1
|
Gao Y, Hu Y, Ye J, Ma Z, Feng J, Liu X, Lei P, Szostak M. Pd-NHC (NHC = N-Heterocyclic Carbene)-Catalyzed B-Alkyl Suzuki Cross-Coupling of 2-Pyridyl Ammonium Salts by N-C Activation: Application to the Discovery of Agrochemical Molecular Hybrids. Org Lett 2024; 26:2309-2314. [PMID: 38466078 DOI: 10.1021/acs.orglett.4c00549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
2-Alkylpyridines are a privileged scaffold throughout the realm of organic synthesis and play a key role in natural products, pharmaceuticals, and agrochemicals. Herein, we report the first B-alkyl Suzuki cross-coupling of 2-pyridyl ammonium salts to access functionalized 2-alkylpyridines. The use of well-defined, operationally simple Pd-NHCs permits for an exceptionally broad scope of the challenging B-alkyl C-N cross-coupling with organoboranes containing β-hydrogen, representing a novel method for the discovery of highly sought-after molecules for plant protection.
Collapse
Affiliation(s)
- Yanqing Gao
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuge Hu
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiuhui Ye
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhiqing Ma
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- Shaanxi Research Center of Biopesticide Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Juntao Feng
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- Shaanxi Research Center of Biopesticide Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xili Liu
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Peng Lei
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- Shaanxi Research Center of Biopesticide Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
2
|
Bensalah D, Mansour L, Sauthier M, Gurbuz N, Özdemir I, Beji L, Gatri R, Hamdi N. Plausible PEPPSI catalysts for direct C-H functionalization of five-membered heterocyclic bioactive motifs: synthesis, spectral, X-ray crystallographic characterizations and catalytic activity. RSC Adv 2023; 13:31386-31410. [PMID: 37941793 PMCID: PMC10628855 DOI: 10.1039/d3ra06334h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 10/08/2023] [Indexed: 11/10/2023] Open
Abstract
In this study, a series of benzimidazolium salts were synthesized as asymmetric N-heterocyclic carbene (NHC) precursors. Nine novel palladium complexes with the general formula [PdX2(NHC)(pyridine)] were synthesized using benzimidazolium salts in the PEPPSI (Pyridine Enhanced Precatalyst Preparation, Stabilization and Initiation) theme. All synthesized Pd(ii) complexes are stable. The synthesized compounds were thoroughly characterized by respective spectroscopic techniques, such as 1HNMR, 13C NMR, FTIR spectroscopy, X-ray crystallography and elemental analysis. The geometric structure of the palladium N-heterocyclic carbene has been optimized in the framework of density functional theory (DFT) using the B3LYP-D3 dispersion functional with LANL2DZ as a basis set. The on/off mechanism of pyridine assisted Pd-NHC complexes made them the best C-H functionalized catalysts for regioselective C-5 arylated products. Five membered heterocyclic compounds such as 2-acetyl furan, furfuryl acetate 2-acetylthiophene and N-methylpyrrole-2-carboxaldehyde were treated with numerous aryl bromides and arylchlorides under optimal catalytic reaction conditions. Interestingly, all the prepared catalysts possessed essential structural features that facilitated the formation of desired coupling products in quantitative yield with excellent selectivity. The arylation reaction of bromoacetophenone was highly catalytically active with only 1 mol% catalyst loading at 150 °C for 2 hours. To check the efficiency of the synthesized complexes, three different five member heterocyclic substrates (2-acetylfuran, 2-acetylthiophen, 2-propylthaizole) were tested with a number of aryl bromides bearing both electron-donating and electron-withdrawing groups on para position. The data in Tables 2-4. Indicated that electron-donating groups on the para position of aryl halide decreased the catalytic conversion while electron-withdrawing groups increased the catalytic conversion this was due to the high nucleophilicity of the electron-donating substituents.
Collapse
Affiliation(s)
- Donia Bensalah
- Research Laboratory of Environmental Sciences and Technologies (LR16ES09), Higher Institute of Environmental Sciences and Technology, University of Carthage Hammam-Lif Tunisia +96 6556394839
| | - Lamjed Mansour
- Zoology Department, College of Science, King Saud University P. O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Mathieu Sauthier
- Ecole Nationale Superieure de Chimie de Lille, Unité de Catalyse et Chimie du Solide, UMR CNRS 8181, USTL BP 90108, Villeneuve d'Ascq 59652 France
| | - Nevin Gurbuz
- Department of Chemistry, Faculty of Science and Art, İnönü University Malatya 44280 Turkey
- İnönü University, Catalysis Research and Application Center Malatya 44280 Turkey
| | - Ismail Özdemir
- Department of Chemistry, Faculty of Science and Art, İnönü University Malatya 44280 Turkey
- İnönü University, Catalysis Research and Application Center Malatya 44280 Turkey
| | - Lotfi Beji
- Department of Physics, College of Sciences and Arts at Arras, Qassim University Saudi Arabia
| | - Rafik Gatri
- Laboratoire de Synthèse Organique Sélective et Hétérocyclique Évaluation Biologique LR17ES01 Faculté des Sciences de Tunis Campus Universitaire, Université de Tunis El Manar 1092 Tunis Tunisia
| | - Naceur Hamdi
- Research Laboratory of Environmental Sciences and Technologies (LR16ES09), Higher Institute of Environmental Sciences and Technology, University of Carthage Hammam-Lif Tunisia +96 6556394839
| |
Collapse
|
3
|
Gao P, Rahman MM, Zamalloa A, Feliciano J, Szostak M. Classes of Amides that Undergo Selective N-C Amide Bond Activation: The Emergence of Ground-State Destabilization. J Org Chem 2023; 88:13371-13391. [PMID: 36054817 DOI: 10.1021/acs.joc.2c01094] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ground-state destabilization of the N-C(O) linkage represents a powerful tool to functionalize the historically inert amide bond. This burgeoning reaction manifold relies on the availability of amide bond precursors that participate in weakening of the nN → π*C=O conjugation through N-C twisting, N pyramidalization, and nN electronic delocalization. Since 2015, acyl N-C amide bond activation through ground-state destabilization of the amide bond has been achieved by transition-metal-catalyzed oxidative addition of the N-C(O) bond, generation of acyl radicals, and transition-metal-free acyl addition. This Perspective summarizes contributions of our laboratory in the development of new ground-state-destabilized amide precursors enabled by twist and electronic activation of the amide bond and synthetic utility of ground-state-destabilized amides in cross-coupling reactions and acyl addition reactions. The use of ground-state-destabilized amides as electrophiles enables a plethora of previously unknown transformations of the amide bond, such as acyl coupling, decarbonylative coupling, radical coupling, and transition-metal-free coupling to forge new C-C, C-N, C-O, C-S, C-P, and C-B bonds. Structural studies of activated amides and catalytic systems developed in the past decade enable the view of the amide bond to change from the "traditionally inert" to "readily modifiable" functional group with a continuum of reactivity dictated by ground-state destabilization.
