagents, and the intolerance of many hydrophilic groups to cross-coupling conditions. Here, we report a broadly applicable and readily accessible process for the cross-coupling of water-soluble alkyl halides in water and air by using simple and commercially available bench-stable reagents. The trisulfonated aryl phosphine TXPTS in combination with a water-soluble palladium salt Na2PdCl4 allowed for the Suzuki-Miyaura coupling of water-soluble alkyl halides with aryl boronic acids, boronic esters, and borofluorate salts in mild, fully aqueous conditions. Multiple challenging functionalities, including unprotected amino acids, an unnatural halogenated amino acid within a peptide, and herbicides can be diversified in water. Structurally complex natural products were used as testbeds to showcase the late-stage tagging methodology of marine natural products to enable liquid chromatography-mass spectrometry (LC-MS) detection. This enabling methodology therefore provides a general method for the environmentally friendly and biocompatible derivatization of sp3 alkyl halide bonds.
Collapse
Affiliation(s)
- Samuel Molyneux
- School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, U.K.
| | - Rebecca J. M. Goss
- School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, U.K.
| |
Collapse
|
8
|
Peterson PO, Joannou MV, Simmons EM, Wisniewski SR, Kim J, Chirik PJ. Iron-Catalyzed C(sp 2)–C(sp 3) Suzuki–Miyaura Cross-Coupling Using an Alkoxide Base. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Paul O. Peterson
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Matthew V. Joannou
- Chemical Process Development, Bristol Myers Squibb Company, New Brunswick, New Jersey 08903, United States
| | - Eric M. Simmons
- Chemical Process Development, Bristol Myers Squibb Company, New Brunswick, New Jersey 08903, United States
| | - Steven R. Wisniewski
- Chemical Process Development, Bristol Myers Squibb Company, New Brunswick, New Jersey 08903, United States
| | - Junho Kim
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Paul J. Chirik
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
9
|
Haibach MC, Ickes AR, Tcyrulnikov S, Shekhar S, Monfette S, Swiatowiec R, Kotecki BJ, Wang J, Wall AL, Henry RF, Hansen EC. Enabling Suzuki-Miyaura coupling of Lewis-basic arylboronic esters with a nonprecious metal catalyst. Chem Sci 2022; 13:12906-12912. [PMID: 36519062 PMCID: PMC9645418 DOI: 10.1039/d2sc03877c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/14/2022] [Indexed: 02/08/2024] Open
Abstract
The high cost and negative environmental impact of precious metal catalysts has led to increased demand for nonprecious alternatives for widely practiced reactions such as the Suzuki-Miyaura coupling (SMC). Ni-catalyzed versions of this reaction have failed to achieve high reactivity with Lewis-basic arylboron nucleophiles, especially pinacolboron esters. We describe the development of (PPh2Me)2NiCl2 as an inexpensive and air-stable precatalyst that addresses this challenge. Under activation by n-BuMgCl, this complex can catalyze the coupling of synthetically important heteroaryl pinacolborons with heteroaryl halides. Mildly basic conditions (aqueous K3PO4) allow the reaction to tolerate sensitive functional groups that were incompatible with other Ni-SMC methods. Experimental and computational studies suggest that catalyst inhibition by substitution of PPh2Me from Ni(ii) intermediates by Lewis basic reactants and products is disfavored relative to more commonly employed ligands in the Ni-SMC, which allows it to operate efficiently in the presence of Lewis bases such as unhindered pyridines.
