1
|
Zhu T, Cui X, Ma W, Qi X, Wei H. Synthesis of naphthalene derivatives via nitrogen-to-carbon transmutation of isoquinolines. SCIENCE ADVANCES 2025; 11:eads5928. [PMID: 39879292 PMCID: PMC11777194 DOI: 10.1126/sciadv.ads5928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/30/2024] [Indexed: 01/31/2025]
Abstract
Heteroarene skeletal editing is gaining popularity in synthetic chemistry. Transmuting single atoms generates molecules that have distinctly varied properties, thereby fostering potent molecular exchanges that can be extensively used to synthesize functional molecules. Herein, we present a convenient protocol for nitrogen-carbon single-atom transmutations in isoquinolines, which is inspired by the Wittig reaction and enables easy access to substituted naphthalene derivatives. The reaction uses an inexpensive and commercially available phosphonium ylide as the carbon source to furnish a wide range of substituted naphthalenes. The key to the success of this transformation is the formation of a triene intermediate through ring opening, which undergoes 6π-electrocyclization and elimination processes to afford the naphthalene product. Furthermore, this strategy enables the facile synthesis of 13C-labeled naphthalenes using 13CH3PPh3I as a commercial 13C source and facilitates modifying the directing group for C─H functionalization.
Collapse
Affiliation(s)
- Tongtong Zhu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, China
| | - Xuhui Cui
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, China
| | - Wenjun Ma
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, China
| | - Xiujuan Qi
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | - Hao Wei
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, China
| |
Collapse
|
2
|
Wang J, Ji N, Gao Z, Tang XY, Wang L. Synthesis of 2-Sulfonyl Carbazoles via Oxidative C-H Functionalization of Tetrahydrocarbazoles with Sulfonyl Hydrazides. Org Lett 2025; 27:821-826. [PMID: 39797814 DOI: 10.1021/acs.orglett.4c04374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2025]
Abstract
Herein, we report an approach for the synthesis of 2-sulfonyl carbazoles from the oxidative C-H sulfonylation of tetrahydrocarbazoles. The mechanistic study reveals that this special selectivity is realized by the addition of a sulfonyl radical to the 3,4-dihydrocabazole intermediate via dehydrogenative desaturation of tetrahydrocarbazoles. This approach features readily available starting materials, high regioselectivity, broad substrate scope, and attractive synthetic utility.
Collapse
Affiliation(s)
- Jiahua Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Na Ji
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Zifeng Gao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Xiang-Ying Tang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Long Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| |
Collapse
|
3
|
Zhang F, Luo Y, Liu X, Liu Y, Xu J. NCS-Mediated Direct C(sp 3)-H Oxygenation of 2-Methylindoles Using Water as the Oxygen Source. J Org Chem 2024; 89:14586-14590. [PMID: 39298672 DOI: 10.1021/acs.joc.4c01753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
In continuation of our research interest in the green oxidation of indoles, we further explore the direct oxidation of 2-methylindoles to 2-formyl indoles promoted by NCS and associated with H2O as the oxygen source. This methodology was demonstrated to be a robust protocol consisting of chlorination, SN2', and oxidation processes, and presents a reasonably broad substrate scope and excellent functional group tolerance, thus enabling the preparation of high added-value versatile building blocks susceptible to further functionalization.
Collapse
Affiliation(s)
- Fan Zhang
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Yuling Luo
- The Second Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Huaxi District, Guiyang 550025, China
| | - Xiaoyi Liu
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Yaoyao Liu
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Jun Xu
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| |
Collapse
|
4
|
Zheng SZ, Fayad E, Alshaye NA, Qin HL. Stereo- and Regioselective Installation of Vinyl Sulfonyl Fluoride onto Indoles without Transition-Metal Catalyst. J Org Chem 2024; 89:14564-14570. [PMID: 39315771 DOI: 10.1021/acs.joc.4c01689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Herein, we developed a practical method for synthesizing a class of novel and highly valuable indolyl vinyl sulfonyl fluorides. This protocol has carved out a path for constructing a broad range of vinyl sulfonyl fluorinated indoles with exclusive stereo- and regioselectivity through the Friedel-Crafts/elimination reaction without any transition-metal catalyst. This transformation features mild conditions, high efficiency, excellent selectivity, and rich substrate compatibility, highlighting its significant value in medicinal chemistry and many related disciplines.