Collapse
Affiliation(s)
- Pengcheng Gao
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Md Mahbubur Rahman
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Alfredo Zamalloa
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Jessica Feliciano
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
4
|
Roh B, Farah AO, Kim B, Feoktistova T, Moeller F, Kim KD, Cheong PHY, Lee HG. Stereospecific Acylative Suzuki–Miyaura Cross-Coupling: General Access to Optically Active α-Aryl Carbonyl Compounds. J Am Chem Soc 2023; 145:7075-7083. [PMID: 37016901 DOI: 10.1021/jacs.3c00637] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
A novel strategy for the stereospecific Pd-catalyzed acylative cross-coupling of enantiomerically enriched alkylboron compounds has been developed. The protocol features an extremely high level of enantiospecificity to allow facile access to synthetically challenging and valuable chiral ketones and carboxylic acid derivatives. The use of a sterically encumbered and electron-rich phosphine ligand proved to be crucial for the success of the reaction. Furthermore, on the basis of experimental and computational studies, a unique mechanism for the transmetalation, assisted by the noncovalent interactions of the C(sp3)-based organoboron reagent, has been identified.
Collapse
Affiliation(s)
- Byeongdo Roh
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Abdikani Omar Farah
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331-2145, United States
| | - Beomsu Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Taisiia Feoktistova
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331-2145, United States
| | - Finn Moeller
- Department of Chemistry, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Kyeong Do Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Paul Ha-Yeon Cheong
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331-2145, United States
| | - Hong Geun Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
5
|
Liu C, Szostak M. Amide N-C Bond Activation: A Graphical Overview of Acyl and Decarbonylative Coupling. SYNOPEN 2023; 7:88-101. [PMID: 38037650 PMCID: PMC10686541 DOI: 10.1055/a-2035-6733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
This Graphical Review provides an overview of amide bond activation achieved by selective oxidative addition of the N-C(O) acyl bond to transition metals and nucleophilic acyl addition, resulting in acyl and decarbonylative coupling together with key mechanistic details pertaining to amide bond distortion underlying this reactivity manifold.
Collapse
Affiliation(s)
- Chengwei Liu
- Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai 200444, China
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA
| |
Collapse
|
6
|
Mazars F, Zaragoza G, Delaude L. Caffeine and theophylline as sustainable, biosourced NHC ligand precursors for efficient palladium-catalyzed Suzuki–Miyaura cross-coupling reactions. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Huang J, Wang W, Zhang L, Meng X. Recent advances in the synthesis of benzo[b]thiophene fused polycyclic derivatives: strategies and reactions. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
Nawaz Z, Ullah H, Gürbüz N, Zafar MN, Verpoort F, Tahir MN, Özdemir I, Trovitch RJ. Benzimidazole-based N-heterocyclic carbene silver complexes as catalysts for the formation of carbonates from carbon dioxide and epoxides. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Dorval C, Stetsiuk O, Gaillard S, Dubois E, Gosmini C, Danoun G. Cobalt Bromide-Catalyzed Negishi-Type Cross-Coupling of Amides. Org Lett 2022; 24:2778-2782. [PMID: 35380446 DOI: 10.1021/acs.orglett.2c00940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, we describe a novel Negishi-type cross-coupling of amides employing only cobalt bromide salt as the catalyst. This original reaction is highly tolerant to various glutarimide amides as well as organozinc coupling partners. These conditions also allow the performance of the cross-coupling reaction in an eco-compatible solvent such as ethyl acetate on a large scale.
Collapse
Affiliation(s)
- Céline Dorval
- LCM, CNRS, Ecole polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Oleh Stetsiuk
- LCM, CNRS, Ecole polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Sylvaine Gaillard
- LCM, CNRS, Ecole polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Elodie Dubois
- LCM, CNRS, Ecole polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Corinne Gosmini
- LCM, CNRS, Ecole polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Grégory Danoun
- LCM, CNRS, Ecole polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| |
Collapse
|
10
|
Hamdi N, Mnasri A, S. Al Nasr I, S. Koko W, Khan TA, Özdemir I, Gürbüz N. Highly Efficient Single A3-Coupling (Aldehyde-Amine-Alkyne) Reaction Catalyzed by Air Stable Silver-(N-Heterocyclic Carbene) Complexes: Synthesis and Characterization. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2021.2019064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Naceur Hamdi
- Department of Chemistry, College of Science and Arts, Qassim University, Ar Rass, Saudi Arabia
- Research Laboratory of Environmental Sciences and Technologies (LR16ES09), Higher Institute of Environmental Sciences and Technology, University of Carthage, Hammam-Lif, Tunisia
| | - Aziza Mnasri
- Department of Chemistry, College of Science and Arts, Qassim University, Ar Rass, Saudi Arabia
| | - Ibrahim S. Al Nasr
- Department of Biology, College of Science and Arts, Qassim University, Unaizah, Saudi Arabia
- Department of Science Laboratories, College of Science and Arts, Qassim University, Ar Rass, Saudi Arabia
| | - Waleed S. Koko
- Department of Science Laboratories, College of Science and Arts, Qassim University, Ar Rass, Saudi Arabia
| | - Tariq A. Khan
- Department of Biomedical Instrumentation, College of Applied Health Sciences, Qassim University, Ar Rass, Saudi Arabia
| | - Ismail Özdemir
- Catalysis Research and Application Center, İnönü University, Malatya, Turkey
- Faculty of Science and Art, Department of Chemistry, İnönü University, Malatya, Turkey
| | - Nevin Gürbüz
- Catalysis Research and Application Center, İnönü University, Malatya, Turkey
- Faculty of Science and Art, Department of Chemistry, İnönü University, Malatya, Turkey
| |
Collapse
|
11
|
Kaloğlu M, Kaloğlu N, Günal S, Özdemir İ. Synthesis of N-heterocyclic carbene-based silver complexes and their antimicrobial properties against bacteria and fungi. J COORD CHEM 2021. [DOI: 10.1080/00958972.2021.2014457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Murat Kaloğlu
- Faculty of Science and Arts, Department of Chemistry, İnönü University, Malatya, Turkey
- Catalysis Research and Application Center, İnönü University, Malatya, Turkey
| | - Nazan Kaloğlu
- Faculty of Science and Arts, Department of Chemistry, İnönü University, Malatya, Turkey
- Catalysis Research and Application Center, İnönü University, Malatya, Turkey
| | - Selami Günal
- Faculty of Pharmacy, Department of Pharmaceutical Microbiology, İnönü University, Malatya, Turkey
| | - İsmail Özdemir
- Faculty of Science and Arts, Department of Chemistry, İnönü University, Malatya, Turkey
- Catalysis Research and Application Center, İnönü University, Malatya, Turkey
- Drug Application and Research Center, İnönü University, Malatya, Turkey
| |
Collapse
|
12
|
Xie. P, Qin Z, Zhang S, Hong X. Understanding the Structure‐Activity Relationship of Ni‐Catalyzed Amide C−N Bond Activation using Distortion/Interaction Analysis. ChemCatChem 2021. [DOI: 10.1002/cctc.202100672] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Pei‐Pei Xie.