Collapse
Affiliation(s)
- Michael C Haibach
- Process Research and Development, AbbVie Inc. North Chicago Illinois 60064 USA
| | - Andrew R Ickes
- Process Research and Development, AbbVie Inc. North Chicago Illinois 60064 USA
| | - Sergei Tcyrulnikov
- Pfizer Chemical Research and Development, Pfizer Inc. Groton Connecticut 06340 USA
| | - Shashank Shekhar
- Process Research and Development, AbbVie Inc. North Chicago Illinois 60064 USA
| | - Sebastien Monfette
- Pfizer Chemical Research and Development, Pfizer Inc. Groton Connecticut 06340 USA
| | - Rafal Swiatowiec
- Process Research and Development, AbbVie Inc. North Chicago Illinois 60064 USA
| | - Brian J Kotecki
- Process Research and Development, AbbVie Inc. North Chicago Illinois 60064 USA
| | - Jason Wang
- Process Research and Development, AbbVie Inc. North Chicago Illinois 60064 USA
| | - Amanda L Wall
- Process Research and Development, AbbVie Inc. North Chicago Illinois 60064 USA
| | - Rodger F Henry
- Process Research and Development, AbbVie Inc. North Chicago Illinois 60064 USA
| | - Eric C Hansen
- Pfizer Chemical Research and Development, Pfizer Inc. Groton Connecticut 06340 USA
| |
Collapse
|
10
|
Bimetallic Ru:Co Mesoporous Nanoparticles Stabilized by PEG and Imidazolium Ionic Liquid Based [KIT-6] as an Efficient Heterogeneous Catalyst for Suzuki–Miyaura Cross-Couplings in H2O:EtOH Solution. Catal Letters 2022. [DOI: 10.1007/s10562-022-03951-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
11
|
Sheppard TD, Nishikata T, Tsuchiya N. Tertiary Alkylative Suzuki–Miyaura Couplings. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1732-4597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractSuzuki–Miyaura coupling is an extremely useful way to construct Csp2–Csp2 carbon bonds. On the other hand, Csp2–Csp3 coupling reactions do not work well, and tert-alkylative Suzuki–Miyaura coupling is particularly challenging due to problematic oxidative addition and β-hydride elimination side reactions. In this short review, we will introduce recent examples of tert-alkylative Suzuki–Miyaura couplings with tert-alkyl electrophiles or -boron reagents. The review will mainly focus on catalyst and product structures and on the proposed mechanisms.1 Introduction2 Ni-Catalyzed tert-Alkylative Couplings3 Pd-Catalyzed tert-Alkylative Couplings4 Fe-Catalyzed tert-Alkylative Couplings5 tert-Alkylative Couplings with 1-Alkenyl Borons6 tert-Alkylative Couplings under Photoirradiation7 Stereospecific tert-Alkylative Couplings8 Conclusion
Collapse
Affiliation(s)
- Tom D. Sheppard
- Department of Chemistry, University College London, Christopher Ingold Laboratories
| | | | - Naoki Tsuchiya
- Graduate School of Science and Engineering, Yamaguchi University
| |
Collapse
|
12
|
Wong AS, Zhang B, Li B, Neidig ML, Byers JA. Air-Stable Iron-Based Precatalysts for Suzuki–Miyaura Cross-Coupling Reactions between Alkyl Halides and Aryl Boronic Esters. Org Process Res Dev 2021; 25:2461-2472. [DOI: 10.1021/acs.oprd.1c00235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Alexander S. Wong
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Bufan Zhang
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Bo Li
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Michael L. Neidig
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Jeffery A. Byers
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
13
|
Uzelac M, Yuan K, Nichol GS, Ingleson MJ. Formation of a hydride containing amido-zincate using pinacolborane. Dalton Trans 2021; 50:14018-14026. [PMID: 34546250 PMCID: PMC8507400 DOI: 10.1039/d1dt02580e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amido-zincates containing hydrides are underexplored yet potentially useful complexes. Attempts to access this type of zincate through combining amido-organo zincates and pinacolborane (HBPin) via Zn–C/H–BPin exchange led instead to preferential formation of amide–BPin and/or [amide–BPin(Y)]− (Y = Ph, amide, H), when the amide is hexamethyldisilazide or 2,2,6,6-tetramethylpiperidide and the hydrocarbyl group was phenyl or ethyl. In contrast, the use of a dipyridylamide (dpa) based arylzinc complex led to Zn–C/H–BPin metathesis being the major outcome. Independent synthesis and full characterisation of two LnLi[(dpa)ZnPh2] (L = THF, n = 3; L = PMDETA, n = 1) complexes, 1 and 3, respectively, enabled reactivity studies that demonstrated that these species display zincate type reactivity (by comparison to the lower reactivity of the neutral complex (Me-dpa)ZnPh2, 4, Me-dpa = 2,2′-dipyridyl-N-methylamine). This included 1 performing the rapid deprotonation of 4-ethynyltoluene and also phenyl transfer to α,α,α-trifluoroacetophenone in contrast to neutral complex 4. Complex 1 reacted with one equivalent of HBPin to give predominantly PhBPin (ca. 90%) and a lithium amidophenylzincate containing a hydride unit, complex 7-A, as the major zinc containing product. Complex 7-A transfers hydride to an electrophile preferentially over phenyl, indicating it reacts as a hydridozincate. Attempts to react 1 with >1 equivalent of HBPin or with catecholborane led to more complex outcomes, which included significant borane and dpaZn substituent scrambling, two examples of which were crystallographically characterised. While this work provides proof of principle for Zn–C/H–BPin exchange as a route to form an amido-zincate containing a hydride, amido-organozincates that undergo more selective Zn–C/H–BPin exchange still are required. Careful tuning of the nature of the amide ligand in amido-zincates allows for selective Zn–C over Zn–N exchange with HBPin affording a hydride containing amido-zincate. The mixed hydrido-phenyl zincate preferentially transfers hydride over phenyl.![]()
Collapse
Affiliation(s)
- Marina Uzelac
- EaStCHEM School of Chemistry, The University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK.