Collapse
Affiliation(s)
- Shu-Zhen Zheng
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Eman Fayad
- Department of Biotechnology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Najla A Alshaye
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Hua-Li Qin
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| |
Collapse
|
5
|
Gangai S, Fernandes R, Mhaske K, Narayan R. Cu(ii)-catalyzed aerobic oxidative coupling of furans with indoles enables expeditious synthesis of indolyl-furans with blue fluorescence. RSC Adv 2024; 14:1239-1249. [PMID: 38174245 PMCID: PMC10762296 DOI: 10.1039/d3ra08226a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024] Open
Abstract
With the purpose of incorporating sustainability in chemical processes, there has been a renewed focus on utilizing earth-abundant metal catalysts to expand the repertoire of organic reactions and processes. In this work, we have explored the atom-economic oxidative coupling between two important electron-rich heterocycles - indoles and furans - using commonly available, inexpensive metal catalyst CuCl2·2H2O (<0.25$ per g) to develop an expeditious synthesis of indolyl-furans. Moreover, the reaction proceeded well in the presence of the so-called 'ultimate oxidant' - air, without the need for any external ligand or additive. The reaction was found to be scalable and to work even under partially aqueous conditions. This makes the methodology highly economical, practical, operationally simple and sustainable. In addition, the methodology provides direct access to novel indole-furan-thiophene (IFT)-based electron-rich π-conjugated systems, which show green-yellow fluorescence with large Stokes shift and high quantum yields. Mechanistic investigations reveal that the reaction proceeds through chemoselective oxidation of indole by the metal catalyst followed by the nucleophilic attack by furan.
Collapse
Affiliation(s)
- Shon Gangai
- School of Chemical and Materials Sciences, Indian Institute of Technology Goa, GEC Campus Farmagudi Goa-403401 India
| | - Rushil Fernandes
- School of Chemical and Materials Sciences, Indian Institute of Technology Goa, GEC Campus Farmagudi Goa-403401 India
| | - Krishna Mhaske
- School of Chemical and Materials Sciences, Indian Institute of Technology Goa, GEC Campus Farmagudi Goa-403401 India
| | - Rishikesh Narayan
- School of Chemical and Materials Sciences, Indian Institute of Technology Goa, GEC Campus Farmagudi Goa-403401 India
- School of Interdisciplinary Life Sciences, Indian Institute of Technology Goa GEC Campus, Farmagudi Goa-403401 India
| |
Collapse
|
6
|
Gioia B, Ruggieri F, Biela A, Landry V, Roussel P, Piveteau C, Leroux F, Hartkoorn RC, Willand N. Regioselective and Stereoselective Synthesis of Parthenolide Analogs by Acyl Nitroso-Ene Reaction and Their Biological Evaluation against Mycobacterium tuberculosis. Int J Mol Sci 2023; 24:17395. [PMID: 38139224 PMCID: PMC10744032 DOI: 10.3390/ijms242417395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/30/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Historically, natural products have played a major role in the development of antibiotics. Their complex chemical structures and high polarity give them advantages in the drug discovery process. In the broad range of natural products, sesquiterpene lactones are interesting compounds because of their diverse biological activities, their high-polarity, and sp3-carbon-rich chemical structures. Parthenolide (PTL) is a natural compound isolated from Tanacetum parthenium, of the family of germacranolide-type sesquiterpene lactones. In recent years, parthenolide has been studied for its anti-inflammatory, antimigraine, and anticancer properties. Recently, PTL has shown antibacterial activities, especially against Gram-positive bacteria. However, few studies are available on the potential antitubercular activities of parthenolide and its analogs. It has been demonstrated that parthenolide's biological effects are linked to the reactivity of α-exo-methylene-γ-butyrolactone, which reacts with cysteine in targeted proteins via a Michael addition. In this work, we describe the ene reaction of acylnitroso intermediates with parthenolide leading to the regioselective and stereoselective synthesis of new derivatives and their biological evaluation. The addition of hydroxycarbamates and hydroxyureas led to original analogs with higher polarity and solubility than parthenolide. Through this synthetic route, the Michael acceptor motif was preserved and is thus believed to be involved in the selective activity against Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Bruna Gioia
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177—Drugs and Molecules for Living Systems, F-59000 Lille, France (F.R.); (A.B.); (V.L.); (C.P.); (F.L.)
