1
|
Yao Z, Li P, Chen F, Nie J, Wang H, Tang L, Yang Y. Halogen bonding accelerated aerobic dehydrogenative aromatization for 4-aminoquinoline preparation. Org Biomol Chem 2025; 23:728-733. [PMID: 39623914 DOI: 10.1039/d4ob01700e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
This study presents a highly efficient method for 4-aminoquinoline derivative preparation under transition metal-free conditions. The process involves an aerobic oxidative dehydrative coupling of 2,3-dihydroquinolin-4(1H)-ones with various amines, including ammonia, resulting in high yields of the desired products. The method is also applicable to substituted 4-aminoquinoline derivative construction through a cyclization/dehydrative coupling cascade process starting from 2'-amino chalcones. Mechanistic studies reveal that iodine (I2) is consumed to produce 3-iodoquinolin-4-ol, which acts as a true catalyst with high catalytic efficacy (as low as 0.5 mol%). The presence of halogen bonding is critical in the inter-molecular transfer hydrogenation process to generate inactive quinolin-4-ol. Subsequently, using air/oxygen as the terminal oxidant, the iodine anion was oxidized to I2 to regenerate the 3-iodoquinolin-4-ol from quinolin-4-ol in the catalytic cycle. Key benefits of this methodology include its simplicity, transition metal-free conditions, environmentally-benign oxidant, and high atom economy, making it a valuable approach for synthesizing medicinally significant 4-aminoquinoline derivatives.
Collapse
Affiliation(s)
- Zikun Yao
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 550014 Guiyang, P. R. China.
| | - Pan Li
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 550014 Guiyang, P. R. China.
| | - Fei Chen
- The People's Hospital of Xishui, 564600 Xishui, P. R. China
| | - Jiuwei Nie
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 550014 Guiyang, P. R. China.
| | - Hui Wang
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 550014 Guiyang, P. R. China.
| | - Lei Tang
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 550014 Guiyang, P. R. China.
| | - Yuanyong Yang
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 550014 Guiyang, P. R. China.
| |
Collapse
|
2
|
Liu L, Li J, Chen Y, Chen S, Xiao F, Deng GJ. Acid-Promoted Amination of Cyclohexenone for the Divergent Synthesis of p-Aminophenols and Tertiary Amines. J Org Chem 2024; 89:13826-13835. [PMID: 39295166 DOI: 10.1021/acs.joc.4c00292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
A tunable method for the selective preparation of p-aminophenol and tertiary amines from a secondary amine and cyclohexenone has been described. Nonaromatic cyclohexenones were used as an aryl source. The desired tertiary amine products were generated when using I2 as the catalyst. This approach yields single-site-selective p-aminophenol without using I2, and the 18O labeling experiments demonstrated that hydroxyl oxygen originates from O2.
Collapse
Affiliation(s)
- Li Liu
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Jun Li
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Ya Chen
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Shanping Chen
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Fuhong Xiao
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Guo-Jun Deng
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
3
|
Zhao L, Weng Y, Zhou X, Wu G. Aminoselenation and Dehydroaromatization of Cyclohexanones with Anilines and Diselenides. Org Lett 2024. [PMID: 38809603 DOI: 10.1021/acs.orglett.4c01799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
A three-component cascade reaction involving cyclohexanones, anilines, and diaryl diselenides under metal-free conditions is reported. The ortho-selenation of cyclohexanones with diaryl diselenides, followed by sequential dehydroaromatization with anilines, enables the preparation of a variety of o-selanyl anilines in moderate to excellent yields. This innovative transformation is notable for its excellent tolerance of functional groups and is suitable for the late-stage modification of complex pharmaceuticals.
Collapse
Affiliation(s)
- Lin Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yujie Weng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xinyu Zhou
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Ge Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| |
Collapse
|
4
|
Huynh TN, Ong KTN, Dinh PT, Nguyen AT, Nguyen TT. Elemental Sulfur Promoted Cyclization of Aryl Hydrazones and Aryl Isothiocyanates Yielding 2-Imino-1,3,4-thiadiazoles. J Org Chem 2024; 89:3202-3210. [PMID: 38329896 DOI: 10.1021/acs.joc.3c02675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
We report a method for using elemental sulfur to facilitate the cyclization of aryl hydrazones and aryl isothiocyanates, affording biorelated 2-imino-1,3,4-thiadiazoles. Reactions progressed in the presence of elemental sulfur, N-methylmorpholine base, and DMSO solvent, while were tolerant of a wide range of functionalities including halogen, nitro, cyano, methylsulfonyl, and heterocyclic groups. The method appears to offer a general pathway for using simple, cheap, and stable reagents to afford triaryl-substituted 2-imino-1,3,4-thiadiazoles under relatively mild conditions.
