1
|
Seshadri K, Abad AND, Nagasawa KK, Yost KM, Johnson CW, Dror MJ, Tang Y. Synthetic Biology in Natural Product Biosynthesis. Chem Rev 2025; 125:3814-3931. [PMID: 40116601 DOI: 10.1021/acs.chemrev.4c00567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
Synthetic biology has played an important role in the renaissance of natural products research during the post-genomics era. The development and integration of new tools have transformed the workflow of natural product discovery and engineering, generating multidisciplinary interest in the field. In this review, we summarize recent developments in natural product biosynthesis from three different aspects. First, advances in bioinformatics, experimental, and analytical tools to identify natural products associated with predicted biosynthetic gene clusters (BGCs) will be covered. This will be followed by an extensive review on the heterologous expression of natural products in bacterial, fungal and plant organisms. The native host-independent paradigm to natural product identification, pathway characterization, and enzyme discovery is where synthetic biology has played the most prominent role. Lastly, strategies to engineer biosynthetic pathways for structural diversification and complexity generation will be discussed, including recent advances in assembly-line megasynthase engineering, precursor-directed structural modification, and combinatorial biosynthesis.
Collapse
Affiliation(s)
- Kaushik Seshadri
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Abner N D Abad
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Kyle K Nagasawa
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Karl M Yost
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Colin W Johnson
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Moriel J Dror
- Department of Bioengineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| |
Collapse
|
2
|
Fallon TR, Shende VV, Wierzbicki IH, Pendleton AL, Watervoort NF, Auber RP, Gonzalez DJ, Wisecaver JH, Moore BS. Giant polyketide synthase enzymes in the biosynthesis of giant marine polyether toxins. Science 2024; 385:671-678. [PMID: 39116217 PMCID: PMC11416037 DOI: 10.1126/science.ado3290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024]
Abstract
Prymnesium parvum are harmful haptophyte algae that cause massive environmental fish kills. Their polyketide polyether toxins, the prymnesins, are among the largest nonpolymeric compounds in nature and have biosynthetic origins that have remained enigmatic for more than 40 years. In this work, we report the "PKZILLAs," massive P. parvum polyketide synthase (PKS) genes that have evaded previous detection. PKZILLA-1 and -2 encode giant protein products of 4.7 and 3.2 megadaltons that have 140 and 99 enzyme domains. Their predicted polyene product matches the proposed pre-prymnesin precursor of the 90-carbon-backbone A-type prymnesins. We further characterize the variant PKZILLA-B1, which is responsible for the shorter B-type analog prymnesin-B1, from P. parvum RCC3426 and thus establish a general model of haptophyte polyether biosynthetic logic. This work expands expectations of genetic and enzymatic size limits in biology.
Collapse
Affiliation(s)
- Timothy R. Fallon
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography and University of California, San Diego; 9500 Gilman Dr #0204, La Jolla, CA 92093, USA
| | - Vikram V. Shende
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography and University of California, San Diego; 9500 Gilman Dr #0204, La Jolla, CA 92093, USA
| | - Igor H. Wierzbicki
- Department of Pharmacology, University of California, San Diego; 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Amanda L. Pendleton
- Department of Biochemistry, Purdue University; 175 S University St, West Lafayette, IN 47907, USA
- Purdue Center for Plant Biology, Purdue University; 175 S University St, West Lafayette, IN 47907, USA
| | - Nathan F. Watervoort
- Department of Biochemistry, Purdue University; 175 S University St, West Lafayette, IN 47907, USA
- Purdue Center for Plant Biology, Purdue University; 175 S University St, West Lafayette, IN 47907, USA
| | - Robert P. Auber
- Department of Biochemistry, Purdue University; 175 S University St, West Lafayette, IN 47907, USA
- Purdue Center for Plant Biology, Purdue University; 175 S University St, West Lafayette, IN 47907, USA
| | - David J. Gonzalez
- Department of Pharmacology, University of California, San Diego; 9500 Gilman Dr, La Jolla, CA 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego; 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Jennifer H. Wisecaver
- Department of Biochemistry, Purdue University; 175 S University St, West Lafayette, IN 47907, USA
- Purdue Center for Plant Biology, Purdue University; 175 S University St, West Lafayette, IN 47907, USA
| | - Bradley S. Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography and University of California, San Diego; 9500 Gilman Dr #0204, La Jolla, CA 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego; 9500 Gilman Dr, La Jolla, CA 92093, USA
| |
Collapse
|
3
|
Kudo K, Nishimura T, Izumikawa M, Kozone I, Hashimoto J, Fujie M, Suenaga H, Ikeda H, Satoh N, Shin-Ya K. Capability of a large bacterial artificial chromosome clone harboring multiple biosynthetic gene clusters for the production of diverse compounds. J Antibiot (Tokyo) 2024; 77:288-298. [PMID: 38438499 DOI: 10.1038/s41429-024-00711-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/02/2024] [Accepted: 02/12/2024] [Indexed: 03/06/2024]
Abstract
The biosynthetic gene clusters (BGCs) for the macrocyclic lactone-based polyketide compounds are extremely large-sized because the polyketide synthases that generate the polyketide chains of the basic backbone are of very high molecular weight. In developing a heterologous expression system for the large BGCs amenable to the production of such natural products, we selected concanamycin as an appropriate target. We obtained a bacterial artificial chromosome (BAC) clone with a 211-kb insert harboring the entire BGC responsible for the biosynthesis of concanamycin. Heterologous expression of this clone in a host strain, Streptomyces avermitilis SUKA32, permitted the production of concanamycin, as well as that of two additional aromatic polyketides. Structural elucidation identified these additional products as ent-gephyromycin and a novel compound that was designated JBIR-157. We describe herein sequencing and expression studies performed on these BGCs, demonstrating the utility of large BAC clones for the heterologous expression of cryptic or near-silent loci.
