1
|
Kotipalli R, Mahipal Reddy T, Nanubolu JB, Reddy MS. Rhodium catalyzed sequential dual C-H annulation of 3-arylisoxazoles with 1,6-diynes to access fused naphthalenes. Org Biomol Chem 2025. [PMID: 40405804 DOI: 10.1039/d5ob00466g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2025]
Abstract
Selective dual C-H annulations with 1,n-diunsaturated systems represent a powerful tool for constructing multicyclic scaffolds in an expeditious manner. Here, we report a rhodium catalyzed sequential dual C-H annulation of 3-arylisoxazoles with 1,6-diynes for napthofused polycyclic systems. Some kinetic isotopic experiments were carried out to understand the reaction mechanism and some downstream experiments were conducted to demonstrate the potential of the methodology. The method features a broad substrate scope and scale-up capability.
Collapse
Affiliation(s)
- Ramesh Kotipalli
- Department of OSPC, CSIR-Indian Institute of Chemical Technology, Habsiguda, Hyderabad 500007, India.
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - T Mahipal Reddy
- Department of OSPC, CSIR-Indian Institute of Chemical Technology, Habsiguda, Hyderabad 500007, India.
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | | | - Maddi Sridhar Reddy
- Department of OSPC, CSIR-Indian Institute of Chemical Technology, Habsiguda, Hyderabad 500007, India.
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| |
Collapse
|
2
|
Naveen Kumar M, Mahesh S, Nanubolu JB, Sridhar Reddy M. Pd-Catalyzed Selective Arylative Cascade Cyclization of 1,6-Diynes and Dibenzoxaborins for Fused Naphthalene Derivatives. J Org Chem 2025; 90:5444-5452. [PMID: 40208239 DOI: 10.1021/acs.joc.5c00034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
A palladium-catalyzed new mode of cascade arylative cyclization of 1,6-diynes is disclosed using dibenzoxaborin as an arylating agent featuring transmetalation and selective migratory insertion as the key steps. This process enables the efficient construction of polysubstituted fused naphthalene skeletons via the formation of three new C-C bonds through dual regioselectivity in both arylation as well as C-H functionalization. Some control experiments and kinetic isotope effect (KIE) studies were conducted to elucidate the reaction mechanism, and some product diversifications were achieved to showcase the synthetic potential.
Collapse
Affiliation(s)
- Muniganti Naveen Kumar
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Shivunapuram Mahesh
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Jagadeesh Babu Nanubolu
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
- Analytical Department, CSIR-IICT, Hyderabad 500007, India
| | - Maddi Sridhar Reddy
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| |
Collapse
|
3
|
Sreekumar A, Nair AR, Raksha C, Gopika S, Padmanabhan S, Gopalakrishna Pai R, Sivan A. Dibenzo-Fused Heterocycles: A Decade Update on the Syntheses of Carbazole, Dibenzofuran, and Dibenzothiophene. CHEM REC 2024; 24:e202400078. [PMID: 39240002 DOI: 10.1002/tcr.202400078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/11/2024] [Indexed: 09/07/2024]
Abstract
Polycyclic heterocycles are the most common and critical structural motifs found in a variety of natural products, medicines, fertilizers, and advanced materials. Because of their widespread use in biologically active compounds and material chemistry, functionalised dibenzo heterocyclic compounds, especially dibenzofuran, dibenzothiophene, and carbazole derivatives, garnered much attention over time. Scientists are especially interested in elucidating more efficient techniques for developing these industrially essential compounds. Dibenzo-fused heterocycles can rapidly be synthesised using highly efficient transition metal-catalysed strategies as well as by economic metal-free reaction conditions. This review includes a detailed overview of the most recent significant synthetic techniques, both metal-catalysed and metal-free, to produce these industrially significant and medicinally important dibenzo-fused heterocycles.