Collapse
Affiliation(s)
- Tan N Huynh
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 84, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 84, Vietnam
| | - Khanh T N Ong
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 84, Vietnam
- VNU-HCM Key Laboratory for Functional Organic Materials, Ho Chi Minh City 84, Vietnam
| | - Phuong T Dinh
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 84, Vietnam
- VNU-HCM Key Laboratory for Functional Organic Materials, Ho Chi Minh City 84, Vietnam
| | - Anh T Nguyen
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 84, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 84, Vietnam
| | - Tung T Nguyen
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 84, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 84, Vietnam
- VNU-HCM Key Laboratory for Functional Organic Materials, Ho Chi Minh City 84, Vietnam
| |
Collapse
|
5
|
Chen F, Geng H, Li C, Wang J, Guo B, Tang L, Yang YY. Aerobic Dehydrogenative Aromatization in the Preparation of 4-Aminoquinoline Derivatives by Synergistic Pd/Cu Catalysis. J Org Chem 2023; 88:15589-15596. [PMID: 37931324 DOI: 10.1021/acs.joc.3c01400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
The 4-aminoquinoline moiety is widely present in various bioactive compounds and marketed drugs, while the preparation of this target structure relies heavily on the amination of 4-chloroquinolines. Herein, an atom and step economic procedure was developed based on an aerobic dehydrogenative aromatization strategy. Unlike the well-known palladium-catalyzed dehydrogenative aromatization of cyclohexanones with amines, synergistic Pd/Cu catalysis is crucial for 2,3-dihydroquinolin-4(1H)-one type of substrates. Under the optimized conditions, a range of aromatic/aliphatic amines and 2,3-dihydroquinolin-4(1H)-ones were coupled to give the corresponding 4-aminoquinoline products in moderate to high yields, and the application of the current methodology for the preparation and late-stage diversification of marketed drugs was also demonstrated.
Collapse
Affiliation(s)
- Fei Chen
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 550014 Guiyang, P. R. China
| | - Huidan Geng
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 550014 Guiyang, P. R. China
| | - Chun Li
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 550014 Guiyang, P. R. China
| | - Jianta Wang
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 550014 Guiyang, P. R. China
| | - Bing Guo
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, 550004 Guiyang, P. R. China
| | - Lei Tang
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 550014 Guiyang, P. R. China
| | - Yuan-Yong Yang
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 550014 Guiyang, P. R. China
| |
Collapse
|
6
|
Chen Y, Wang K, Li M, Bao X, Zhao Y, Yi W. One-Step Protocol for the Synthesis of Cyanoacrylates Promoted by Elemental Sulfur from p-Quinone Methides and Cyanoacetates under Basic Conditions. J Org Chem 2023; 88:15696-15707. [PMID: 37906125 DOI: 10.1021/acs.joc.3c01665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Cyanoacrylates have a wide range of biological activities and are extensively applied in production and daily life. Classic synthetic routes to cyanoacrylates have many limitations. Herein, we demonstrate an elemental sulfur-promoted method for the synthesis of β,β-diaryl cyanoacrylates by a tandem 1,6-Michael addition/oxidation/elimination process from p-QMs and cyanoacetates under optimal conditions. The effective protocol has good substrate scopes and yields, and the ratio of inseparable E/Z isomers of cyanoacrylates is also determined by 1HNMR.
Collapse
Affiliation(s)
- Yan Chen
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Kunpeng Wang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Mengfan Li
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Xiaoli Bao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Yunhui Zhao
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China
| | - Weiyin Yi
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| |
Collapse
|
7
|
Liu Y, Feng Y, Nie J, Xie S, Pen X, Hong H, Chen X, Chen L, Li Y. Aromatization of cyclic hydrocarbons via thioether elimination reaction. Chem Commun (Camb) 2023; 59:11232-11235. [PMID: 37655718 DOI: 10.1039/d3cc03279e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Herein, the diversity-oriented aromatization of cyclic hydrocarbons via potassium ethyl xanthogenate (EtOCS2K)/NH4I-mediated methylthiyl radical addition and thioether elimination was investigated under transition-metal-free conditions. The methylthiyl radical species were generated in situ via the NH4I-mediated decomposition of DMSO following which EtOCS2K promoted the breaking of carbon-sulfur bonds of thioether.
Collapse
Affiliation(s)
- Yang Liu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong Province 529090, China.
| | - Yingqi Feng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong Province 529090, China.
| | - Jinli Nie
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong Province 529090, China.
| | - Sijie Xie
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong Province 529090, China.
| | - Xin Pen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong Province 529090, China.
| | - Huanliang Hong
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong Province 529090, China.
| | - Xiuwen Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong Province 529090, China.
| | - Lu Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong Province 529090, China.
| | - Yibiao Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong Province 529090, China.
| |
Collapse
|
8
|
Tan Y, Jiang W, Ni P, Fu Y, Ding Q. One‐Pot Synthesis of Quinazolines via Elemental Sulfur‐Mediated Oxidative Condensation of Nitriles and 2‐(Aminomethyl)anilines. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yuxing Tan
- Jiangxi Normal University Yaohu Campus CHINA
| | - Wujiu Jiang
- Jiangxi Normal University Yaohu Campus CHINA
| | | | - Yang Fu
- Jiangxi Normal University CHINA
| | | |
Collapse
|
9
|
Tang M, Zhang L, Mao G, Xiao F, Shao W, Deng G. Direct Thioamination of Cyclohexanones via Difunctionalization with Thiophenol and Aniline. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Minli Tang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education College of Chemistry Xiangtan University Xiangtan 411105 People's Republic of China
| | - Li Zhang
- College of Chemistry and Materials Engineering Huaihua University Huaihua 418000 People's Republic of China
| | - Guojiang Mao
- School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 People's Republic of China
| | - Fuhong Xiao