| | - Kang Yuan
- EaStCHEM School of Chemistry, The University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK.
| | - Gary S Nichol
- EaStCHEM School of Chemistry, The University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK.
| | - Michael J Ingleson
- EaStCHEM School of Chemistry, The University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK.
| |
Collapse
|
14
|
Pd Nanoparticles Embedded Into MOF-808: Synthesis, Structural Characteristics, and Catalyst Properties for the Suzuki–Miyaura Coupling Reaction. Catal Letters 2021. [DOI: 10.1007/s10562-021-03731-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Tailor SB, Manzotti M, Smith GJ, Davis SA, Bedford RB. Cobalt-Catalyzed Coupling of Aryl Chlorides with Aryl Boron Esters Activated by Alkoxides. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05557] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Sanita B. Tailor
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| | - Mattia Manzotti
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| | - Gavin J. Smith
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| | - Sean A. Davis
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| | - Robin B. Bedford
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| |
Collapse
|
16
|
Liu J, Xie Y, Wu C, Shao Y, Zhang F, Shi Y, Liu Q, Chen J. Samarium( iii) catalyzed synthesis of alkenylboron compounds via hydroboration of alkynes. Org Chem Front 2021. [DOI: 10.1039/d1qo00513h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The homoleptic lanthanide complex Sm[N(TMS)2]3 is an efficient rare-earth catalyst for the hydroboration of alkynes to the corresponding alkenylboron compounds.
Collapse
Affiliation(s)
- Jichao Liu
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou 325035
- China
| | - Yaoyao Xie
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou 325035
- China
| | - Caiyan Wu
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou 325035
- China
| | - Yinlin Shao
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou 325035
- China
- Institute of New Materials & Industrial Technology
| | - Fangjun Zhang
- School of Pharmaceutical Sciences
- Wenzhou Medical University
- Wenzhou 325035
- China
| | - Yinyin Shi
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou 325035
- China
| | - Qianrui Liu
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou 325035
- China
| | - Jiuxi Chen
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou 325035
- China
| |
Collapse
|
17
|
Kadu BS. Suzuki–Miyaura cross coupling reaction: recent advancements in catalysis and organic synthesis. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02059a] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Suzuki–Miyaura cross coupling reaction (SMCR) – A milestone in the synthesis of C–C coupled compounds.
Collapse
|
18
|
Tyrol CC, Yone NS, Gallin CF, Byers JA. Iron-catalysed enantioconvergent Suzuki-Miyaura cross-coupling to afford enantioenriched 1,1-diarylalkanes. Chem Commun (Camb) 2020; 56:14661-14664. [PMID: 33155609 DOI: 10.1039/d0cc05003b] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The first stereoconvergent Suzuki-Miyaura cross-coupling reaction was developed to afford enantioenriched 1,1-diarylalkanes. An iron-based complex containing a chiral cyanobis(oxazoline) ligand framework was best to obtain enantioenriched 1,1-diarylalkanes from cross-coupling reactions between unactivated aryl boronic esters and benzylic chlorides. Enhanced yields were obtained when 1,3,5-trimethoxybenzene was used as an additive, which is hypothesized to extend the lifetime of the iron-based catalyst. Exceptional enantioselectivities were obtained with challenging ortho-substituted benzylic chlorides.