| | - Francesca Ruggieri
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177—Drugs and Molecules for Living Systems, F-59000 Lille, France (F.R.); (A.B.); (V.L.); (C.P.); (F.L.)
| | - Alexandre Biela
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177—Drugs and Molecules for Living Systems, F-59000 Lille, France (F.R.); (A.B.); (V.L.); (C.P.); (F.L.)
| | - Valérie Landry
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177—Drugs and Molecules for Living Systems, F-59000 Lille, France (F.R.); (A.B.); (V.L.); (C.P.); (F.L.)
| | - Pascal Roussel
- Univ. Lille, CNRS, ENSCL, Centrale Lille, Univ. Artois, UMR 8181—UCCS—Unité de Catalyse et de Chimie du Solide, F-59000 Lille, France;
| | - Catherine Piveteau
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177—Drugs and Molecules for Living Systems, F-59000 Lille, France (F.R.); (A.B.); (V.L.); (C.P.); (F.L.)
| | - Florence Leroux
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177—Drugs and Molecules for Living Systems, F-59000 Lille, France (F.R.); (A.B.); (V.L.); (C.P.); (F.L.)
| | - Ruben C. Hartkoorn
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 8204—CIIL—Center for Infection and Immunity of Lille, F-59000 Lille, France;
| | - Nicolas Willand
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177—Drugs and Molecules for Living Systems, F-59000 Lille, France (F.R.); (A.B.); (V.L.); (C.P.); (F.L.)
| |
Collapse
|
7
|
Jäger C, Gregori BJ, Aho JAS, Hallamaa M, Deska J. Peroxidase-induced C-N bond formation via nitroso ene and Diels-Alder reactions. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2023; 25:3166-3174. [PMID: 37113763 PMCID: PMC10124104 DOI: 10.1039/d2gc04827b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/07/2023] [Indexed: 06/19/2023]
Abstract
The formation of new carbon-nitrogen bonds is indisputably one of the most important tasks in synthetic organic chemistry. Here, nitroso compounds offer a highly interesting reactivity that complements traditional amination strategies, allowing for the introduction of nitrogen functionalities via ene-type reactions or Diels-Alder cycloadditions. In this study, we highlight the potential of horseradish peroxidase as biological mediator for the generation of reactive nitroso species under environmentally benign conditions. Exploiting a non-natural peroxidase reactivity, in combination with glucose oxidase as oxygen-activating biocatalyst, aerobic activation of a broad range of N-hydroxycarbamates and hydroxamic acids is achieved. Thus both intra- and intermolecular nitroso-ene as well as nitroso-Diels-Alder reactions are performed with high efficiency. Relying on a commercial and robust enzyme system, the aqueous catalyst solution can be recycled over numerous reaction cycles without significant loss of activity. Overall, this green and scalable C-N bond-forming strategy enables the production of allylic amides and various N-heterocyclic building blocks utilizing only air and glucose as sacrificial reagents.