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education College of Chemistry Xiangtan University Xiangtan 411105 People's Republic of China
| | - Wen Shao
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education College of Chemistry Xiangtan University Xiangtan 411105 People's Republic of China
| | - Guo‐Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education College of Chemistry Xiangtan University Xiangtan 411105 People's Republic of China
| |
Collapse
|
10
|
Li J, Wang K, Wu J, Zhang H, Chen Y, Liu Q, Xu J, Yi W. Elemental Sulfur‐Promoted Synthesis of 4‐Hydroxybenzophenones from
p
‐Quinone Methides under Metal‐Free Condition. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jingping Li
- School of Perfume and Aroma Technology Shanghai Institute of Technology 201418 Shanghai P. R. China
| | - Kunpeng Wang
- School of Perfume and Aroma Technology Shanghai Institute of Technology 201418 Shanghai P. R. China
| | - Jiayi Wu
- Shanghai Ganquan Foreign Languages Middle School 200065 Shanghai P. R. China
| | - Haoxiang Zhang
- School of Perfume and Aroma Technology Shanghai Institute of Technology 201418 Shanghai P. R. China
| | - Yan Chen
- School of Perfume and Aroma Technology Shanghai Institute of Technology 201418 Shanghai P. R. China
| | - Qinglei Liu
- School of Perfume and Aroma Technology Shanghai Institute of Technology 201418 Shanghai P. R. China
| | - Junju Xu
- College of Tabacco Science Yunnan Agricultural University Key Laboratory of Sustainable Utilization of Plateau Characteristic Spice Plant Resources Education Department of Yunnan Province 650201 Kunming P. R. China
| | - Weiyin Yi
- School of Perfume and Aroma Technology Shanghai Institute of Technology 201418 Shanghai P. R. China
| |
Collapse
|
11
|
Wang S, Jiang P, Li R, Yang M, Deng G. Progress in Selective Construction of Functional Aromatics with Cyclohexanone. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202107032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Xiao F, Tang M, Huang H, Deng GJ. Site-Selective Synthesis of Aryl Sulfides via Oxidative Aromatization of Cyclohexanones with Thiophenols. J Org Chem 2021; 87:512-523. [PMID: 34894678 DOI: 10.1021/acs.joc.1c02530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We have introduced a metal-free facile access for the thiolation/aromatization of cyclohexanones with thiophenols to the corresponding aryl sulfides. The dehydroaromatic reaction of non-aromatic cyclohexanones proceeded smoothly using oxygen as a green oxidant.
Collapse
Affiliation(s)
- Fuhong Xiao
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Minli Tang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
13
|
Ahmad I, Kim D, Kodirov R, Yu SY, Seo JM, Mahmood J, Baek JB. Synthesis of Saddle-Shape Octaaminotetraphenylene Octahydrochloride. J Org Chem 2021; 86:14398-14403. [PMID: 34468134 DOI: 10.1021/acs.joc.1c01127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Apart from being experimentally and theoretically interesting, tetraphenylene has potential applications in different fields, including supramolecular chemistry, material science, and asymmetric catalysis. Although a wide range of substituted tetraphenylenes have been reported, octaamine-based tetraphenylene derivatives have not been reported because of their instability. Here, stable octaaminotetraphenylene octahydrochloride is synthesized from the bromination of tetraphenylene to octabromotetraphenylene, which is subsequently aminated into octaiminotetraphenylene. Finally, the imino derivative is deprotected to yield octaaminotetraphenylene octahydrochloride.
Collapse
Affiliation(s)
- Ishfaq Ahmad
- School of Energy and Chemical Engineering, Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST, Ulsan 44919, Republic of Korea
| | - Dongwook Kim
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Rukhillo Kodirov
- School of Energy and Chemical Engineering, Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST, Ulsan 44919, Republic of Korea
| | - Soo-Young Yu
- School of Energy and Chemical Engineering, Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST, Ulsan 44919, Republic of Korea
| | - Jeong-Min Seo
- School of Energy and Chemical Engineering, Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST, Ulsan 44919, Republic of Korea
| | - Javeed Mahmood
- School of Energy and Chemical Engineering, Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST, Ulsan 44919, Republic of Korea
| | - Jong-Beom Baek
- School of Energy and Chemical Engineering, Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST, Ulsan 44919, Republic of Korea
| |
Collapse
|
14
|
Pavithra T, Devi ES, Nagarajan S, Sridharan V, Maheswari CU. Sulfur Catalyzed Metal‐ and Solvent‐Free ABB'C Four‐Component Synthesis of
N
‐Arylidene‐2‐aryl‐imidazo[1‐2‐
a
]azin‐3‐amines via Strecker Reaction. ChemistrySelect 2021. [DOI: 10.1002/slct.202100682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Thangavel Pavithra
- Department of Chemistry, School of Chemical and Biotechnology SASTRA Deemed University Thanjavur 613401 India
| | - E. Sankari Devi
- Department of Chemistry, School of Chemical and Biotechnology SASTRA Deemed University Thanjavur 613401 India
| | - Subbiah Nagarajan
- Department of Chemistry National Institute of Technology-Warangal Warangal 506004 India
| | - Vellaisamy Sridharan
- Department of Chemistry and Chemical Sciences Central University of Jammu, Rahya-Suchani (Bagla) District-Samba Jammu 181143, J&K India
| | - C. Uma Maheswari
- Department of Chemistry, School of Chemical and Biotechnology SASTRA Deemed University Thanjavur 613401 India
| |
Collapse
|
15
|
Jiang P, Chen S, Huang H, Hu K, Xia Y, Deng GJ. Metal-free synthesis of indolo[2,3-b]indoles through aerobic cascade dehydrogenative aromatization/oxidative annulation. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
16
|
Deng K, Huang H, Deng GJ. Recent advances in the transition metal-free oxidative dehydrogenative aromatization of cyclohexanones. Org Biomol Chem 2021; 19:6380-6391. [PMID: 34212968 DOI: 10.1039/d1ob00908g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Cyclohexanone is a simple and widely available raw material that can be obtained from lignin biomass, highlighting its renewable and sustainable features. Cyclohexanone, as an important synthon in organic chemistry, has been demonstrated to be viable for constructing functionalized arenes and benzoheteroarenes, with recent extensive development on transition metal-free oxidative dehydrogenative aromatization. This review focuses on recent research progress on the transition metal-free derivation of cyclohexanones via oxidative dehydrogenative aromatization.