Collapse
Affiliation(s)
- Chet C Tyrol
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA.
| | | | | | | |
Collapse
|
19
|
Haibach MC, Ickes AR, Wilders AM, Shekhar S. Recent Advances in Nonprecious Metal Catalysis. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00367] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Michael C. Haibach
- Process Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Andrew R. Ickes
- Process Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Alison M. Wilders
- Process Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Shashank Shekhar
- Process Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| |
Collapse
|
20
|
Ludwig JR, Simmons EM, Wisniewski SR, Chirik PJ. Cobalt-Catalyzed C(sp 2)-C(sp 3) Suzuki-Miyaura Cross Coupling. Org Lett 2020; 23:625-630. [PMID: 32996312 DOI: 10.1021/acs.orglett.0c02934] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A cobalt-catalyzed method for the C(sp2)-C(sp3) Suzuki-Miyaura cross coupling of aryl boronic esters and alkyl bromides is described. Cobalt-ligand combinations were assayed with high-throughput experimentation, and cobalt(II) sources with trans-N,N'-dimethylcyclohexane-1,2-diamine (DMCyDA, L1) produced optimal yield and selectivity. The scope of this transformation encompassed steric and electronic diversity on the aryl boronate nucleophile as well as various levels of branching and synthetically valuable functionality on the electrophile. Radical trap experiments support the formation of electrophile-derived radicals during catalysis.
Collapse
Affiliation(s)
- Jacob R Ludwig
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Eric M Simmons
- Chemical Process Development, Bristol Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Steven R Wisniewski
- Chemical Process Development, Bristol Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Paul J Chirik
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
21
|
Akiyama T, Wada Y, Yamada M, Shio Y, Honma T, Shimoda S, Tsuruta K, Tamenori Y, Haneoka H, Suzuki T, Harada K, Tsurugi H, Mashima K, Hasegawa JY, Sato Y, Arisawa M. Self-Assembled Multilayer Iron(0) Nanoparticle Catalyst for Ligand-Free Carbon-Carbon/Carbon-Nitrogen Bond-Forming Reactions. Org Lett 2020; 22:7244-7249. [PMID: 32903001 DOI: 10.1021/acs.orglett.0c02574] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Self-assembled multilayer iron(0) nanoparticles (NPs, 6-10 nm), namely, sulfur-modified Au-supported Fe(0) [SAFe(0)], were developed for ligand-free one-pot carbon-carbon/carbon-nitrogen bond-forming reactions. SAFe(0) was successfully prepared using a well-established metal-nanoparticle catalyst preparative protocol by simultaneous in situ metal NP and nanospace organization (PSSO) with 1,4-bis(trimethylsilyl)-1,4-dihydropyrazine (Si-DHP) as a strong reducing agent. SAFe(0) was easy to handle in air and could be recycled with a low iron-leaching rate in reaction cycles.
Collapse
Affiliation(s)
- Toshiki Akiyama
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka 1-6, Suita, Osaka 565-0871, Japan
| | - Yuki Wada
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka 1-6, Suita, Osaka 565-0871, Japan
| | - Makito Yamada
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka 1-6, Suita, Osaka 565-0871, Japan
| | - Yasunori Shio
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka 1-6, Suita, Osaka 565-0871, Japan
| | - Tetsuo Honma
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Shuhei Shimoda
- Institute for Catalysis, Hokkaido University, Kita-21, Nishi-10, Kita-ku, Sapporo 001-0021, Japan
| | - Kazuki Tsuruta
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Yusuke Tamenori
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Hitoshi Haneoka
- The Institute of Scientific and Industrial Research, Osaka University, Mihoga-oka, Ibaraki, Osaka 567-0047, Japan
| | - Takeyuki Suzuki
- The Institute of Scientific and Industrial Research, Osaka University, Mihoga-oka, Ibaraki, Osaka 567-0047, Japan
| | - Kazuo Harada
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka 1-6, Suita, Osaka 565-0871, Japan
| | - Hayato Tsurugi
- Graduate School of Engineering Science, Osaka University, Machikaneyama 1-3, Toyonaka, Osaka 560-8531, Japan
| | - Kazushi Mashima
- Graduate School of Engineering Science, Osaka University, Machikaneyama 1-3, Toyonaka, Osaka 560-8531, Japan
| | - Jun-Ya Hasegawa
- Institute for Catalysis, Hokkaido University, Kita-21, Nishi-10, Kita-ku, Sapporo 001-0021, Japan
| | - Yoshihiro Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Mitsuhiro Arisawa
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka 1-6, Suita, Osaka 565-0871, Japan
| |
Collapse
|
22
|
Casnati A, Lanzi M, Cera G. Recent Advances in Asymmetric Iron Catalysis. Molecules 2020; 25:E3889. [PMID: 32858925 PMCID: PMC7503417 DOI: 10.3390/molecules25173889] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 11/16/2022] Open
Abstract
Asymmetric transition-metal catalysis represents a fascinating challenge in the field of organic chemistry research. Since seminal advances in the late 60s, which were finally recognized by the Nobel Prize to Noyori, Sharpless and Knowles in 2001, the scientific community explored several approaches to emulate nature in producing chiral organic molecules. In a scenario that has been for a long time dominated by the use of late-transition metals (TM) catalysts, the use of 3d-TMs and particularly iron has found, recently, a widespread application. Indeed, the low toxicity and the earth-abundancy of iron, along with its chemical versatility, allowed for the development of unprecedented and more sustainable catalytic transformations. While several competent reviews tried to provide a complete picture of the astounding advances achieved in this area, within this review we aimed to survey the latest achievements and new concepts brought in the field of enantioselective iron-catalyzed transformations.