Collapse
Affiliation(s)
- Christina Jäger
- Department of Chemistry, University of Helsinki A.I. Virtasen aukio 1 00560 Helsinki Finland https://www.deskalab.com
| | - Bernhard J Gregori
- Department of Chemistry, University of Helsinki A.I. Virtasen aukio 1 00560 Helsinki Finland https://www.deskalab.com
- Institut für Anorganische und Angewandte Chemie Martin-Luther-King-Platz 6 20146 Hamburg Germany
| | - Juhana A S Aho
- Department of Chemistry, University of Helsinki A.I. Virtasen aukio 1 00560 Helsinki Finland https://www.deskalab.com
| | - Marleen Hallamaa
- Department of Chemistry, University of Helsinki A.I. Virtasen aukio 1 00560 Helsinki Finland https://www.deskalab.com
| | - Jan Deska
- Department of Chemistry, University of Helsinki A.I. Virtasen aukio 1 00560 Helsinki Finland https://www.deskalab.com
| |
Collapse
|
8
|
Jäger C, Haase M, Koschorreck K, Urlacher VB, Deska J. Aerobic C-N Bond Formation through Enzymatic Nitroso-Ene-Type Reactions. Angew Chem Int Ed Engl 2023; 62:e202213671. [PMID: 36468873 PMCID: PMC10107922 DOI: 10.1002/anie.202213671] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/22/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
The biocatalytic oxidation of acylated hydroxylamines enables the direct and selective introduction of nitrogen functionalities by activation of allylic C-H bonds. Utilizing either laccases or an oxidase/peroxidase couple for the formal dehydrogenation of N-hydroxycarbamates and hydroxamic acids with air as the terminal oxidant, acylnitroso species are generated under particularly mild aqueous conditions. The reactive intermediates undergo C-N bond formation through an ene-type mechanism and provide high yields both in intramolecular and intermolecular enzymatic aminations. Investigations on different pathways of the two biocatalytic systems and labelling studies provide more insight into this unprecedented promiscuity of classical oxidoreductases as catalysts for nitroso-based transformations.
Collapse
Affiliation(s)
- Christina Jäger
- University of HelsinkiDepartment of ChemistryA.I. Virtasen aukio 100560HelsinkiFinland
- Aalto UniversityDepartment of ChemistryKemistintie 102150EspooFinland
| | - Mona Haase
- Aalto UniversityDepartment of ChemistryKemistintie 102150EspooFinland
- Heinrich-Heine-Universität DüsseldorfUniversitätsstr. 140225DüsseldorfGermany
| | - Katja Koschorreck
- Heinrich-Heine-Universität DüsseldorfUniversitätsstr. 140225DüsseldorfGermany
| | - Vlada B. Urlacher
- Heinrich-Heine-Universität DüsseldorfUniversitätsstr. 140225DüsseldorfGermany
| | - Jan Deska
- University of HelsinkiDepartment of ChemistryA.I. Virtasen aukio 100560HelsinkiFinland
- Aalto UniversityDepartment of ChemistryKemistintie 102150EspooFinland
| |
Collapse
|
9
|
Zhang X, Fang J, Li C, Zhang J, Yang S, Deng B, Tu S. Design, Synthesis, and Fungicidal Activities of Indole-Modified Cinnamamide Derivatives. Chem Biodivers 2023; 20:e202200971. [PMID: 36418220 DOI: 10.1002/cbdv.202200971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022]
Abstract
Dimethomorph is a kind of cinnamamide fungicide with high fungicidal activities for oomycete diseases. The commercially available dimethomorph is a mixture of two isomers, in which (Z)-dimethomorph possessing higher activity and (E)-dimethomorph possessing lower activity. Herein, we reported the design, synthesis and fungicidal activities of a series of novel indole-modified cinnamamide derivatives, which used the indole group to 'fix' the cis-styrene group in (Z)-dimethomorph. The modification of the molecular structure of cinnamamide compounds could be beneficial to improve its practical application performance. Tested the fungicidal activities, it was found that compounds 8j, 9a, 9e, 9i and 9j showed excellent in vivo fungicidal activities (80-100 %) against Pseudoperonospora cubensis at a concentration of 100 mg L-1 , while dimethomorph and flumorph were noneffective. Moreover, parts of synthesized indole-modified cinnamamide derivatives 8 (8a, 8c, 8d and 8j) and 9 (9c and 9j) exhibited the same in vivo fungicidal activities against Phytophthora infestans with dimethomorph or flumorph at a concentration of 50 mg L-1 with 100 % inhibition. The biological assay results indicated that indole-modified cinnamamide derivatives have promising applications in the prevention and treatment of Phytophthora infestans.