Collapse
Affiliation(s)
- Kun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China.
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China.
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China.
| |
Collapse
|
17
|
Nguyen KX, Pham PH, Nguyen TT, Yang CH, Pham HTB, Nguyen TT, Wang H, Phan NTS. Trisulfur-Radical-Anion-Triggered C(sp 2)-H Amination of Electron-Deficient Alkenes. Org Lett 2020; 22:9751-9756. [PMID: 33261315 DOI: 10.1021/acs.orglett.0c03846] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A trisulfur-radical-anion (S3̇-)-triggered C(sp2)-H amination of α,β-unsaturated carbonyl derivatives with simple amines has been demonstrated. This protocol provides convenient access to a variety of synthetically valuable N-unprotected and secondary β-enaminones with absolute Z selectivity and tertiary β-enaminones with E selectivity. Mechanistic probe and electronic structure theory calculations suggest that S3̇- initiates the nucleophilic attacks via a thiirane intermediate.
Collapse
Affiliation(s)
- Khang X Nguyen
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet, District 10, Ho Chi Minh City, Vietnam.,Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Phuc H Pham
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet, District 10, Ho Chi Minh City, Vietnam.,Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Thao T Nguyen
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet, District 10, Ho Chi Minh City, Vietnam.,Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam.,Tra Vinh University, 126 Nguyen Thien Thanh, Ward 5, Tra Vinh City, Tra Vinh Province, Vietnam
| | - Chou-Hsun Yang
- Department of Chemistry, University of Colorado Denver, Denver, Colorado 80204, United States
| | - Hoai T B Pham
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet, District 10, Ho Chi Minh City, Vietnam.,Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam.,Department of Chemistry, University of Colorado Denver, Denver, Colorado 80204, United States
| | - Tung T Nguyen
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet, District 10, Ho Chi Minh City, Vietnam.,Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Haobin Wang
- Department of Chemistry, University of Colorado Denver, Denver, Colorado 80204, United States
| | - Nam T S Phan
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet, District 10, Ho Chi Minh City, Vietnam.,Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| |
Collapse
|
18
|
Qiu Z, Zeng H, Li CJ. Coupling without Coupling Reactions: En Route to Developing Phenols as Sustainable Coupling Partners via Dearomatization-Rearomatization Processes. Acc Chem Res 2020; 53:2395-2413. [PMID: 32941014 DOI: 10.1021/acs.accounts.0c00479] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Transition-metal-catalyzed cross-coupling reactions represent one of the most straightforward and efficient protocols to assemble two different molecular motifs for the construction of carbon-carbon or carbon-heteroatom bonds. Because of their importance and wide applications in pharmaceuticals, agrochemicals, materials, etc., cross-coupling reactions have been well recognized in the 2010 Nobel Prize in chemistry. However, in the classical transition-metal-catalyzed cross-coupling reactions (e.g., the Suzuki-Miyaura, the Buchwald-Hartwig, and the Ullmann cross-coupling reactions), organohalides, which mainly stem from the nonrenewable fossil resources, are often utilized as coupling partners with halide wastes being generated after the reactions. To make cross-coupling reactions more sustainable, we initiated a general research program by employing phenols and cyclohexa(e)nones (the reduced forms of phenols) as pivotal feedstocks (coupling partners), instead of the commonly used fossil-derived organohalides, for cross-coupling reactions to build C-O, C-N, and C-C bonds. Phenols (cyclohexa(e)nones) are widely available and can be obtained from lignin biomass, highlighting their renewable and sustainable features. Moreover, water is expected to be the only stoichiometric byproduct, thus avoiding halide wastes.Notably, the cross-coupling reactions utilizing phenols/cyclohexa(e)nones are not based on the traditional transition-metal-catalyzed "oxidative-addition and reductive-elimination" mechanism, but via a novel "phenol-cyclohexanone" redox couple. This new working mechanism opens up new horizons of designing cross-coupling reactions via simple nucleophilic addition of cyclohexanones along with aromatization processes, thereby simplifying the design and avoiding laborious optimization of transition-metal precursors (e.g., Pd, Ni, Cu, etc.), as well as ligands in classical transition-metal-catalyzed cross-coupling reactions. Specifically, in this Account, we will summarize and discuss our related research work in the following three categories: "formal oxidative couplings of cyclohexa(e)nones", "formal reductive couplings of phenols", and "formal redox-neutral couplings of phenols". The successes of these research projects clearly demonstrated our initial inspirations and rational designs to develop cross-coupling reactions without the "conventional cross-coupling conditions" by pushing the reaction frontiers from initial cyclohexanones, ultimately, to the sustainable phenol targets.
Collapse
Affiliation(s)
- Zihang Qiu
- Department of Chemistry and FQRNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Huiying Zeng
- The State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Road, Lanzhou 730000, P. R. China
| | - Chao-Jun Li
- Department of Chemistry and FQRNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
19
|
Jiang P, Chen S, Xia Y, Zhang Q, Deng GJ. Access to Dibenzofurans through Dimerization/Trimerization of Cyclohexanones Followed by Dehydroaromatization. Org Lett 2020; 22:8076-8081. [DOI: 10.1021/acs.orglett.0c03023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Pingyu Jiang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Shanping Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Yi Xia
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Qingqing Zhang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
20
|
Liang W, Xie F, Yang Z, Zeng Z, Xia C, Li Y, Zhu Z, Chen X. Mono/Dual Amination of Phenols with Amines in Water. Org Lett 2020; 22:8291-8295. [PMID: 32915584 DOI: 10.1021/acs.orglett.0c02924] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We herein describe a practical direct amination of phenols through a palladium-catalyzed hydrogen-transfer-mediated activation method to synthesize the secondary and tertiary amines. In this conversion, environmentally friendly water and inexpensive ammonium formate were used as solvent and reductant, respectively. A range of amines, including aliphatic amines, aniline, secondary amines, and diamines, could be coupled effectively by this method to achieve mono/dual amination and cyclization of phenols. This study not only provides a green and mild strategy for the synthesis of secondary and tertiary naphthylamines but also expands the synthesis of chloroquine in organic chemistry.