Collapse
Affiliation(s)
- Alessandra Casnati
- Laboratoire des Systèmes Complexes en Synthèse et Catalyse, Institut de Science et d’Ingénierie Supramoléculaires, Université de Strasbourg &CNRS, 8 Allèe Gaspard Monge, BP 70028, F-67083 Strasbourg, France;
| | - Matteo Lanzi
- Laboratoire de Chemie Moléculaire (UMR CNRS 7509), Université de Strasbourg, ECPM 25 Rue Becquerel, 67087 Strasbourg, France;
| | - Gianpiero Cera
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, I-43124 Parma, Italy
| |
Collapse
|
23
|
Singer RA, Monfette S, Bernhardson DJ, Tcyrulnikov S, Hansen EC. Recent Advances in Nonprecious Metal Catalysis. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00104] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Robert A. Singer
- Pfizer Chemical Research and Development, Pfizer Inc., Groton, Connecticut 06340, United States
| | - Sebastien Monfette
- Pfizer Chemical Research and Development, Pfizer Inc., Groton, Connecticut 06340, United States
| | - David J. Bernhardson
- Pfizer Chemical Research and Development, Pfizer Inc., Groton, Connecticut 06340, United States
| | - Sergei Tcyrulnikov
- Pfizer Chemical Research and Development, Pfizer Inc., Groton, Connecticut 06340, United States
| | - Eric C. Hansen
- Pfizer Chemical Research and Development, Pfizer Inc., Groton, Connecticut 06340, United States
| |
Collapse
|
24
|
Crockett MP, Wong AS, Li B, Byers JA. Rational Design of an Iron‐Based Catalyst for Suzuki–Miyaura Cross‐Couplings Involving Heteroaromatic Boronic Esters and Tertiary Alkyl Electrophiles. Angew Chem Int Ed Engl 2020; 59:5392-5397. [DOI: 10.1002/anie.201914315] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Michael P. Crockett
- Department of ChemistryBoston College Merkert Chemistry Center, 2609 Beacon St. Chestnut Hill MA 02467 USA
| | - Alexander S. Wong
- Department of ChemistryBoston College Merkert Chemistry Center, 2609 Beacon St. Chestnut Hill MA 02467 USA
| | - Bo Li
- Department of ChemistryBoston College Merkert Chemistry Center, 2609 Beacon St. Chestnut Hill MA 02467 USA
| | - Jeffery A. Byers
- Department of ChemistryBoston College Merkert Chemistry Center, 2609 Beacon St. Chestnut Hill MA 02467 USA
| |
Collapse
|
25
|
Crockett MP, Wong AS, Li B, Byers JA. Rational Design of an Iron‐Based Catalyst for Suzuki–Miyaura Cross‐Couplings Involving Heteroaromatic Boronic Esters and Tertiary Alkyl Electrophiles. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914315] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Michael P. Crockett
- Department of ChemistryBoston College Merkert Chemistry Center, 2609 Beacon St. Chestnut Hill MA 02467 USA
| | - Alexander S. Wong
- Department of ChemistryBoston College Merkert Chemistry Center, 2609 Beacon St. Chestnut Hill MA 02467 USA
| | - Bo Li
- Department of ChemistryBoston College Merkert Chemistry Center, 2609 Beacon St. Chestnut Hill MA 02467 USA
| | - Jeffery A. Byers
- Department of ChemistryBoston College Merkert Chemistry Center, 2609 Beacon St. Chestnut Hill MA 02467 USA
| |
Collapse
|
26
|
Zhu Z, Liu J, Dong S, Chen B, Wang Z, Tang R, Li Z. Copper‐Catalyzed Cross‐Coupling of Benzylic Bromides with Arylboronic Acids: Synthesis of Diarylalkanes and Preliminary Antifungal Evaluation Against