Collapse
Affiliation(s)
- Xinwei Zhang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Jun Fang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Chenjie Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Jie Zhang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Shuwen Yang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Bin Deng
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Song Tu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
10
|
Gong H, Wang J, Peng Y, Chen H, Deng H, Hao J, Wan W. Photocatalyzed difluoroalkylation of pyridine N-oxides. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2112057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Haiying Gong
- Department of Chemistry, Shanghai University, Shanghai, China
| | - Juan Wang
- Department of Chemistry, Shanghai University, Shanghai, China
| | - Yi Peng
- Department of Chemistry, Shanghai University, Shanghai, China
| | - Hua Chen
- Department of Chemistry, Shanghai University, Shanghai, China
| | - Hongmei Deng
- Laboratory of Microstructures, Shanghai University, Shanghai, China
| | - Jian Hao
- Department of Chemistry, Shanghai University, Shanghai, China
| | - Wen Wan
- Department of Chemistry, Shanghai University, Shanghai, China
| |
Collapse
|
11
|
Zhou X, Xiong T, Jiang J. Gold-catalyzed redox cycloisomerization/nucleophilic addition/reduction: direct access to 2-phosphoryl indolin-3-ones. Chem Commun (Camb) 2022; 58:8568-8571. [PMID: 35815915 DOI: 10.1039/d2cc02774g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient gold(I)-catalyzed redox cycloisomerization/nucleophilic addition/reduction reaction of o-nitroalkynes with various H-phosphorus oxides is established. Through the intramolecular redox cyclization of o-nitroalkynes and subsequent intermolecular nucleophilic addition/reduction with no external reactant, a variety of arylphosphoryl and alkylphosphoryl indolin-3-ones with high functional-group compatibility are obtained in moderate to good yields. Mechanistic studies suggest that phosphorus nucleophiles mediate the cleavage of the N-O bond as a reductant.
Collapse
Affiliation(s)
- Xingcui Zhou
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, 530004, P. R. China.
| | - Ting Xiong
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, 530004, P. R. China.
| | - Jun Jiang
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, 530004, P. R. China.
| |
Collapse
|
12
|
Xiong T, Zhou X, Jiang J. Dearomative oxyphosphorylation of indoles enables facile access to 2,2-disubstituted indolin-3-ones. Org Biomol Chem 2022; 20:5721-5725. [PMID: 35842851 DOI: 10.1039/d2ob01063a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly efficient oxidative dearomatization of indoles with H-phosphorus oxides in the presence of TEMPO oxoammonium salt has been demonstrated. Through the intramolecular oxidative dearomatization of indoles and subsequent intermolecular nucleophilic addition with phosphorus nucleophile, a variety of structurally diverse arylphosphoryl and alkylphosphoryl indolin-3-ones were obtained in good yields with a broad substrate scope and high functional-group compatibility.
Collapse
Affiliation(s)
- Ting Xiong
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, 530004, P. R. China.
| | - Xingcui Zhou
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, 530004, P. R. China.
| | - Jun Jiang
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, 530004, P. R. China.