- Center of Chemistry for Frontier Technologies Department of Chemistry Zhejiang University Hangzhou 310027 P.R. China
| | - Zhi‐Xin Qin
- Center of Chemistry for Frontier Technologies Department of Chemistry Zhejiang University Hangzhou 310027 P.R. China
| | - Shuo‐Qing Zhang
- Center of Chemistry for Frontier Technologies Department of Chemistry Zhejiang University Hangzhou 310027 P.R. China
| | - Xin Hong
- Center of Chemistry for Frontier Technologies Department of Chemistry Zhejiang University Hangzhou 310027 P.R. China
| |
Collapse
|
13
|
Rendón-Nava D, Angeles-Beltrán D, Rheingold AL, Mendoza-Espinosa D. Palladium(II) Complexes of a Neutral CCC-Tris(N-heterocyclic carbene) Pincer Ligand: Synthesis and Catalytic Applications. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- David Rendón-Nava
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km 4.5, Mineral de la Reforma, Hidalgo, Mexico 42090
| | - Deyanira Angeles-Beltrán
- Departamento de Ciencias Básicas, Universidad Autónoma Metropolitana-Azcapotzalco, Avenida San Pablo 180, Ciudad de México, Mexico 02200
| | - Arnold L. Rheingold
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Daniel Mendoza-Espinosa
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km 4.5, Mineral de la Reforma, Hidalgo, Mexico 42090
| |
Collapse
|
14
|
Zheng YL, Xie PP, Daneshfar O, Houk KN, Hong X, Newman SG. Direct Synthesis of Ketones from Methyl Esters by Nickel-Catalyzed Suzuki-Miyaura Coupling. Angew Chem Int Ed Engl 2021; 60:13476-13483. [PMID: 33792138 DOI: 10.1002/anie.202103327] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Indexed: 12/14/2022]
Abstract
The direct conversion of alkyl esters to ketones has been hindered by the sluggish reactivity of the starting materials and the susceptibility of the product towards subsequent nucleophilic attack. We have now achieved a cross-coupling approach to this transformation using nickel, a bulky N-heterocyclic carbene ligand, and alkyl organoboron coupling partners. 65 alkyl ketones bearing diverse functional groups and heterocyclic scaffolds have been synthesized with this method. Catalyst-controlled chemoselectivity is observed for C(acyl)-O bond activation of multi-functional substrates bearing other bonds prone to cleavage by Ni, including aryl ether, aryl fluoride, and N-Ph amide functional groups. Density functional theory calculations provide mechanistic support for a Ni0 /NiII catalytic cycle and demonstrate how stabilizing non-covalent interactions between the bulky catalyst and substrate are critical for the reaction's success.
Collapse
Affiliation(s)
- Yan-Long Zheng
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, Ontario, K1N 6N5, Canada
| | - Pei-Pei Xie
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Omid Daneshfar
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, Ontario, K1N 6N5, Canada
| | - Kendall N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Xin Hong
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Stephen G Newman
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, Ontario, K1N 6N5, Canada
| |
Collapse
|
15
|
Zheng Y, Xie P, Daneshfar O, Houk KN, Hong X, Newman SG. Direct Synthesis of Ketones from Methyl Esters by Nickel‐Catalyzed Suzuki–Miyaura Coupling. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Yan‐Long Zheng
- Centre for Catalysis Research and Innovation Department of Chemistry and Biomolecular Sciences University of Ottawa 10 Marie-Curie Ottawa Ontario K1N 6N5 Canada
| | - Pei‐Pei Xie
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Omid Daneshfar
- Centre for Catalysis Research and Innovation Department of Chemistry and Biomolecular Sciences University of Ottawa 10 Marie-Curie Ottawa Ontario K1N 6N5 Canada
| | - Kendall N. Houk
- Department of Chemistry and Biochemistry University of California Los Angeles CA 90095 USA
| | - Xin Hong
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Stephen G. Newman
- Centre for Catalysis Research and Innovation Department of Chemistry and Biomolecular Sciences University of Ottawa 10 Marie-Curie Ottawa Ontario K1N 6N5 Canada
| |
Collapse
|
16
|
Niu ZJ, Li LH, Li XS, Liu HC, Shi WY, Liang YM. Formation of o-Allyl- and Allenyl-Modified Amides via Intermolecular Claisen Rearrangement. Org Lett 2021; 23:1315-1320. [PMID: 33534590 DOI: 10.1021/acs.orglett.0c04300] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We developed a new transition-metal-free intermolecular Claisen rearrangement process to introduce allyl and allenyl groups into the α position of tertiary amides. In this transformation, amides were activated by trifluoromethanesulfonic anhydride to produce the keteniminium ion intermediates that exhibit strong electrophilic activity. This atom-economical process delivers α position-modified amides under mild conditions in moderate to good yields and showcases a broad substrate compatibility.
Collapse
Affiliation(s)
- Zhi-Jie Niu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Lian-Hua Li
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xue-Song Li
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Hong-Chao Liu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Wei-Yu Shi
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
17
|
Prima DO, Madiyeva M, Burykina JV, Minyaev ME, Boiko DA, Ananikov VP. Evidence for “cocktail”-type catalysis in Buchwald–Hartwig reaction. A mechanistic study. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01601f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The mechanism of the C–N cross-coupling reaction, catalyzed by Pd/NHC, was evaluated at the molecular and nanoscale levels. The first evidence for the involvement of a “cocktail”-type system in the Buchwald–Hartwig reaction is provided.