Magnaporthe Grisea. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Zhu Zhu
- Department of Applied Chemistry College of Materials and EnergySouth China Agricultural University Guangzhou 510642 P. R. China
| | - Jinggong Liu
- Orthopedics DepartmentGuangdong Provincial Hospital of Traditional Chinese Medicine The Second Affiliated Hospital of Guangzhou University of Chinese Medicine Guangzhou 510120 P. R. China
| | - Shoucheng Dong
- Department of Applied Chemistry College of Materials and EnergySouth China Agricultural University Guangzhou 510642 P. R. China
| | - Bolai Chen
- Orthopedics DepartmentGuangdong Provincial Hospital of Traditional Chinese Medicine The Second Affiliated Hospital of Guangzhou University of Chinese Medicine Guangzhou 510120 P. R. China
| | - Zhenghui Wang
- Department of Applied Chemistry College of Materials and EnergySouth China Agricultural University Guangzhou 510642 P. R. China
| | - Ri‐yuan Tang
- Department of Applied Chemistry College of Materials and EnergySouth China Agricultural University Guangzhou 510642 P. R. China
- Key Laboratory of Natural Pesticide & Chemical Biology Ministry of EducationSouth China Agricultural University Guangzhou 510642 P. R. China
| | - Zhaodong Li
- Department of Applied Chemistry College of Materials and EnergySouth China Agricultural University Guangzhou 510642 P. R. China
- Key Laboratory of Natural Pesticide & Chemical Biology Ministry of EducationSouth China Agricultural University Guangzhou 510642 P. R. China
| |
Collapse
|
27
|
Peterson PO, Rummelt SM, Wile BM, Stieber SCE, Zhong H, Chirik PJ. Direct Observation of Transmetalation from a Neutral Boronate Ester to a Pyridine(diimine) Iron Alkoxide. Organometallics 2020; 39:201-205. [PMID: 32728308 DOI: 10.1021/acs.organomet.9b00733] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Transmetallation of the neutral boronate esters, (2-benzofuranyl)BPin and (2-benzofuranyl)BNeo (Pin = pinacolato, Neo = neopentylglycolato) to a representative pyridine(diimine) iron alkoxide complex, (iPrPDI)FeOEt (iPrPDI = 2,6-(2,6-iPr2-C6H3N=CMe)2C5H3N; R = Me, Et, SiMe3), to yield the corresponding iron benzofuranyl derivative was studied. Synthesis of the requisite iron alkoxide complexes was accomplished either by salt metathesis between (iPrPDI)FeCl and NaOR (R = Me, Et, SiMe3) or by protonation of the iron alkyl, (iPrPDI)FeCH2SiMe3, by the free alcohol R'OH (R' = Me, Et). A combination of magnetic measurements, X-ray diffraction, NMR and Mössbauer spectroscopies and DFT calculations identified each (iPrPDI)FeOR compound as an essentially planar, high-spin, S = 3/2 compound engaged in antiferromagnetic coupling with a radical anion on the chelate (S Total = 3/2; S Fe = 2, S PDI = 1/2). The resulting iron benzofuranyl product, (iPrPDI)Fe(2-benzofuranyl) was characterized by X-ray diffraction and in combination with magnetic measurements, spectroscopic and computational data, was identified as an overall S = 1/2 compound, demonstrating that a net spin-state change accompanies transmetallation (S Fe = 1, S PDI = 1/2). These findings may be relevant to further development of iron-catalyzed Suzuki-Miyaura cross-coupling with neutral boronate esters and alkoxide bases.