Collapse
Affiliation(s)
- Wanyi Liang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Feng Xie
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Zhihai Yang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Zheng Zeng
- Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| | - Chuanjiang Xia
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Yibiao Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Zhongzhi Zhu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Xiuwen Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| |
Collapse
|
21
|
Mallard HH, Kennedy ND, Rudman NA, Greenwood AM, Nicoleau J, Angle CE, Torquato NA, Gau MR, Carroll PJ, Anstey MR. 2,2'-Oxybis[1,3-bis-(4-meth-oxy-phen-yl)-2,3-di-hydro-1 H-benzo[ d][1,3,2]di-aza-borole]. IUCRDATA 2020; 5:x201248. [PMID: 36338902 PMCID: PMC9462278 DOI: 10.1107/s2414314620012481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 09/10/2020] [Indexed: 11/10/2022] Open
Abstract
In the title compound, C40H36B2N4O5, the B-O-B bond angle is 132.75 (13) and the dihedral angle between the benzodiazborole rings is 73.02 (5)°. In the crystal, weak C-H⋯O inter-actions link the mol-ecules.
Collapse
Affiliation(s)
- Hannah H. Mallard
- Department of Chemistry, Davidson College, Davidson, North Carolina, USA
| | | | - Nathan A. Rudman
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, 19104-6323, USA
| | - Alexa M. Greenwood
- Department of Chemistry, Davidson College, Davidson, North Carolina, USA
| | - Jonathan Nicoleau
- Department of Chemistry, Davidson College, Davidson, North Carolina, USA
| | - Corey E. Angle
- Department of Chemistry, Davidson College, Davidson, North Carolina, USA
| | - Nicole A. Torquato
- Department of Chemistry and Biochemistry, University of California San Diego, La, Jolla, California, USA
| | - Michael R. Gau
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, 19104-6323, USA
| | - Patrick J. Carroll
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, 19104-6323, USA
| | - Mitchell R. Anstey
- Department of Chemistry, Davidson College, Davidson, North Carolina, USA
| |
Collapse
|
22
|
Liu S, Zhao F, Chen X, Deng G, Huang H. Aerobic Oxidative Functionalization of Indoles. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000285] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Saiwen Liu
- College of Materials and Chemical Engineering Hunan City University Yiyang 413000 Hunan People's Republic of China
| | - Feng Zhao
- Key Laboratory for Antibody-based Drug and Intelligent Delivery System of Hunan Province Key Laboratory of Dong Medicine of Hunan Province School of Pharmaceutical Sciences Hunan University of Medicine Huaihua 418000 People's Republic of China
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education College of Chemistry Xiangtan University Xiangtan 411105 People's Republic of China
| | - Xing Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education College of Chemistry Xiangtan University Xiangtan 411105 People's Republic of China
| | - Guo‐Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education College of Chemistry Xiangtan University Xiangtan 411105 People's Republic of China
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education College of Chemistry Xiangtan University Xiangtan 411105 People's Republic of China
| |
Collapse
|
23
|
Wang Z, Li C, Huang H, Deng GJ. Elemental Sulfur-Promoted Aerobic Dehydrogenative Aromatization of Cyclohexanones with Amines. J Org Chem 2020; 85:9415-9423. [DOI: 10.1021/acs.joc.0c01122] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Zhen Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Cheng Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
24
|
Ban K, Yamamoto Y, Sajiki H, Sawama Y. Arylation of indoles using cyclohexanones dually-catalyzed by niobic acid and palladium-on-carbons. Org Biomol Chem 2020; 18:3898-3902. [PMID: 32400844 DOI: 10.1039/d0ob00702a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
3-Arylindoles were easily constructed from indoles and cyclohexanone derivatives using a combination of catalytic niobic acid-on-carbon (Nb2O5/C) and palladium-on-carbon (Pd/C) under heating conditions without any oxidants. The Lewis acidic Nb2O5/C promoted the nucleophilic addition of indoles to the cyclohexanones, and the subsequent dehydration and Pd/C-catalyzed dehydrogenation produced the 3-arylindoles. The additive 2,3-dimethyl-1,3-butadiene worked as a hydrogen acceptor to facilitate the dehydrogenation step.
Collapse
Affiliation(s)
- Kazuho Ban
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigakunishi, Gifu 501-1196, Japan.