| |
Collapse
|
13
|
Wu Z, Krishnamurthy S, Satyanarayana Tummalapalli KS, Xu J, Yue C, Antilla JC. Enantioselective Amination of
β
‐Keto Esters Catalyzed by Chiral Calcium Phosphates. Chemistry 2022; 28:e202200907. [DOI: 10.1002/chem.202200907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Zhenwei Wu
- School of Pharmaceutical Science and Technology Institute for Molecular Design and Synthesis Tianjin University Tianjin 300072 China
| | - Suvratha Krishnamurthy
- School of Pharmaceutical Science and Technology Institute for Molecular Design and Synthesis Tianjin University Tianjin 300072 China
| | - K. S. Satyanarayana Tummalapalli
- School of Pharmaceutical Science and Technology Institute for Molecular Design and Synthesis Tianjin University Tianjin 300072 China
| | - Jun Xu
- School of Pharmaceutical Science and Technology Institute for Molecular Design and Synthesis Tianjin University Tianjin 300072 China
| | - Caizhen Yue
- School of Science Zhejiang Sci-Tech University Hangzhou City Zhejiang Province 310018 China
| | - Jon C. Antilla
- School of Pharmaceutical Science and Technology Institute for Molecular Design and Synthesis Tianjin University Tianjin 300072 China
- School of Science Zhejiang Sci-Tech University Hangzhou City Zhejiang Province 310018 China
| |
Collapse
|
14
|
Mikhalyonok SG, Kuz’menok NM, Bezborodov VS, Arol AS. Synthesis of 1,2,6-trisubstituted indoles from 6-propargylcyclohex-2-enones and primary amines. Chem Heterocycl Compd (N Y) 2022. [DOI: 10.1007/s10593-022-03075-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Fernandes R, Mhaske K, Balhara R, Jindal G, Narayan R. Copper-Catalyzed Aerobic Cross-Dehydrogenative Coupling of β-Oxime Ether Furan with Indole. Chem Asian J 2022; 17:e202101369. [PMID: 35146932 DOI: 10.1002/asia.202101369] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/30/2022] [Indexed: 11/09/2022]
Abstract
Heterobiaryls serve as relevant structural motifs in many fields of high applicative importance such as drugs, agrochemicals, organic functional materials etc. Cross-dehydrogenative coupling involving direct oxidation of two C-H bonds to construct a C-C bond is actively being pursued as a more benign and 'greener' alternative for synthesizing heterobiaryls. Herein, we report a Cu(I)-catalyzed cross-dehydrogenative coupling of indoles and furans, two of the most important aromatic heterocycles using air as the terminal oxidant. The reaction proceeds with regio- and chemoselectivity to give the cross-coupled products in good to excellent yields generally. A broad substrate scope with respect to both the coupling partners has been demonstrated to prove the generality of this reaction. This represents the hitherto unexplored cross-dehydrogenative coupling methodology to obtain an indole-furan biaryl motif.
Collapse
Affiliation(s)
- Rushil Fernandes
- School of Chemical and Materials Sciences (SCMS), Indian Institute of Technology (IIT) Goa GEC Campus, Farmagudi, Ponda, Goa-403401, India
| | - Krishna Mhaske
- School of Chemical and Materials Sciences (SCMS), Indian Institute of Technology (IIT) Goa GEC Campus, Farmagudi, Ponda, Goa-403401, India
| | - Reena Balhara
- Department of Organic Chemistry, Indian Institute of Science, Bangalore-560012, Karnataka, India
| | - Garima Jindal
- Department of Organic Chemistry, Indian Institute of Science, Bangalore-560012, Karnataka, India
| | - Rishikesh Narayan
- School of Chemical and Materials Sciences (SCMS), Indian Institute of Technology (IIT) Goa GEC Campus, Farmagudi, Ponda, Goa-403401, India
| |
Collapse
|
16
|
Luo L, Xiao X, Li Q, Wang S, Li Y, Hou J, Jiang B. Engineering of Single Atomic Cu-N 3 Active Sites for Efficient Singlet Oxygen Production in Photocatalysis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:58596-58604. [PMID: 34860504 DOI: 10.1021/acsami.1c17782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Photocatalytic generation of singlet oxygen (1O2) is an attractive strategy to convert organic chemicals to high value-added products. However, the scarcity of suitable active sites in photocatalysts commonly leads to the poor adsorption and activation of oxygen molecules from a triplet state to a singlet state. Here, we report single atomic Cu-N3 sites on tubular g-C3N4 for the production of singlet oxygen. X-ray absorption fine spectroscopy, in combination with high-resolution electron microscopy techniques, determines the existence of atomically dispersed Cu sites with Cu-N3 coordination mode. The combined analysis of electron spin resonance and time-resolved optical spectra confirmed that a single atomic Cu-N3 structure facilitates a high concentration of 1O2 generation due to charge transport, electron-hole interaction, and exciton effect. Benefiting from the merits, a single atomic photocatalyst yields nearly 100% conversion and selectivity from thioanisole to sulfoxide within 2.5 h under visible light irradiation. This work deeply reveals the design and construction of catalysts with specific active sites, which are helpful to improve the activation efficiency of oxygen.