Collapse
Affiliation(s)
- Paul O Peterson
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Stephan M Rummelt
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Bradley M Wile
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - S Chantal E Stieber
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Hongyu Zhong
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Paul J Chirik
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
28
|
Huang HJ, Wang YT, Wu YK, Ryu I. Pd/light-induced alkyl–alkenyl coupling reaction between unactivated alkyl iodides and alkenylboronic acids. Org Chem Front 2020. [DOI: 10.1039/d0qo00318b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Alkyl–alkenyl coupling reaction between unactivated alkyl iodides and 2-arylalkenylboronic acids utilizing a Pd/light combined system was studied.
Collapse
Affiliation(s)
- Hsin-Ju Huang
- Department of Applied Chemistry
- National Chiao Tung University
- Hsinchu 30010
- Taiwan
| | - Yi-Ting Wang
- Department of Applied Chemistry
- National Chiao Tung University
- Hsinchu 30010
- Taiwan
| | - Yen-Ku Wu
- Department of Applied Chemistry
- National Chiao Tung University
- Hsinchu 30010
- Taiwan
| | - Ilhyong Ryu
- Department of Applied Chemistry
- National Chiao Tung University
- Hsinchu 30010
- Taiwan
- Department of Chemistry
| |
Collapse
|
29
|
Singh A, Shafiei‐Haghighi S, Smith CR, Unruh DK, Findlater M. Hydroboration of Alkenes and Alkynes Employing Earth‐Abundant Metal Catalysts. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900615] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Arpita Singh
- Department of Chemistry & Biochemistry Texas Tech University Lubbock, Texas 79409 USA
| | - Sara Shafiei‐Haghighi
- Department of Chemistry & Biochemistry Texas Tech University Lubbock, Texas 79409 USA
| | - Cecilia R. Smith
- Department of Chemistry & Biochemistry Texas Tech University Lubbock, Texas 79409 USA
| | - Daniel K. Unruh
- Department of Chemistry & Biochemistry Texas Tech University Lubbock, Texas 79409 USA
| | - Michael Findlater
- Department of Chemistry & Biochemistry Texas Tech University Lubbock, Texas 79409 USA
| |
Collapse
|
30
|
Han C, Zhang Z, Xu S, Wang K, Chen K, Zhao J. Palladium-Catalyzed Hiyama Coupling of Benzylic Ammonium Salts via C–N Bond Cleavage. J Org Chem 2019; 84:16308-16313. [DOI: 10.1021/acs.joc.9b02554] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Chunyu Han
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P.R. China
| | - Zhenming Zhang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P.R. China
| | - Silin Xu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P.R. China
| | - Kai Wang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P.R. China
| | - Kaiting Chen
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P.R. China
| | - Junfeng Zhao
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P.R. China
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong, P.R. China
| |
Collapse
|
31
|
Bisz E, Kardela M, Szostak M. Ligand Effect on Iron‐Catalyzed Cross‐Coupling Reactions: Evaluation of Amides as O‐Coordinating Ligands. ChemCatChem 2019. [DOI: 10.1002/cctc.201901150] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Elwira Bisz
- Department of Chemistry Opole University 48 Oleska Street Opole 45-052 Poland
| | - Marlena Kardela
- Department of Chemistry Opole University 48 Oleska Street Opole 45-052 Poland
| | - Michal Szostak
- Department of Chemistry Opole University 48 Oleska Street Opole 45-052 Poland
- Department of Chemistry Rutgers University 73 Warren Street Newark NJ 07102 United States
| |
Collapse
|
32
|
Curto SG, de las Heras LA, Esteruelas MA, Oliván M, Oñate E. C(sp3)–Cl Bond Activation Promoted by a POP-Pincer Rhodium(I) Complex. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00409] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Sheila G. Curto
- Departamento de Química Inorgánica-Instituto de Síntesis Química y Catálisis Homogénea (ISQCH)-Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Laura A. de las Heras
- Departamento de Química Inorgánica-Instituto de Síntesis Química y Catálisis Homogénea (ISQCH)-Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Miguel A. Esteruelas
- Departamento de Química Inorgánica-Instituto de Síntesis Química y Catálisis Homogénea (ISQCH)-Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Montserrat Oliván
- Departamento de Química Inorgánica-Instituto de Síntesis Química y Catálisis Homogénea (ISQCH)-Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Enrique Oñate
- Departamento de Química Inorgánica-Instituto de Síntesis Química y Catálisis Homogénea (ISQCH)-Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| |
Collapse
|
33
|