Collapse
Affiliation(s)
- Darya O. Prima
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia
| | - Malena Madiyeva
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Julia V. Burykina
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia
| | - Mikhail E. Minyaev
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia
| | - Daniil A. Boiko
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Valentine P. Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
18
|
Lei P, Li G, Szostak M, Ling Y, An J, Nolan SP. Protocol for Palladium/N-Heterocyclic Carbene-Catalyzed Suzuki–Miyaura Cross-Coupling of Amides by N–C(O) Activation. SYNTHESIS-STUTTGART 2020. [DOI: 10.1055/s-0040-1705956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractAmides are among the most important and ubiquitous functional groups in organic chemistry and process development. In this Practical Synthetic Procedure, a protocol for the Suzuki–Miyaura cross-coupling of amides by selective N–C(O) bond activation catalyzed by commercially available, air- and moisture-stable palladium/N-heterocyclic carbene (NHC) complexes is described. The procedure described involves [Pd(IPr)(cin)Cl] [IPr = 2,6-(diisopropylphenyl)imidazol-2-ylidene, cin = cinnamyl] at 0.10 mol% at room temperature and is performed on decagram scale. Furthermore, a procedure for the synthesis of amide starting materials is accomplished via selective N-tert-butoxycarbonylation, which is the preferred method over N-acylation. The present protocol carries advantages of operational simplicity, commercial availability of catalysts, and excellent conversions at low catalyst loadings. The method is generally useful for activation of N–C(O) amide bonds in a broad spectrum of amide precursors. The protocol should facilitate the implementation of amide cross-coupling reactions.
Collapse
Affiliation(s)
- Peng Lei
- College of Plant Protection, Northwest A & F University
- Department of Applied Chemistry, China Agricultural University
- Department of Chemistry, Rutgers University
| | | | | | - Yun Ling
- Department of Applied Chemistry, China Agricultural University
| | - Jie An
- Department of Nutrition and Health, China Agricultural University
| | - Steven P. Nolan
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University
| |
Collapse
|
19
|
Bie F, Liu X, Shi Y, Cao H, Han Y, Szostak M, Liu C. Rh-Catalyzed Base-Free Decarbonylative Borylation of Twisted Amides. J Org Chem 2020; 85:15676-15685. [PMID: 33124423 DOI: 10.1021/acs.joc.0c02157] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We report the rhodium-catalyzed base-free decarbonylative borylation of twisted amides. The synthesis of versatile arylboronate esters from aryl twisted amides is achieved via decarbonylative rhodium(I) catalysis and highly selective N-C(O) insertion. The method is notable for a very practical, additive-free Rh(I) catalyst system. The method shows broad functional group tolerance and excellent substrate scope, including site-selective decarbonylative borylation/Heck cross-coupling via divergent N-C/C-Br cleavage and late-stage pharmaceutical borylation.
Collapse
Affiliation(s)
- Fusheng Bie
- Zaozhuang University, 1 Bei'an Road, Zaozhuang, Shandong 277160, China.,Shandong Lunan Coal Chemical Research Institute of Engineering and Technology, 1 Bei'an Road, Zaozhuang, Shandong 277160, China
| | - Xuejing Liu
- Zaozhuang University, 1 Bei'an Road, Zaozhuang, Shandong 277160, China.,Shandong Lunan Coal Chemical Research Institute of Engineering and Technology, 1 Bei'an Road, Zaozhuang, Shandong 277160, China
| | - Yijun Shi
- Zaozhuang University, 1 Bei'an Road, Zaozhuang, Shandong 277160, China.,Shandong Lunan Coal Chemical Research Institute of Engineering and Technology, 1 Bei'an Road, Zaozhuang, Shandong 277160, China
| | - Han Cao
- Zaozhuang University, 1 Bei'an Road, Zaozhuang, Shandong 277160, China.,Shandong Lunan Coal Chemical Research Institute of Engineering and Technology, 1 Bei'an Road, Zaozhuang, Shandong 277160, China
| | - Ying Han
- Zaozhuang University, 1 Bei'an Road, Zaozhuang, Shandong 277160, China.,Shandong Lunan Coal Chemical Research Institute of Engineering and Technology, 1 Bei'an Road, Zaozhuang, Shandong 277160, China
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Chengwei Liu
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
20
|
Yi X, Chen K, Guo J, Chen W, Chen W. Nickel(II)/
N
‐Heterocyclic Carbene Catalyzed Desulfinylative Arylation by C−S Cleavage of Aryl Sulfoxides with Phenylboronic Acids. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000531] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xiaowen Yi
- Department of Chemistry Zhejiang University 38 Zheda Road Hangzhou 310027 People's Republic of China
- Present address: School of Chemical and Material Engineering Jiangnan University Wuxi 214122 People's Republic of China
| | - Kai Chen
- Department of Chemistry Zhejiang University 38 Zheda Road Hangzhou 310027 People's Republic of China
| | - Junjun Guo
- Department of Chemistry Zhejiang University 38 Zheda Road Hangzhou 310027 People's Republic of China
| | - Wei Chen
- Department of Chemistry Zhejiang University 38 Zheda Road Hangzhou 310027 People's Republic of China
| | - Wanzhi Chen
- Department of Chemistry Zhejiang University 38 Zheda Road Hangzhou 310027 People's Republic of China
| |
Collapse
|
21
|
Boit TB, Bulger AS, Dander JE, Garg NK. Activation of C-O and C-N Bonds Using Non-Precious-Metal Catalysis. ACS Catal 2020; 10:12109-12126. [PMID: 33868770 PMCID: PMC8049354 DOI: 10.1021/acscatal.0c03334] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Timothy B Boit
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Ana S Bulger
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Jacob E Dander
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Neil K Garg
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
22
|
Idris MA, Lee S. Palladium-Catalyzed Amide N–C Hiyama Cross-Coupling: Synthesis of Ketones. Org Lett 2020; 22:9190-9195. [DOI: 10.1021/acs.orglett.0c03260] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Muhammad Aliyu Idris
- Department of Chemistry Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sunwoo Lee
- Department of Chemistry Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
23
|
Ahmadvand Z, Bayat M, Zolfigol MA. Toward prediction of the precatalyst activation mechanism through the cross-coupling reactions: Reduction of Pd(II) to Pd(0) in precatalyst of the type Pd-PEPPSI. J Comput Chem 2020; 41:2296-2309. [PMID: 32757323 DOI: 10.1002/jcc.26393] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 11/11/2022]
Abstract
Pd-PEPPSI type complexes are widely used as precatalyst in a variety of organic reactions, including the Negishi, Kumada and Suzuki-Miyaura cross-coupling reactions. The aim of this research is to determine potential proposed reaction pathways 1, 2, or 2' (See Schemes 1 and S1-S4) for Pd-PEPPSI precatalyst activation in the presence of ethylene glycol as a solvent also in the gas phase at Cam-B3LYP-D3 method nominated among eight DFT methods examined. There is also investigation into the impact of promoter bases (NaOEt, NaOi Pr, NaOt Bu) on precatalyst activation of Pd-PEPPSI. Eventually, the most favorable proposed reaction pathway and promoter base for reducing Pd(II) to Pd(0) are predicted computationally. Notably, our findings are consistent with the organ Pd-PEPPSI type complexes that offer increased catalytic activity and provide basic information in the presence of solvents designing the monoligated Pd(0)-solvent.