Collapse
Affiliation(s)
- Laiyu Luo
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China
| | - Xudong Xiao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China
| | - Qi Li
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China
| | - Siyu Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China
| | - Yuxin Li
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China
| | - Jungang Hou
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Baojiang Jiang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China
| |
Collapse
|
17
|
Zhou XY, Bao M, Chen X, Feng XJ. Ruthenium-Catalyzed Oxidative Dearomatization of N-Boc Indoles. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/s-0040-1706539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractRuthenium-catalyzed oxidative dearomatization of N-Boc indoles for the synthesis of indolin-3-ones is described. The N-Boc indoles can be transformed into indolin-3-ones in acetonitrile, using RuCl3·3H2O as catalyst and sodium periodate (1.5 equiv) as oxidant. Further, a possible mechanism has been proposed on the basis of control experiments.
Collapse
Affiliation(s)
| | - Ming Bao
- State Key Laboratory of Fine Chemicals
| | - Xia Chen
- School of Chemistry and Materials Engineering
| | | |
Collapse
|
18
|
Hughes-Whiffing CA, Perry A. One-pot, three-component Fischer indolisation- N-alkylation for rapid synthesis of 1,2,3-trisubstituted indoles. Org Biomol Chem 2021; 19:627-634. [PMID: 33367375 DOI: 10.1039/d0ob02185g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A one-pot, three-component protocol for the synthesis of 1,2,3-trisubstituted indoles has been developed, based upon a Fischer indolisation-indole N-alkylation sequence. This procedure is very rapid (total reaction time under 30 minutes), operationally straightforward, generally high yielding and draws upon readily available building blocks (aryl hydrazines, ketones, alkyl halides) to generate densely substituted indole products. We have demonstrated the utility of this process in the synthesis of 23 indoles, benzoindoles and tetrahydrocarbazoles bearing varied and useful functionality.
Collapse
Affiliation(s)
| | - Alexis Perry
- Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK.
| |
Collapse
|
19
|
Zhou XY, Chen X, Lei YZ. Ru-catalyzed oxidative dearomatization-alkoxylation of N-Boc indoles. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2020.1859542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Xiao-Yu Zhou
- School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui, China
| | - Xia Chen
- School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui, China
| | - Yi-Zhu Lei
- School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui, China
| |
Collapse
|
20
|
Zhou XY, Chen X, Liu HL. Ru-catalyzed oxidative dearomatization-hydroxylation of N-Boc indoles. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1836564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Xiao-Yu Zhou
- School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui, China
| | - Xia Chen
- School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui, China
| | - Hai-Long Liu
- School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui, China
| |
Collapse
|
21
|
Liu S, Zhao F, Chen X, Deng G, Huang H. Aerobic Oxidative Functionalization of Indoles. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000285] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Saiwen Liu
- College of Materials and Chemical Engineering Hunan City University Yiyang 413000 Hunan People's Republic of China
| | - Feng Zhao
- Key Laboratory for Antibody-based Drug and Intelligent Delivery System of Hunan Province Key Laboratory of Dong Medicine of Hunan Province School of Pharmaceutical Sciences Hunan University of Medicine Huaihua 418000 People's Republic of China
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education College of Chemistry Xiangtan University Xiangtan 411105 People's Republic of China
| | - Xing Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education College of Chemistry Xiangtan University Xiangtan 411105 People's Republic of China
| | - Guo‐Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education College of Chemistry Xiangtan University Xiangtan 411105 People's Republic of China