| | | | | | | |
Collapse
|
25
|
Huynh TV, Doan KV, Luong NTK, Nguyen DTP, Doan SH, Nguyen TT, Phan NTS. New synthesis of 2-aroylbenzothiazoles via metal-free domino transformations of anilines, acetophenones, and elemental sulfur. RSC Adv 2020; 10:18423-18433. [PMID: 35517240 PMCID: PMC9053705 DOI: 10.1039/d0ra01750g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/04/2020] [Indexed: 11/27/2022] Open
Abstract
A new synthesis of 2-aroylbenzothiazoles via iodine-promoted domino transformations of anilines, acetophenones, and elemental sulfur was demonstrated. The highlights of this tandem synthesis are (1) easily available anilines and acetophenones as feedstock; (2) transition metal-free conditions; (3) inexpensive, nontoxic, easy handling, and abundant elemental sulfur as a building block. This synthetic strategy would complement the existing methods in the synthesis of this important heterocyclic scaffold. To our best knowledge, the formation of 2-aroylbenzothiazoles from simple anilines, acetophenones, and elemental sulfur was not previously reported in the literature. A new synthesis of 2-aroylbenzothiazoles via iodine-promoted domino transformations of anilines, acetophenones, and elemental sulfur was demonstrated.![]()
Collapse
Affiliation(s)
- Tien V Huynh
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet, District 10 Ho Chi Minh City Vietnam +84 8 38637504 +84 8 38647256 ext. 5681.,Vietnam National University Ho Chi Minh City Linh Trung Ward, Thu Duc District Ho Chi Minh City Vietnam.,Faculty of Chemical Technology, Ho Chi Minh City University of Food Industry (HUFI) 140 Le Trong Tan, Tan Phu District Ho Chi Minh City Vietnam
| | - Khang V Doan
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet, District 10 Ho Chi Minh City Vietnam +84 8 38637504 +84 8 38647256 ext. 5681.,Vietnam National University Ho Chi Minh City Linh Trung Ward, Thu Duc District Ho Chi Minh City Vietnam
| | - Ngoc T K Luong
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet, District 10 Ho Chi Minh City Vietnam +84 8 38637504 +84 8 38647256 ext. 5681.,Vietnam National University Ho Chi Minh City Linh Trung Ward, Thu Duc District Ho Chi Minh City Vietnam.,Faculty of Chemical Technology, Ho Chi Minh City University of Food Industry (HUFI) 140 Le Trong Tan, Tan Phu District Ho Chi Minh City Vietnam
| | - Duyen T P Nguyen
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet, District 10 Ho Chi Minh City Vietnam +84 8 38637504 +84 8 38647256 ext. 5681.,Vietnam National University Ho Chi Minh City Linh Trung Ward, Thu Duc District Ho Chi Minh City Vietnam.,Faculty of Chemical Technology, Ho Chi Minh City University of Food Industry (HUFI) 140 Le Trong Tan, Tan Phu District Ho Chi Minh City Vietnam
| | - Son H Doan
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet, District 10 Ho Chi Minh City Vietnam +84 8 38637504 +84 8 38647256 ext. 5681.,Vietnam National University Ho Chi Minh City Linh Trung Ward, Thu Duc District Ho Chi Minh City Vietnam
| | - Tung T Nguyen
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet, District 10 Ho Chi Minh City Vietnam +84 8 38637504 +84 8 38647256 ext. 5681.,Vietnam National University Ho Chi Minh City Linh Trung Ward, Thu Duc District Ho Chi Minh City Vietnam
| | - Nam T S Phan
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet, District 10 Ho Chi Minh City Vietnam +84 8 38637504 +84 8 38647256 ext. 5681.,Vietnam National University Ho Chi Minh City Linh Trung Ward, Thu Duc District Ho Chi Minh City Vietnam
| |
Collapse
|
26
|
Wang H, Xu Z, Deng G, Huang H. Selective Formation of 2‐(2‐Aminophenyl)benzothiazoles via Copper‐Catalyzed Aerobic C−C Bond Cleavage of Isatins. Adv Synth Catal 2020. [DOI: 10.1002/adsc.201901670] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Hongfen Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of ChemistryXiangtan University Xiangtan 411105 People's Republic of China
| | - Zhenhua Xu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of ChemistryXiangtan University Xiangtan 411105 People's Republic of China
| | - Guo‐Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of ChemistryXiangtan University Xiangtan 411105 People's Republic of China
- Beijing National Laboratory for Molecular SciencesChinese Academy of Sciences (CAS) Beijing 100190 People's Republic of China
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of ChemistryXiangtan University Xiangtan 411105 People's Republic of China
| |
Collapse
|
27
|
Jafarpour F, Rajai-Daryasarei S, Gohari MH. Cascade cyclization versus chemoselective reduction: a solvent-controlled product divergence. Org Chem Front 2020. [DOI: 10.1039/d0qo00876a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A convenient controllable cascade cyclization and partial reduction of enones for the divergent construction of two types of valuable compounds including polysubstituted thiophenes and saturated ketones are developed.
Collapse
Affiliation(s)
- Farnaz Jafarpour
- School of Chemistry
- College of Science
- University of Tehran
- 14155-6455 Tehran
- Iran
| | | | | |
Collapse
|
28
|
Han T, Jiang Y, Ji X, Deng GJ, Huang H. Aerobic C(sp3)–H oxidation and oxygenation of quaternarized quinolines and pyridines by visible-light-induced photocatalysis. Org Chem Front 2020. [DOI: 10.1039/d0qo00233j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
One stone two birds: two kinds of oxygenation products (>60 new products) including carboxylate inner salts and alcohols have been accessed under mild aerobic photocatalysis.