Collapse
Affiliation(s)
- Zeinab Ahmadvand
- Department of Inorganic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Mehdi Bayat
- Department of Inorganic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| |
Collapse
|
24
|
|
25
|
Wang J, Hoerrner ME, Watson MP, Weix DJ. Nickel-Catalyzed Synthesis of Dialkyl Ketones from the Coupling of N-Alkyl Pyridinium Salts with Activated Carboxylic Acids. Angew Chem Int Ed Engl 2020; 59:13484-13489. [PMID: 32374951 PMCID: PMC7397811 DOI: 10.1002/anie.202002271] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/27/2020] [Indexed: 12/11/2022]
Abstract
While ketones are among the most versatile functional groups, their synthesis remains reliant upon reactive and low-abundance starting materials. In contrast, amide formation is the most-used bond-construction method in medicinal chemistry because the chemistry is reliable and draws upon large and diverse substrate pools. A new method for the synthesis of ketones is presented here that draws from the same substrates used for amide bond synthesis: amines and carboxylic acids. A nickel terpyridine catalyst couples N-alkyl pyridinium salts with in situ formed carboxylic acid fluorides or 2-pyridyl esters under reducing conditions (Mn metal). The reaction has a broad scope, as demonstrated by the synthesis of 35 different ketones bearing a wide variety of functional groups with an average yield of 60±16 %. This approach is capable of coupling diverse substrates, including pharmaceutical intermediates, to rapidly form complex ketones.
Collapse
Affiliation(s)
- Jiang Wang
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706 (USA)
| | - Megan E. Hoerrner
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716 (USA)
| | - Mary P. Watson
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716 (USA)
| | - Daniel J. Weix
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706 (USA)
| |
Collapse
|
26
|
Wang J, Hoerrner ME, Watson MP, Weix DJ. Nickel‐Catalyzed Synthesis of Dialkyl Ketones from the Coupling of N‐Alkyl Pyridinium Salts with Activated Carboxylic Acids. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002271] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jiang Wang
- Department of Chemistry University of Wisconsin-Madison Madison WI 53706 USA
| | - Megan E. Hoerrner
- Department of Chemistry and Biochemistry University of Delaware Newark DE 19716 USA
| | - Mary P. Watson
- Department of Chemistry and Biochemistry University of Delaware Newark DE 19716 USA
| | - Daniel J. Weix
- Department of Chemistry University of Wisconsin-Madison Madison WI 53706 USA
| |
Collapse
|
27
|
Robust NHC-palladacycles-catalyzed Suzuki−Miyaura cross-coupling of amides via C-N activation. GREEN SYNTHESIS AND CATALYSIS 2020. [DOI: 10.1016/j.gresc.2020.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
28
|
Abstract
We report the conversion of amides to carboxylic acids using nonprecious metal catalysis. The methodology strategically employs a nickel-catalyzed esterification using 2-(trimethylsilyl)ethanol, followed by a fluoride-mediated deprotection in a single-pot operation. This approach circumvents catalyst poisoning observed in attempts to directly hydrolyze amides using nickel catalysis. The selectivity and mildness of this transformation are shown through competition experiments and the net-hydrolysis of a complex valine-derived substrate. This strategy addresses a limitation in the field with regard to functional groups accessible from amides using transition metal-catalyzed C-N bond activation and should prove useful in synthetic applications.
Collapse
Affiliation(s)
- Rachel R Knapp
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| | - Ana S Bulger
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| | - Neil K Garg
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| |
Collapse
|
29
|
Kerackian T, Reina A, Bouyssi D, Monteiro N, Amgoune A. Silyl Radical Mediated Cross-Electrophile Coupling of N-Acyl-imides with Alkyl Bromides under Photoredox/Nickel Dual Catalysis. Org Lett 2020; 22:2240-2245. [PMID: 32148046 DOI: 10.1021/acs.orglett.0c00442] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A photoredox Ni-catalyzed cross-coupling of N-acyl-imides with unactivated alkyl bromides has been developed that enables efficient access to a variety of functionalized alkyl ketones, including unsymmetrical dialkyl ketones, under very mild and operationally practical conditions. The reaction that operates without the need for any preformed carbon nucleophile proceeds via the combination of two different bond activation processes, i.e. Ni-catalyzed imide activation via C(acyl)-N bond cleavage and (TMS)3Si radical-mediated alkyl halide activation via halogen-atom abstraction.
Collapse
Affiliation(s)
- Taline Kerackian
- Univ Lyon, Université Lyon 1, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR 5246 du CNRS, 1 rue Victor Grignard, 69100 Villeurbanne, France
| | - Antonio Reina
- Univ Lyon, Université Lyon 1, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR 5246 du CNRS, 1 rue Victor Grignard, 69100 Villeurbanne, France
| | - Didier Bouyssi
- Univ Lyon, Université Lyon 1, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR 5246 du CNRS, 1 rue Victor Grignard, 69100 Villeurbanne, France
| | - Nuno Monteiro
- Univ Lyon, Université Lyon 1, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR 5246 du CNRS, 1 rue Victor Grignard, 69100 Villeurbanne, France
| | - Abderrahmane Amgoune
- Univ Lyon, Université Lyon 1, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR 5246 du CNRS, 1 rue Victor Grignard, 69100 Villeurbanne, France.,Institut Universitaire de France (IUF), 1 rue Descartes, 75231 Paris, France
| |
Collapse
|
30
|
Wang G, Shi Q, Hu W, Chen T, Guo Y, Hu Z, Gong M, Guo J, Wei D, Fu Z, Huang W. Organocatalytic asymmetric N-sulfonyl amide C-N bond activation to access axially chiral biaryl amino acids. Nat Commun 2020; 11:946. [PMID: 32075976 PMCID: PMC7031291 DOI: 10.1038/s41467-020-14799-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 01/30/2020] [Indexed: 11/24/2022] Open
Abstract
Amides are among the most fundamental functional groups and essential structural units, widely used in chemistry, biochemistry and material science. Amide synthesis and transformations is a topic of continuous interest in organic chemistry. However, direct catalytic asymmetric activation of amide C-N bonds still remains a long-standing challenge due to high stability of amide linkages. Herein, we describe an organocatalytic asymmetric amide C-N bonds cleavage of N-sulfonyl biaryl lactams under mild conditions, developing a general and practical method for atroposelective construction of axially chiral biaryl amino acids. A structurally diverse set of axially chiral biaryl amino acids are obtained in high yields with excellent enantioselectivities. Moreover, a variety of axially chiral unsymmetrical biaryl organocatalysts are efficiently constructed from the resulting axially chiral biaryl amino acids by our present strategy, and show competitive outcomes in asymmetric reactions.