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education College of Chemistry Xiangtan University Xiangtan 411105 People's Republic of China
| |
Collapse
|
22
|
Cook A, Prakash S, Zheng YL, Newman SG. Exhaustive Reduction of Esters Enabled by Nickel Catalysis. J Am Chem Soc 2020; 142:8109-8115. [PMID: 32319766 DOI: 10.1021/jacs.0c02405] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We report a one-step procedure to directly reduce unactivated aryl esters into their corresponding tolyl derivatives. This is achieved by an organosilane-mediated ester hydrosilylation reaction and subsequent Ni/NHC-catalyzed hydrogenolysis. The resulting conditions provide a direct and efficient alternative to multi-step procedures for this transformation that often require the use of hazardous metal hydrides. Applications in the synthesis of -CD3-containing products, derivatization of bioactive molecules, and chemoselective reduction in the presence of other C-O bonds are demonstrated.
Collapse
Affiliation(s)
- Adam Cook
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Sekar Prakash
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Yan-Long Zheng
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Stephen G Newman
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
23
|
Kaur M, Van Humbeck JF. Recent trends in catalytic sp 3 C-H functionalization of heterocycles. Org Biomol Chem 2020; 18:606-617. [PMID: 31912069 DOI: 10.1039/c9ob01559k] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Heterocycles are a ubiquitous substructure in organic small molecules designed for use in materials and medicines. Recent work in catalysis has focused on enabling access to new heterocycle structures by sp3 C-H functionalization on alkyl side-chain substituents-especially at the heterobenzylic position-with more than two hundred manuscripts published just within the last ten years. Rather than describing in detail each of these reports, in this mini-review we attempt to highlight gaps in existing techniques. A semi-quantitative overview of ongoing work strongly suggests that several specific heterocycle types and bond formations outside of C-C, C-N, and C-O have been almost completely overlooked.
Collapse
Affiliation(s)
- Milanpreet Kaur
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4.
| | - Jeffrey F Van Humbeck
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4.
| |
Collapse
|
24
|
Shukla G, Alam T, Srivastava HK, Kumar R, Patel BK. Visible-Light-Mediated Ir(III)-Catalyzed Concomitant C3 Oxidation and C2 Amination of Indoles. Org Lett 2019; 21:3543-3547. [DOI: 10.1021/acs.orglett.9b00887] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gaurav Shukla
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| | - Tipu Alam
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| | - Hemant Kumar Srivastava
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| | - Ritush Kumar
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| | - Bhisma K. Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| |
Collapse
|
25
|
Pan X, Liu Z. Total Synthesis and Antibacterial Activity Evaluation of Griseofamine A and 16- epi-Griseofamine A. Org Lett 2019; 21:2393-2396. [PMID: 30888183 DOI: 10.1021/acs.orglett.9b00672] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The first total synthesis of griseofamine A and its diastereomer, 16- epi-griseofamine A, is described over seven steps with yields of 23% and 7%, respectively. Their antibacterial activities are also disclosed for the first time. Griseofamine A exhibited in vitro activities against a panel of drug-resistant Gram-positive bacteria with minimum inhibitory concentration (MIC) values of 8-16 μg/mL. Notably, 16- epi-griseofamine A was 2-3 times more potent than griseofamine A with MIC values of 2-8 μg/mL.
Collapse
Affiliation(s)
- Xuan Pan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica , Peking Union Medical College and Chinese Academy of Medical Sciences , Beijing 100050 , P. R. China
| | - Zhanzhu Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica , Peking Union Medical College and Chinese Academy of Medical Sciences , Beijing 100050 , P. R. China
| |
Collapse
|