Collapse
Affiliation(s)
- Tonghao Han
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
| | - Yunqi Jiang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
| | - Xiaochen Ji
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
| |
Collapse
|
29
|
Wang Z, Liu Q, Ji X, Deng GJ, Huang H. Bromide-Promoted Visible-Light-Induced Reductive Minisci Reaction with Aldehydes. ACS Catal 2019. [DOI: 10.1021/acscatal.9b04411] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Zhongzhen Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Qiong Liu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Xiaochen Ji
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
30
|
Pavithra T, Devi ES, Nagarajan S, Sridharan V, Maheswari CU. Metal and Solvent-Free Synthesis of 2H-Pyrido[1,2-a]pyrimidin-2-ones Catalyzed by Elemental Sulfur. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901356] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Thangavel Pavithra
- Department of Chemistry; School of Chemical and Biotechnology; SASTRA Deemed University; 613401 Thanjavur India
| | - E. Sankari Devi
- Department of Chemistry; School of Chemical and Biotechnology; SASTRA Deemed University; 613401 Thanjavur India
| | - Subbiah Nagarajan
- Department of Chemistry; National Institute of Technology-Warangal; 506004 Warangal India
| | - Vellaisamy Sridharan
- Department of Chemistry and Chemical Sciences; Central University of Jammu; Rahya-Suchani (Bagla) -181143, J&K District-Samba Jammu India
| | - C. Uma Maheswari
- Department of Chemistry; School of Chemical and Biotechnology; SASTRA Deemed University; 613401 Thanjavur India
| |
Collapse
|
31
|
Xia Y, Huang H, Zhang F, Deng GJ. Palladium-Catalyzed Aerobic Benzannulation of Amines, Benzaldehydes, and β-Dicarbonyls. Org Lett 2019; 21:7489-7492. [PMID: 31512468 DOI: 10.1021/acs.orglett.9b02786] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A palladium-catalyzed aerobic multicomponent benzannulation of Hantzsch reactants, i.e., amines, aldehydes, and β-dicarbonyls, has been developed. Hence, a viable entry to highly functionalized anilines has been accessed under solvent-free neat conditions. Mechanistically, the palladium chelating with an imine intermediate was proposed to be the key for this novel carbocyclization.
Collapse
Affiliation(s)
- Yujia Xia
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education , College of Chemistry, Xiangtan University , Xiangtan 411105 , China
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education , College of Chemistry, Xiangtan University , Xiangtan 411105 , China
| | - Feng Zhang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education , College of Chemistry, Xiangtan University , Xiangtan 411105 , China.,College of Science , Hunan Agricultural University , Changsha 410128 , China
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education , College of Chemistry, Xiangtan University , Xiangtan 411105 , China
| |
Collapse
|
32
|
Nguyen TB, Nguyen LA, Retailleau P. Strategy for Contiguous Tetramination of Cyclohexanones with o-Phenylenediamines with Elemental Sulfur and DMSO. Org Lett 2019; 21:6570-6574. [DOI: 10.1021/acs.orglett.9b02558] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Thanh Binh Nguyen
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Le Anh Nguyen
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
- Graduate University of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| |
Collapse
|
33
|
Deng S, Chen H, Ma X, Zhou Y, Yang K, Lan Y, Song Q. S 8-Catalyzed triple cleavage of bromodifluoro compounds for the assembly of N-containing heterocycles. Chem Sci 2019; 10:6828-6833. [PMID: 31391905 PMCID: PMC6657413 DOI: 10.1039/c9sc01333d] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 05/31/2019] [Indexed: 12/15/2022] Open
Abstract
An unprecedented S8-catalyzed selective triple-cleavage of bromodifluoroacetamides is disclosed for the first time.
An unprecedented S8-catalyzed selective triple-cleavage of bromodifluoroacetamides is disclosed for the first time. Valuable 2-amido substituted benzimidazoles, benzoxazoles and benzothiazoles were obtained in good to excellent yields in a cascade protocol in this strategy. Mechanistic studies suggested that a C2 source was generated in situ by selective cleavage of three C–X bonds, including two inert C(sp3)–F bonds on bromodifluoroacetamides, while leaving C–C bonds intact. This strategy will undoubtedly further consummate the role of halo difluoro compounds and enrich both fluorine chemistry and pharmaceutical sciences.
Collapse
Affiliation(s)
- Shuilin Deng
- Institute of Next Generation Matter Transformation , College of Chemical Engineering , College of Material Sciences Engineering at Huaqiao University , 668 Jimei Boulevard , Xiamen , Fujian 361021 , China .
| | - Haohua Chen
- School of Chemistry and Chemical Engineering , Chongqing University , Chongqing 400030 , P. R. China
| | - Xingxing Ma
- Institute of Next Generation Matter Transformation , College of Chemical Engineering , College of Material Sciences Engineering at Huaqiao University , 668 Jimei Boulevard , Xiamen , Fujian 361021 , China .
| | - Yao Zhou
- Institute of Next Generation Matter Transformation , College of Chemical Engineering , College of Material Sciences Engineering at Huaqiao University , 668 Jimei Boulevard , Xiamen , Fujian 361021 , China .
| | - Kai Yang
- College of Chemistry , Fuzhou University , Fuzhou , Fujian 350108 , China
| | - Yu Lan
- School of Chemistry and Chemical Engineering , Chongqing University , Chongqing 400030 , P. R. China.,College of Chemistry and Molecular Engineering , Zhengzhou University , Zhengzhou 450001 , P. R. China
| | - Qiuling Song
- Institute of Next Generation Matter Transformation , College of Chemical Engineering , College of Material Sciences Engineering at Huaqiao University , 668 Jimei Boulevard , Xiamen , Fujian 361021 , China . .,College of Chemistry , Fuzhou University , Fuzhou , Fujian 350108 , China.,State Key Laboratroy of Organometallic Chemistry , Shanghai Institute of Organic Chemistry , Chinese Academy of Sciences , Shanghai 200032 , P. R. China
| |
Collapse
|
34
|
Ji X, Tan M, Fu M, Deng GJ, Huang H. Photocatalytic aerobic α-thiolation/annulation of carbonyls with mercaptobenzimidazoles. Org Biomol Chem 2019; 17:4979-4983. [PMID: 31062809 DOI: 10.1039/c9ob00625g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A concise aerobic photocatalysis using a blue LED combined with a Lewis acid has been developed to enable α-thiolation/annulation of carbonyls. Inexpensive, nontoxic Rose Bengal was demonstrated as the best catalyst. Hence, this transition-metal-free protocol allows mild Csp3-S couplings with both ketones and aliphatic aldehydes with a range of compatible useful functionalities.