Collapse
Affiliation(s)
- Guanjie Wang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Qianqian Shi
- College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan Province, 450001, China
| | - Wanyao Hu
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Tao Chen
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Yingying Guo
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Zhouli Hu
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Minghua Gong
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Jingcheng Guo
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Donghui Wei
- College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan Province, 450001, China.
| | - Zhenqian Fu
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China.
- Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China.
| | - Wei Huang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China.
- Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China.
| |
Collapse
|
31
|
Yu CG, Matsuo Y. Nickel-Catalyzed Deaminative Acylation of Activated Aliphatic Amines with Aromatic Amides via C-N Bond Activation. Org Lett 2020; 22:950-955. [PMID: 31961696 DOI: 10.1021/acs.orglett.9b04497] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Deaminative functionalization of aliphatic primary amines has great synthetic utility. Herein, we describe a Ni-catalyzed reductive deaminative cross-electrophile coupling reaction between Katritzky salts and aromatic amides. This work provides examples of the synthesis of various ketones from alkylpyridinium salts, including both primary and secondary alkylamines. Given its mild reaction conditions and high functional group tolerance, this cross-coupling strategy is expected to be useful for late-stage functionalization of complex compounds.
Collapse
Affiliation(s)
- Chu-Guo Yu
- Hefei National Laboratory for Physical Sciences at Microscale, and Department of Chemistry, School of Chemistry and Materials Science , University of Science and Technology of China , 96 Jinzhai Road , Hefei , Anhui 230026 , China
| | - Yutaka Matsuo
- Hefei National Laboratory for Physical Sciences at Microscale, and Department of Chemistry, School of Chemistry and Materials Science , University of Science and Technology of China , 96 Jinzhai Road , Hefei , Anhui 230026 , China.,Institute of Materials Innovation, Institutes of Innovation for Future Society , Nagoya University , Furo-cho, Chikusa-ku , Nagoya 464-8603 , Japan
| |
Collapse
|
32
|
Heinz B, Djukanovic D, Ganiek MA, Martin B, Schenkel B, Knochel P. Selective Acylation of Aryl- and Heteroarylmagnesium Reagents with Esters in Continuous Flow. Org Lett 2020; 22:493-496. [PMID: 31886671 DOI: 10.1021/acs.orglett.9b04254] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A selective acylation of readily accessible organomagnesium reagents with commercially available esters proceeds at convenient temperatures and short residence times in continuous flow. Flow conditions allow us to prevent premature collapse of the hemiacetal intermediates despite noncryogenic conditions, thus furnishing ketones in good yields. Throughout, the coordinating ability of the ester and/or Grignard was crucial for the reaction outcome. This was leveraged by the obtention of several bisaryl ketones using 2-hydroxy ester derivatives as substrates.
Collapse
Affiliation(s)
- Benjamin Heinz
- Department of Chemistry , Ludwig-Maximilians-Universität , Butenandtstr. 5-13 , 81377 Munich , Germany
| | - Dimitrije Djukanovic
- Department of Chemistry , Ludwig-Maximilians-Universität , Butenandtstr. 5-13 , 81377 Munich , Germany
| | - Maximilian A Ganiek
- Department of Chemistry , Ludwig-Maximilians-Universität , Butenandtstr. 5-13 , 81377 Munich , Germany
| | - Benjamin Martin
- Department of Chemistry , Ludwig-Maximilians-Universität , Butenandtstr. 5-13 , 81377 Munich , Germany
| | - Berthold Schenkel
- Department of Chemistry , Ludwig-Maximilians-Universität , Butenandtstr. 5-13 , 81377 Munich , Germany
| | - Paul Knochel
- Department of Chemistry , Ludwig-Maximilians-Universität , Butenandtstr. 5-13 , 81377 Munich , Germany
| |
Collapse
|
33
|
Mehta MM, Boit TB, Dander JE, Garg NK. Ni-Catalyzed Suzuki-Miyaura Cross-Coupling of Aliphatic Amides on the Benchtop. Org Lett 2020; 22:1-5. [PMID: 31621338 PMCID: PMC6994262 DOI: 10.1021/acs.orglett.9b03434] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Suzuki-Miyaura cross-couplings of amides offer an approach to the synthesis of ketones that avoids the use of basic or pyrophoric nucleophiles. However, these reactions require glovebox manipulations, thus limiting their practicality. We report a benchtop protocol for Suzuki-Miyaura cross-couplings of aliphatic amides that utilizes a paraffin capsule containing a Ni(0) precatalyst and NHC ligand. This methodology is broad in scope, is scalable, and provides a user-friendly approach to convert aliphatic amides to alkyl-aryl ketones.
Collapse
Affiliation(s)
| | | | | | - Neil K. Garg
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| |
Collapse
|
34
|
Zheng Y, Newman SG. Nickel‐Catalyzed Domino Heck‐Type Reactions Using Methyl Esters as Cross‐Coupling Electrophiles. Angew Chem Int Ed Engl 2019; 58:18159-18164. [DOI: 10.1002/anie.201911372] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Yan‐Long Zheng
- Centre for Catalysis Research and InnovationDepartment of Chemistry and Biomolecular SciencesUniversity of Ottawa 10 Marie-Curie Ottawa Ontario K1N 6N5 Canada
| | - Stephen G. Newman
- Centre for Catalysis Research and InnovationDepartment of Chemistry and Biomolecular SciencesUniversity of Ottawa 10 Marie-Curie Ottawa Ontario K1N 6N5 Canada
| |
Collapse
|
35
|
Zemtsov AA, Ashirbaev SS, Levin VV, Kokorekin VA, Korlyukov AA, Dilman AD. Photoredox Reaction of 2-Mercaptothiazolinium Salts with Silyl Enol Ethers. J Org Chem 2019; 84:15745-15753. [PMID: 31693367 DOI: 10.1021/acs.joc.9b02478] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A method for the generation of free radicals from thiazolinium salts upon photocatalytic reduction is described. The thiazolinium salts are generated by treatment with methyl triflate of 2-mercaptothiazolines, which can be readily obtained from alkyl bromides and tosylates via a nucleophilic substitution reaction or by hydrothiolation of alkenes. Silyl enol ethers were used to trap the radicals, furnishing ketones after successive single-electron oxidation and elimination of the silyl cation.