Collapse
Affiliation(s)
- Anjana Sreekumar
- Department of Chemistry, Amrita Vishwa Vidyapeetham Amritapuri, Kollam, Kerala, 690525, India
| | - Ajil R Nair
- Department of Chemistry, Amrita Vishwa Vidyapeetham Amritapuri, Kollam, Kerala, 690525, India
| | - C Raksha
- Department of Chemistry, Amrita Vishwa Vidyapeetham Amritapuri, Kollam, Kerala, 690525, India
| | - S Gopika
- Department of Chemistry, Amrita Vishwa Vidyapeetham Amritapuri, Kollam, Kerala, 690525, India
| | - S Padmanabhan
- Department of Chemistry, Amrita Vishwa Vidyapeetham Amritapuri, Kollam, Kerala, 690525, India
| | - R Gopalakrishna Pai
- Department of Chemistry, Amrita Vishwa Vidyapeetham Amritapuri, Kollam, Kerala, 690525, India
| | - Akhil Sivan
- Department of Chemistry, Amrita Vishwa Vidyapeetham Amritapuri, Kollam, Kerala, 690525, India
| |
Collapse
|
4
|
Yadav SK, Jeganmohan M. Ir(III)-Catalyzed Tandem Annulation of Aromatic Amides with 1,6-Diynes via Dual C-H Bond Activation. Org Lett 2024; 26:7809-7816. [PMID: 39255330 DOI: 10.1021/acs.orglett.4c02528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
An Ir(III)-catalyzed annulation of aryl amides with 1,6-diynes via ortho- as well as meta-dual C-H bond activation reaction is reported. The scope of the annulation reaction was examined with various substituted aryl amides, as well as 1,6-diynes. In this protocol, 1,6-diynes exhibit diverse reactivity compared with internal alkynes. It is important to note that the three C-C bond formation takes place consecutively via ortho followed by meta-dual C-H bond annulation by using a weak chelating group in one pot. A possible catalytic reaction mechanism was proposed to account for the annulation reaction.
Collapse
Affiliation(s)
- Suresh Kumar Yadav
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Masilamani Jeganmohan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
5
|
Yadav SK, Jeganmohan M. Co(III)-catalyzed regioselective benzannulation of substituted pyridones with 1,6-diynes via dual C-H bond activation. Chem Commun (Camb) 2024; 60:8296-8299. [PMID: 39023786 DOI: 10.1039/d4cc01904k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
A Co(III)-catalyzed site-selective C5 and C6 benzannulation of substituted pyridones with 1,6-diynes via dual C-H bond activation has been reported. The scope of the benzannulation reaction was examined with various substituted 2-pyridyl pyridones and 1,6-diynes. The combination of cuprous acetate and silver carbonate plays a crucial role in the success of the reaction. A plausible reaction mechanism was proposed and supported by deuterium labelling studies and radical trapping experiments.
Collapse
Affiliation(s)
- Suresh Kumar Yadav
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India.
| | - Masilamani Jeganmohan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India.
| |
Collapse
|
6
|
Xu Y, Xiao Y, Zhang X, Fan X. Synthesis of Naphtho[1',2':4,5]furo[3,2- b]pyridinones via Ir(III)-Catalyzed C6/C5 Dual C-H Functionalization of N-Pyridyl-2-pyridones with Diazonaphthalen-2(1 H)-ones. Org Lett 2024; 26:786-791. [PMID: 38251835 DOI: 10.1021/acs.orglett.3c03849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Presented herein is an unprecedented synthesis of naphtho[1',2':4,5]furo[3,2-b]pyridinones via Ir(III)-catalyzed C6/C5 dual C-H functionalization of N-pyridyl-2-pyridones with diazonaphthalen-2(1H)-ones. This protocol forms C-C and C-O bonds in one pot in which diazonaphthalen-2(1H)-ones serve as bifunctional reagents, providing both alkyl and aryloxy sources. To the best of our knowledge, this is the first example of an Ir(III)-catalyzed synthesis of the title compounds by using diazonaphthalen-2(1H)-ones as bifunctional substrates. Notably, this method features operational simplicity, good functional group tolerance, high efficiency, and high atom economy.
Collapse
Affiliation(s)
- Yuanshuang Xu
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yujing Xiao
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xinying Zhang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuesen Fan
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
7
|
Yadav SK, Jeganmohan M. Nickel-Catalyzed Tandem Cyclization of 1,6-Diynes with Indolines/Indoles through Dual C-H Bond Activation. J Org Chem 2023; 88:14454-14469. [PMID: 37791905 DOI: 10.1021/acs.joc.3c01463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
A nickel-catalyzed site-selective tandem cyclization of 1,6-diynes with substituted indolines or indoles through consecutive dual C-H bond activation is described. In the reaction, substituted fused indole and carbazole derivatives were observed in good to excellent yields, in which three consecutive C-C bonds formed in one pot. Later, in the presence of DDQ, the aromatization of the indoline derivative was converted to the indole derivative. A possible reaction mechanism involving dual C-H bond activation as a key step was proposed to account for the present reaction.