Singh S, Sunoj RB. Mechanism and Origin of Enantioselectivity in Nickel-Catalyzed Alkyl–Alkyl Suzuki Coupling Reaction. J Phys Chem A 2019; 123:6701-6710. [DOI: 10.1021/acs.jpca.9b04284] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Sukriti Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Raghavan B. Sunoj
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
34
|
Arevalo R, Chirik PJ. Enabling Two-Electron Pathways with Iron and Cobalt: From Ligand Design to Catalytic Applications. J Am Chem Soc 2019; 141:9106-9123. [PMID: 31084022 DOI: 10.1021/jacs.9b03337] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Homogeneous catalysis with Earth-abundant, first-row transition metals, including iron and cobalt, has gained considerable recent attention as a potentially cost-effective and sustainable alternative to more commonly and historically used precious metals. Because fundamental organometallic transformations, such as oxidative addition and reductive elimination, are two-electron processes and essential steps in many important catalytic cycles, controlling redox chemistry-in particular overcoming one-electron chemistry-has been as a central challenge with Earth-abundant metals. This Perspective focuses on approaches to impart sufficiently strong ligand fields to generate electron-rich metal complexes able to promote oxidative addition reactions where the redox changes are exclusively metal-based. Emphasis is placed on how ligand design and exploration of fundamental organometallic chemistry coupled with mechanistic understanding have been used to discover iron catalysts for the hydrogen isotope exchange in pharmaceuticals and cobalt catalysts for C(sp2)-H borylation reactions. A pervasive theme is that first-row metal complexes often promote unique chemistry from their precious-metal counterparts, demonstrating that these elements offer a host of new opportunities for reaction discovery and for more sustainable catalysis.
Collapse
Affiliation(s)
- Rebeca Arevalo
- Department of Chemistry , Princeton University , Princeton , New Jersey 08544 , United States
| | - Paul J Chirik
- Department of Chemistry , Princeton University , Princeton , New Jersey 08544 , United States
| |
Collapse
|
35
|
Key RJ, Tengco JMM, Smith MD, Vannucci AK. A Molecular/Heterogeneous Nickel Catalyst for Suzuki–Miyaura Coupling. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00082] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ryan J. Key
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - John Meynard M. Tengco
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Mark D. Smith
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Aaron K. Vannucci
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
36
|
Zhu D, Lv L, Qiu Z, Li CJ. Nickel-Catalyzed Cross-Coupling of Umpolung Carbonyls and Alkyl Halides. J Org Chem 2019; 84:6312-6322. [DOI: 10.1021/acs.joc.9b00649] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Dianhu Zhu
- Department of Chemistry and FQRNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke St. W., Montreal, Quebec H3A 0B8, Canada
| | - Leiyang Lv
- Department of Chemistry and FQRNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke St. W., Montreal, Quebec H3A 0B8, Canada
| | - Zihang Qiu
- Department of Chemistry and FQRNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke St. W., Montreal, Quebec H3A 0B8, Canada
| | - Chao-Jun Li
- Department of Chemistry and FQRNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke St. W., Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
37
|
Tailor SB, Manzotti M, Asghar S, Rowsell BJS, Luckham SLJ, Sparkes HA, Bedford RB. Revisiting Claims of the Iron-, Cobalt-, Nickel-, and Copper-Catalyzed Suzuki Biaryl Cross-Coupling of Aryl Halides with Aryl Boronic Acids. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00083] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Sanita B. Tailor
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| | - Mattia Manzotti
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| | - Soneela Asghar
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
- Department of Chemistry and Chemical Engineering, SBA School of Science & Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
| | | | | | - Hazel A. Sparkes
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| | - Robin B. Bedford
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| |
Collapse
|
38
|
Bisz E, Podchorodecka P, Szostak M. N
-Methylcaprolactam as a Dipolar Aprotic Solvent for Iron-Catalyzed Cross-Coupling Reactions: Matching Efficiency with Safer Reaction Media. ChemCatChem 2019. [DOI: 10.1002/cctc.201802032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Elwira Bisz
- Department of Chemistry; Opole University; 48 Oleska Street Opole 45-052 Poland
| | | | - Michal Szostak
- Department of Chemistry; Opole University; 48 Oleska Street Opole 45-052 Poland
- Department of Chemistry; Rutgers University; 73 Warren Street Newark NJ 07102 USA
| |
Collapse
|