Collapse
Affiliation(s)
- Artem A Zemtsov
- N. D. Zelinsky Institute of Organic Chemistry , Leninsky prosp. 47 , 119991 Moscow , Russian Federation
| | - Salavat S Ashirbaev
- N. D. Zelinsky Institute of Organic Chemistry , Leninsky prosp. 47 , 119991 Moscow , Russian Federation
| | - Vitalij V Levin
- N. D. Zelinsky Institute of Organic Chemistry , Leninsky prosp. 47 , 119991 Moscow , Russian Federation
| | - Vladimir A Kokorekin
- N. D. Zelinsky Institute of Organic Chemistry , Leninsky prosp. 47 , 119991 Moscow , Russian Federation.,Sechenov First Moscow State Medical University , Trubetskaya st. 8-2 , 119991 Moscow , Russian Federation
| | - Alexander A Korlyukov
- A. N. Nesmeyanov Institute of Organoelement Compounds , Vavilov str. 28 , 119991 Moscow , Russian Federation.,N. I. Pirogov Russian National Research Medical University , Ostrovitianov str. 1 , 117997 Moscow , Russian Federation
| | - Alexander D Dilman
- N. D. Zelinsky Institute of Organic Chemistry , Leninsky prosp. 47 , 119991 Moscow , Russian Federation
| |
Collapse
|
36
|
Zheng Y, Newman SG. Nickel‐Catalyzed Domino Heck‐Type Reactions Using Methyl Esters as Cross‐Coupling Electrophiles. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201911372] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yan‐Long Zheng
- Centre for Catalysis Research and InnovationDepartment of Chemistry and Biomolecular SciencesUniversity of Ottawa 10 Marie-Curie Ottawa Ontario K1N 6N5 Canada
| | - Stephen G. Newman
- Centre for Catalysis Research and InnovationDepartment of Chemistry and Biomolecular SciencesUniversity of Ottawa 10 Marie-Curie Ottawa Ontario K1N 6N5 Canada
| |
Collapse
|
37
|
Sureshbabu P, Azeez S, Muniyappan N, Sabiah S, Kandasamy J. Chemoselective Synthesis of Aryl Ketones from Amides and Grignard Reagents via C(O)–N Bond Cleavage under Catalyst-Free Conditions. J Org Chem 2019; 84:11823-11838. [DOI: 10.1021/acs.joc.9b01699] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Popuri Sureshbabu
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Sadaf Azeez
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | | | | | - Jeyakumar Kandasamy
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
38
|
Ye D, Liu Z, Chen H, Sessler JL, Lei C. Cesium Carbonate Catalyzed Esterification of N-Benzyl- N-Boc-amides under Ambient Conditions. Org Lett 2019; 21:6888-6892. [PMID: 31407912 DOI: 10.1021/acs.orglett.9b02513] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We report a general activated amide to ester transformation catalyzed by Cs2CO3. Using this approach, esterification proceeds under relatively mild conditions and without the need for a transition metal catalyst. This method exhibits broad substrate scope and represents a practical alternative to existing esterification strategies. The synthetic utility of this protocol is demonstrated via the facile synthesis of crown ether derivatives and the late-stage modification of a representative natural product and several sugars in reasonable yields.
Collapse
Affiliation(s)
- Danfeng Ye
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China.,Center for Supramolecular Chemistry & Catalysis and Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Zhiyuan Liu
- Center for Supramolecular Chemistry & Catalysis and Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Hao Chen
- Center for Supramolecular Chemistry & Catalysis and Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Jonathan L Sessler
- Center for Supramolecular Chemistry & Catalysis and Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China.,Department of Chemistry, the University of Texas at Austin, Austin, Texas 78712-1224, United States
| | - Chuanhu Lei
- Center for Supramolecular Chemistry & Catalysis and Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
39
|
Luo Z, Xiong L, Liu T, Zhang Y, Lu S, Chen Y, Guo W, Zhu Y, Zeng Z. Palladium-Catalyzed Decarbonylative Suzuki–Miyaura Coupling of Amides To Achieve Biaryls via C–N Bond Cleavage. J Org Chem 2019; 84:10559-10568. [DOI: 10.1021/acs.joc.9b01103] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Zhongfeng Luo
- College of Chemistry and Environment, South China Normal University, Guangzhou 510006, China
| | - Li Xiong
- College of Chemistry and Environment, South China Normal University, Guangzhou 510006, China
| | - Tingting Liu
- College of Chemistry and Environment, South China Normal University, Guangzhou 510006, China
| | - Yuqi Zhang
- College of Chemistry and Environment, South China Normal University, Guangzhou 510006, China
| | - Siqi Lu
- College of Chemistry and Environment, South China Normal University, Guangzhou 510006, China
| | - Yuwen Chen
- College of Chemistry and Environment, South China Normal University, Guangzhou 510006, China
| | - Weijie Guo
- College of Chemistry and Environment, South China Normal University, Guangzhou 510006, China
| | - Yulin Zhu
- College of Chemistry and Environment, South China Normal University, Guangzhou 510006, China
| | - Zhuo Zeng
- College of Chemistry and Environment, South China Normal University, Guangzhou 510006, China
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
40
|
Shukla D, Babu SA. Pd‐Catalyzed Diastereoselective Intramolecular Amide
α
‐C−H Arylation in Sterically Hindered Monospirooxindole Motifs. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201801732] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Dipti Shukla
- Department Chemical SciencesIndian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O. Punjab 140306 India
| | - Srinivasarao Arulananda Babu
- Department Chemical SciencesIndian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O. Punjab 140306 India
| |
Collapse
|
41
|
Rendón-Nava D, Álvarez-Hernández A, Rheingold AL, Suárez-Castillo OR, Mendoza-Espinosa D. Hydroxyl-functionalized triazolylidene-based PEPPSI complexes: metallacycle formation effect on the Suzuki coupling reaction. Dalton Trans 2019; 48:3214-3222. [PMID: 30672933 DOI: 10.1039/c8dt04432e] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the preparation and full characterization of a series of hydroxyl functionalized 1,2,3-triazolylidene-based PEPPSI complexes 2a-c and their catalytic application in the Suzuki cross coupling reaction of aryl chlorides/amides with boronic acids. Under basic reaction conditions, complexes 2a-c show a notable increase in their catalytic efficiency compared with two ether-wingtip functionalized PEPPSI analogues (3 and 4) and a commercially available NHC-Pd complex (5). The catalytic results suggest that deprotonation of the hydroxyl group in complexes 2a-c plays an important role in the overall process. Deprotonation of the alcohol moiety of complexes 2a-b with sodium tert-butoxide allows for the isolation of metallacycles 6a-b, which are proposed as the active species of cross coupling reactions.