Collapse
Affiliation(s)
- Suresh Kumar Yadav
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu India
| | - Masilamani Jeganmohan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu India
| |
Collapse
|
8
|
Zhang YB, Li BS, Xu GJ, Sun W, Sun M. Rh(III)-Catalyzed Double C-H Functionalization of Indoles with Cyclopropenones via Sequential C-H/C-C/C-H Bond Activation. Org Lett 2023. [PMID: 37200408 DOI: 10.1021/acs.orglett.3c01292] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
An unprecedented Rh(III)-catalyzed double C-H functionalization of indoles with cyclopropenones via sequential C-H/C-C/C-H bond activation has been developed. This procedure represents the first example for assembling of cyclopenta[b]indoles utilizing cyclopropenones as 3C synthons. This powerful approach shows excellent chemo- and regioselectivity, wide functional group tolerance, and good reaction yields.
Collapse
Affiliation(s)
- Yan-Bo Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, China
| | - Bin-Shi Li
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, China
| | - Guo-Jie Xu
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, China
| | - Wei Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, China
| | - Meng Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, China
| |
Collapse
|
9
|
Chen D, Zhou L, Liu Y, Wan JP. Three-component synthesis of N-naphthyl pyrazoles via Rh(III)-catalyzed cascade pyrazole annulation and Satoh-Miura benzannulation. Chem Commun (Camb) 2023; 59:4036-4039. [PMID: 36924202 DOI: 10.1039/d3cc00649b] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
The synthesis of N-naphthyl pyrazoles has been realized by the direct three-component reactions of enaminones, aryl hydrazine hydrochlorides and internal alkynes via Rh(III) catalysis. The synthetic reactions employing simple substrates lead to simultaneous construction of dual cyclic moieties, including a pyrazole ring and a phenyl ring, via sequential formation of two C-N and three C-C bonds.
Collapse
Affiliation(s)
- Demao Chen
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.
| | - Liyun Zhou
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.
| | - Yunyun Liu
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.
| | - Jie-Ping Wan
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China. .,International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
10
|
Zhang J, Zhang S, Ding Z, Hou A, Fu J, Su H, Cheng M, Lin B, Yang L, Liu Y. Gold(I)-Catalyzed Tandem Intramolecular Methoxylation/Double Aldol Condensation Strategy Yielding 2,2′-Spirobi[indene] Derivatives. Org Lett 2022; 24:6777-6782. [DOI: 10.1021/acs.orglett.2c02653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jingfu Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, P.R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P.R. China
| | - Sen Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, P.R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P.R. China
| | - Zhixing Ding
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, P.R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P.R. China
| | - Anbin Hou
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, P.R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P.R. China
| | - Jiayue Fu
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, P.R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P.R. China
| | - Hongwei Su
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, P.R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P.R. China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, P.R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P.R. China
| | - Bin Lin
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, P.R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P.R. China
| | - Lu Yang
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, P.R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P.R. China
| | - Yongxiang Liu
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, P.R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P.R. China
| |
Collapse
|
11
|
Pigot C, Brunel D, Dumur F. Indane-1,3-Dione: From Synthetic Strategies to Applications. Molecules 2022; 27:5976. [PMID: 36144711 PMCID: PMC9501146 DOI: 10.3390/molecules27185976] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 11/26/2022] Open
Abstract
Indane-1,3-dione is a versatile building block used in numerous applications ranging from biosensing, bioactivity, bioimaging to electronics or photopolymerization. In this review, an overview of the different chemical reactions enabling access to this scaffold but also to the most common derivatives of indane-1,3-dione are presented. Parallel to this, the different applications in which indane-1,3-dione-based structures have been used are also presented, evidencing the versatility of this structure.
Collapse
Affiliation(s)
- Corentin Pigot
- Aix Marseille Univ, CNRS, ICR, UMR 7273, F-13397 Marseille, France
| | - Damien Brunel
- Aix Marseille Univ, CNRS, ICR, UMR 7273, F-13397 Marseille, France
| | - Frédéric Dumur
- Aix Marseille Univ, CNRS, ICR, UMR 7273, F-13397 Marseille, France
| |
Collapse
|
12
|
Kumaran S, Parthasarathy K. Rhodium-Catalyzed Annulations and Heck Coupling/Aza-Michael Addition for the Synthesis of Benzothiadiazinoisoquinoline 6,6-Dioxides and Benzothiadiazinoisoindole 5,5-Dioxides, Respectively. J Org Chem 2022; 87:11989-12000. [PMID: 36049131 DOI: 10.1021/acs.joc.2c00964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new and efficient protocol has been demonstrated for the synthesis of benzothiadiazinoisoquinoline 6,6-dioxides and benzothiadiazinoisoindole 5,5-dioxides in good to excellent yields. These compounds are formed through a sequential Rh(III)-catalyzed C-H cyclization of dihydrophenylbenzothiadiazine 1,1-dioxides with alkynes and oxidative Heck coupling/aza-Michael addition of dihydrophenylbenzothiadiazine 1,1-dioxides with acrylates, respectively.