Collapse
Affiliation(s)
- Xiaochen Ji
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Muyun Tan
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Mei Fu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
35
|
Nguyen TB, Retailleau P. Sulfur‐Catalyzed Stereo and Regioselective Synthesis of Heteropropellanes via Oxidative Condensation of Cyclohexanones with 2‐Aminophenols. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900436] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Thanh Binh Nguyen
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301Université Paris-Sud, Université Paris-Saclay 1 avenue de la Terrasse 91198 Gif-sur-Yvette France
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301Université Paris-Sud, Université Paris-Saclay 1 avenue de la Terrasse 91198 Gif-sur-Yvette France
| |
Collapse
|
36
|
Lu C, Huang H, Tuo X, Jiang P, Zhang F, Deng GJ. Chemoselective metal-free indole arylation with cyclohexanones. Org Chem Front 2019. [DOI: 10.1039/c9qo00603f] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Elemental sulfur- and iodine reagent-mediated indole C3 arylations have been developed with cyclohexanones as the arylating reagent.
Collapse
Affiliation(s)
- Chaogang Lu
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
- China
| | - Huawen Huang
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
- China
| | - Xiaolong Tuo
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
- China
| | - Pingyu Jiang
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
- China
| | - Feng Zhang
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
- China
| | - Guo-Jun Deng
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
- China
| |
Collapse
|
37
|
Weng WZ, Gao YH, Zhang X, Liu YH, Shen YJ, Zhu YP, Sun YY, Meng QG, Wu AX. Oxidative C(sp3)–H functionalization of methyl-azaheteroarenes: a facile route to 1,2,4-triazolo[4,3-a]pyridines. Org Biomol Chem 2019; 17:2087-2091. [DOI: 10.1039/c9ob00033j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
An oxidative [4 + 1] annulation for triazolo[4,3-a]pyridine–quinoline linked diheterocycle synthesis via functionalization of the sp3 C–H bonds of 2-methyl-azaheteroarenes has been developed.
Collapse
Affiliation(s)
- Wei-Zhao Weng
- School of Pharmacy
- Key Laboratory of Molecular Pharmacology and Drug Evaluation
- Ministry of Education
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong
- Yantai University
| | - Yin-He Gao
- School of Pharmacy
- Key Laboratory of Molecular Pharmacology and Drug Evaluation
- Ministry of Education
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong
- Yantai University
| | - Xue Zhang
- School of Pharmacy
- Key Laboratory of Molecular Pharmacology and Drug Evaluation
- Ministry of Education
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong
- Yantai University
| | - Yan-Hua Liu
- School of Pharmacy
- Key Laboratory of Molecular Pharmacology and Drug Evaluation
- Ministry of Education
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong
- Yantai University
| | - Ying-Jie Shen
- School of Pharmacy
- Key Laboratory of Molecular Pharmacology and Drug Evaluation
- Ministry of Education
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong
- Yantai University
| | - Yan-Ping Zhu
- School of Pharmacy
- Key Laboratory of Molecular Pharmacology and Drug Evaluation
- Ministry of Education
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong
- Yantai University
| | - Yuan-Yuan Sun
- School of Pharmacy
- Key Laboratory of Molecular Pharmacology and Drug Evaluation
- Ministry of Education
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong
- Yantai University
| | - Qing-Guo Meng
- School of Pharmacy
- Key Laboratory of Molecular Pharmacology and Drug Evaluation
- Ministry of Education
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong
- Yantai University
| | - An-Xin Wu
- Key Laboratory of Pesticide & Chemical Biology
- Ministry of Education
- College of Chemistry
- Central China Normal University
- Wuhan
| |
Collapse
|
38
|
Dhandabani GK, Mutra MR, Wang JJ. FeCl3-Promoted ring size-dictating diversity-oriented synthesis (DOS) of N-heterocycles using in situ-generated cyclic imines and enamines. Chem Commun (Camb) 2019; 55:7542-7545. [DOI: 10.1039/c9cc03375k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The FeCl3-promoted ring size-controlled oxidative activation of o-alkynylanilines opens up a complementary appealing protocol for poly-N-heterocycle synthesis.
Collapse
Affiliation(s)
- Ganesh Kumar Dhandabani
- Department of Medicinal and Applied Chemistry
- Kaohsiung Medical University
- Kaohsiung City 807
- Taiwan
| | - Mohana Reddy Mutra
- Department of Medicinal and Applied Chemistry
- Kaohsiung Medical University
- Kaohsiung City 807
- Taiwan
| | - Jeh-Jeng Wang
- Department of Medicinal and Applied Chemistry
- Kaohsiung Medical University
- Kaohsiung City 807
- Taiwan
- Department of Medical Research
| |
Collapse
|
39
|
Xu Z, Huang H, Chen H, Deng GJ. Catalyst- and additive-free annulation/aromatization leading to benzothiazoles and naphthothiazoles. Org Chem Front 2019. [DOI: 10.1039/c9qo00592g] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Catalyst- and additive-free three-component annulation/aromatization enable a highly efficient entry to naphtho[1,2-d]thiazoles and benzo[d]thiazoles.
Collapse
Affiliation(s)
- Zhenhua Xu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
| | - Hongbiao Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
| |
Collapse
|