Collapse
Affiliation(s)
- David Rendón-Nava
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km. 4.5, Mineral de la Reforma, Hidalgo, 42090, Mexico.
| | | | | | | | | |
Collapse
|
42
|
N-Acylphthalimides: Efficient Acyl Coupling Reagents in Suzuki–Miyaura Cross-Coupling by N–C Cleavage Catalyzed by Pd–PEPPSI Precatalysts. Catalysts 2019. [DOI: 10.3390/catal9020129] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We report a general, highly selective method for Suzuki–Miyaura cross-coupling of N-acylphthalimides via N–C(O) acyl cleavage catalyzed by Pd–PEPPSI-type precatalysts. Of broad synthetic interest, the method introduces N-acylphthalimides as new, bench-stable, highly reactive, twist-controlled, amide-based precursors to acyl-metal intermediates. The reaction delivers functionalized biaryl ketones by acylative Suzuki–Miyaura cross-coupling with readily available boronic acids. Studies demonstrate that cheap, easily prepared, and broadly applicable Pd–PEPPSI-type precatalysts supported by a sterically demanding IPr (1,3-Bis-(2,6-diisopropylphenyl)imidazol-2-ylidene) ancillary ligand provide high yields in this reaction. Preliminary selectivity studies and the effect of Pd–N-heterocyclic carbenes (NHC) complexes with allyl-type throw-away ligands are described. We expect that N-acylphthalimides will find significant use as amide-based acyl coupling reagents and cross-coupling precursors to acyl-metal intermediates.
Collapse
|
43
|
Vemula SR, Chhoun MR, Cook GR. Well-Defined Pre-Catalysts in Amide and Ester Bond Activation. Molecules 2019; 24:E215. [PMID: 30634382 PMCID: PMC6359523 DOI: 10.3390/molecules24020215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/02/2019] [Accepted: 01/02/2019] [Indexed: 11/17/2022] Open
Abstract
Over the past few decades, transition metal catalysis has witnessed a rapid and extensive development. The discovery and development of cross-coupling reactions is considered to be one of the most important advancements in the field of organic synthesis. The design and synthesis of well-defined and bench-stable transition metal pre-catalysts provide a significant improvement over the current catalytic systems in cross-coupling reactions, avoiding excess use of expensive ligands and harsh conditions for the synthesis of pharmaceuticals, agrochemicals and materials. Among various well-defined pre-catalysts, the use of Pd(II)-NHC, particularly, provided new avenues to expand the scope of cross-coupling reactions incorporating unreactive electrophiles, such as amides and esters. The strong σ-donation and tunable steric bulk of NHC ligands in Pd-NHC complexes facilitate oxidative addition and reductive elimination steps enabling the cross-coupling of broad range of amides and esters using facile conditions contrary to the arduous conditions employed under traditional catalytic conditions. Owing to the favorable catalytic activity of Pd-NHC catalysts, a tremendous progress was made in their utilization for cross-coupling reactions via selective acyl C⁻X (X=N, O) bond cleavage. This review highlights the recent advances made in the utilization of well-defined pre-catalysts for C⁻C and C⁻N bond forming reactions via selective amide and ester bond cleavage.
Collapse
Affiliation(s)
- Sandeep R Vemula
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108⁻6050, USA.
| | - Michael R Chhoun
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108⁻6050, USA.
| | - Gregory R Cook
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108⁻6050, USA.
| |
Collapse
|
44
|
Abstract
Acyl Suzuki cross-coupling involves the coupling of an organoboron reagent with an acyl electrophile (acyl halide, anhydride, ester, amide). This review provides a timely overview of the very important advances that have recently taken place in the acylative Suzuki cross-coupling. Particular emphasis is directed toward the type of acyl electrophiles, catalyst systems and new cross-coupling partners. This review will be of value to synthetic chemists involved in this rapidly developing field of Suzuki cross-coupling as well as those interested in using acylative Suzuki cross-coupling for the synthesis of ketones as a catalytic alternative to stoichiometric nucleophilic additions or Friedel-Crafts reactions.
Collapse
|
45
|
Zhou PX, Shi S, Wang J, Zhang Y, Li C, Ge C. Palladium/copper-catalyzed decarbonylative heteroarylation of amides via C–N bond activation. Org Chem Front 2019. [DOI: 10.1039/c9qo00106a] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A novel strategy for the synthesis of 2-arylated oxazole derivatives via palladium/copper-catalyzed decarbonylative heteroarylation of amides via C–N bond activation by ground-state destabilization is reported.
Collapse
Affiliation(s)
- Ping-Xin Zhou
- School of Basic Medical Sciences
- Xinxiang Medical University
- Xinxiang
- China
| | - Shuai Shi
- School of Foreign Language
- Xinxiang Medical University
- Xinxiang
- China
| | - Jia Wang
- School of Basic Medical Sciences
- Xinxiang Medical University
- Xinxiang
- China
| | - Yalei Zhang
- School of Basic Medical Sciences
- Xinxiang Medical University
- Xinxiang
- China
| | - Changzheng Li
- School of Basic Medical Sciences
- Xinxiang Medical University
- Xinxiang
- China
| | - Chunpo Ge
- School of Basic Medical Sciences
- Xinxiang Medical University
- Xinxiang
- China
| |
Collapse
|
46
|
Chen K, Chen W, Yi X, Chen W, Liu M, Wu H. Sterically hindered N-heterocyclic carbene/palladium(ii) catalyzed Suzuki–Miyaura coupling of nitrobenzenes. Chem Commun (Camb) 2019; 55:9287-9290. [DOI: 10.1039/c9cc04634h] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A palladium-catalyzed Suzuki coupling reaction of nitroarenes has been developed using 5-(2,4,6-triisopropylphenyl)-2,3-imidazolylidene[1,5-a]pyridines as the ligands.
Collapse
Affiliation(s)
- Kai Chen
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- China
| | - Wei Chen
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- China
| | - Xiaofei Yi
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- China
| | - Wanzhi Chen
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- China
| | - Miaochang Liu
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou
- China
| | - Huayue Wu
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou
- China
| |
Collapse
|
47
|
Wang H, Zhang SQ, Hong X. Computational studies on Ni-catalyzed amide C–N bond activation. Chem Commun (Camb) 2019; 55:11330-11341. [DOI: 10.1039/c9cc05763c] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review summarizes the mechanistic models of Ni-catalyzed amide C–N bond cleavage and discusses their applications in related transformations.
Collapse
Affiliation(s)
- Hongliang Wang
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- China
| | - Shuo-Qing Zhang
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- China
| | - Xin Hong
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|