Collapse
Affiliation(s)
- Subramani Kumaran
- Department of Organic Chemistry, University of Madras, Guindy Campus, Tamilnadu, Chennai 600025, India
| | - Kanniyappan Parthasarathy
- Department of Organic Chemistry, University of Madras, Guindy Campus, Tamilnadu, Chennai 600025, India
| |
Collapse
|
13
|
Sun L, Zhao Y, Liu B, Chang J, Li X. Rhodium III-catalyzed remote difunctionalization of arenes assisted by a relay directing group. Chem Sci 2022; 13:7347-7354. [PMID: 35799802 PMCID: PMC9214915 DOI: 10.1039/d2sc02205b] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/28/2022] [Indexed: 11/21/2022] Open
Abstract
Rhodium-catalyzed diverse tandem twofold C-H bond activation reactions of para-olefin-tethered arenes have been realized, with unsaturated reagents such as internal alkynes, dioxazolones, and isocyanates being the coupling partner as well as a relay directing group which triggers cyclization of the para-olefin group under oxidative or redox-neutral conditions. The reaction proceeded via initial ortho-C-H activation assisted by a built-in directing group in the arene, and the ortho-incorporation of the unsaturated coupling partner simultaneously generated a relay directing group that allows sequential C-H activation at the meta-position and subsequent cyclization of the para-olefins. The overall reaction represents C-C or N-C difunctionalization of the arene with the generation of diverse 2,3-dihydrobenzofuran platforms. The catalytic system proceeded with good efficiency, simple reaction conditions, and broad substrate scope. The diverse transformations of the products demonstrated the synthetic utility of this tandem reaction.
Collapse
Affiliation(s)
- Lincong Sun
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China
| | - Yuyao Zhao
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China
| | - Bingxian Liu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China
| | - Junbiao Chang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China
| | - Xingwei Li
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Sciences, Shandong University Qingdao 250100 China
| |
Collapse
|
14
|
Efficient access to multi-substituted 1-aminoisoquinolines via Rh(III)-catalyzed oxidative annulation of aminopyridine pivalamides with internal alkynes. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Pereira A, Albornoz C, Trofymchuk OS. Data-Driven Analysis of Reactions Catalyzed by [CoCp*(CO)I 2]. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Alfredo Pereira
- Facultad de Ciencias Químicas y Farmacéuticas, Departamento de Química Orgánica y Fisicoquímica, Universidad de Chile, Sergio Livingstone 1007, Casilla 233, Santiago, Metropolitan Region 8380492, Chile
| | - Camilo Albornoz
- C. Albornoz, Instituto de Química de Recursos Naturales, Universidad de Talca, Talca, Maule Region 3460000, Chile
| | - Oleksandra S. Trofymchuk
- Facultad de Ciencias Químicas y Farmacéuticas, Departamento de Química Orgánica y Fisicoquímica, Universidad de Chile, Sergio Livingstone 1007, Casilla 233, Santiago, Metropolitan Region 8380492, Chile
| |
Collapse
|
16
|
Li M, Dong Y, Zhou C, Bai J, Cheng J, Sun J, Sun S. Iridium-Catalyzed Redox-Neutral C2 and C3 Dual C-H Functionalization of Indoles with Nitrones toward 7 H-Indolo[2,3- c]quinolines. Org Lett 2021; 23:8229-8234. [PMID: 34623158 DOI: 10.1021/acs.orglett.1c02975] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
An iridium-catalyzed redox-neutral C-2 and C-3 dual C-H functionalization of indoles with nitrones has been developed, furnishing a range of 7H-indolo[2,3-c]quinolines with high efficiency and regioselectivity under mild reaction conditions. Notably, sequential multiple C-H bond cleavage and C-C bond formation constitute the key events of this process, in which nitrone serves as a building block and an oxidant. Distinct from the previous methods toward 7H-indolo[2,3-c]quinolines, this newly developed reaction features readily available substrates, operational simplicity, broad scope, good to high efficiency, and excellent regioselectivity.
Collapse
Affiliation(s)
- Miao Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Yaqun Dong
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Cong Zhou
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Junxue Bai
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Jiang Cheng
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Jianwei Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.,Department of Chemistry, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Song Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
17
|
Kumar S, Nunewar S, Usama KM, Kanchupalli V. Rh(III)‐Catalyzed [3+2] Annulation and C−H Alkenylation of Indoles with 1,3‐Diynes by C−H Activation. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100212] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Sanjeev Kumar
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 Telangana India
| | - Saiprasad Nunewar
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 Telangana India
| | - Khan Mohammad Usama
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 Telangana India
| | - Vinaykumar Kanchupalli
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 Telangana India
| |
Collapse
|
18
|
Direct synthesis of benzoxazinones via Cp*Co(III)-catalyzed C–H activation and annulation of sulfoxonium ylides with dioxazolones. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.09.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
19
|
Wang Y, Li B, Wang B. RhIII-Catalyzed Synthesis of Cyclopenta[b]carbazoles via Cascade C–H/C–C Bond Cleavage and Cyclization Reactions: Using Amide as a Traceless Directing Group. Org Lett 2019; 22:83-87. [DOI: 10.1021/acs.orglett.9b03969] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yanwei Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Bin Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Baiquan Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People’s Republic of China
| |
Collapse
|
20
|
Verma GK, Rawat M, Rawat DS. Cobalt-Catalysed C-C Bond Formation and [2+2+2] Annulation of 1,3-Dicarbonyls to Terminal Alkynes. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
| | - Manish Rawat
- Department of Chemistry; University of Delhi; Delhi - 110 007 India
| | - Diwan S. Rawat
- Department of Chemistry; University of Delhi; Delhi - 110 007 India
| |
Collapse
|
21
|
|
22
|
Li T, Wang Z, Chen C, Zhu B. Rhodium‐Catalyzed C−H Functionalization of
N
‐(2‐Pyrimidyl)indole with Internal Alkynes: Formation of Unexpected Products by Regulating the Amount of Silver Acetate. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900105] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Tongyu Li
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of ChemistryTianjin Normal University Tianjin 300387 People's Republic of China
| | - Zhuo Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of ChemistryTianjin Normal University Tianjin 300387 People's Republic of China
| | - Chen Chen
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of ChemistryTianjin Normal University Tianjin 300387 People's Republic of China
| | - Bolin Zhu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of ChemistryTianjin Normal University Tianjin 300387 People's Republic of China
| |
Collapse
|
23
|
Li H, Yan X, Zhang J, Guo W, Jiang J, Wang J. Enantioselective Synthesis of C-N Axially Chiral N-Aryloxindoles by Asymmetric Rhodium-Catalyzed Dual C-H Activation. Angew Chem Int Ed Engl 2019; 58:6732-6736. [PMID: 30893497 DOI: 10.1002/anie.201901619] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/13/2019] [Indexed: 12/29/2022]
Abstract
The first enantioselective Satoh-Miura-type reaction is reported. A variety of C-N axially chiral N-aryloxindoles have been enantioselectively synthesized by an asymmetric rhodium-catalyzed dual C-H activation reaction of N-aryloxindoles and alkynes. High yields and enantioselectivities were obtained (up to 99 % yield and up to 99 % ee). To date, it is also the first example of the asymmetric synthesis of C-N axially chiral compounds by such a C-H activation strategy.
Collapse
Affiliation(s)
- Honghe Li
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Xiaoqiang Yan
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Jitan Zhang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Weicong Guo
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Jijun Jiang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Jun Wang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
24
|
Li H, Yan X, Zhang J, Guo W, Jiang J, Wang J. Enantioselective Synthesis of C−N Axially Chiral N‐Aryloxindoles by Asymmetric Rhodium‐Catalyzed Dual C−H Activation. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901619] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Honghe Li
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of EducationSchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
| | - Xiaoqiang Yan
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of EducationSchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
| | - Jitan Zhang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of EducationSchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
| | - Weicong Guo
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of EducationSchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
| | - Jijun Jiang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of EducationSchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
| | - Jun Wang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of EducationSchool of ChemistrySun Yat-Sen University Guangzhou 510275 P. R. China
| |
Collapse
|
25
|
Liu B, Yuan Y, Hu P, Zheng G, Bai D, Chang J, Li X. Mn(i)-Catalyzed nucleophilic addition/ring expansion via C–H activation and C–C cleavage. Chem Commun (Camb) 2019; 55:10764-10767. [PMID: 31432805 DOI: 10.1039/c9cc05973c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Mn(i)-Catalyzed C–H alkenylation/carbonyl addition/retro-Aldol cascade was realized leading to the convenient synthesis of seven- or eight-membered carbocycles.
Collapse
Affiliation(s)
- Bingxian Liu
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang 453007
| | - Yin Yuan
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang 453007
| | - Panjie Hu
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang 453007
| | - Guangfan Zheng
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University (SNNU)
- Xi’an 710062
- China
| | - Dachang Bai
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang 453007
| | - Junbiao Chang
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang 453007
| | - Xingwei Li
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang 453007
| |
Collapse
|