Collapse
Affiliation(s)
- Kei Kudo
- Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Takehiro Nishimura
- Technology Research Association for Next Generation Natural Products Chemistry, 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Miho Izumikawa
- Japan Biological Informatics Consortium (JBIC), 2-4-32 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Ikuko Kozone
- Japan Biological Informatics Consortium (JBIC), 2-4-32 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Junko Hashimoto
- Japan Biological Informatics Consortium (JBIC), 2-4-32 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Manabu Fujie
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| | - Hikaru Suenaga
- Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Haruo Ikeda
- Kitasato Institute for Life Sciences, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
- Technology Research Association for Next Generation Natural Products Chemistry, 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Nori Satoh
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| | - Kazuo Shin-Ya
- Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan.
- Technology Research Association for Next Generation Natural Products Chemistry, 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan.
| |
Collapse
|
4
|
Hashimoto T, Suenaga H, Amagai K, Hashimoto J, Kozone I, Takahashi S, Shin-Ya K. In Vitro Module Editing Of NRPS Enables Production Of Highly Potent G q -Signaling Inhibitor FR900359 Derived From Unculturable Plant Symbiont. Angew Chem Int Ed Engl 2024; 63:e202317805. [PMID: 38238265 DOI: 10.1002/anie.202317805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Indexed: 02/03/2024]
Abstract
Heterotrimeric G proteins are key mediators in the signaling of G protein-coupled receptors (GPCR) that are involved in a plethora of important physiological processes and thus major targets of pharmaceutical drugs. The cyclic depsipeptides YM-254890 and FR900359 are strong and selective inhibitors of the Gq subfamily of G proteins. FR900359 was first reported to be produced by unculturable plant symbiont, however, a culturable FR900359 producer was discovered recently by the standard strategy, screening of the producing strain from the environment. As another strategy, we introduce herein the different way to supply natural compounds of unculturable microorganism origin. We therefore embarked on constructing an artificial biosynthetic gene cluster (BGC) for FR900359 with YM-254890 BGC as a template using "in vitro module editing" technology, first developed for the modification of type-I PKS BGCs, to edit YM-254890 BGC. The resulting artificial BGCs coding FR900359 were heterologously expressed in the Pseudomonas putida KT2440 host strain.
Collapse
Affiliation(s)
- Takuya Hashimoto
- National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan
- National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Hikaru Suenaga
- National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Keita Amagai
- Natural Product Biosynthesis Research Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Junko Hashimoto
- Japan Biological Informatics Consortium, 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Ikuko Kozone
- Japan Biological Informatics Consortium, 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Shunji Takahashi
- Natural Product Biosynthesis Research Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Kazuo Shin-Ya
- National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| |
Collapse
|
5
|
Fallon TR, Shende VV, Wierzbicki IH, Auber RP, Gonzalez DJ, Wisecaver JH, Moore BS. Giant polyketide synthase enzymes biosynthesize a giant marine polyether biotoxin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.29.577497. [PMID: 38352448 PMCID: PMC10862718 DOI: 10.1101/2024.01.29.577497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Prymnesium parvum are harmful haptophyte algae that cause massive environmental fish-kills. Their polyketide polyether toxins, the prymnesins, are amongst the largest nonpolymeric compounds in nature, alongside structurally-related health-impacting "red-tide" polyether toxins whose biosynthetic origins have been an enigma for over 40 years. Here we report the 'PKZILLAs', massive P. parvum polyketide synthase (PKS) genes, whose existence and challenging genomic structure evaded prior detection. PKZILLA-1 and -2 encode giant protein products of 4.7 and 3.2 MDa with 140 and 99 enzyme domains, exceeding the largest known protein titin and all other known PKS systems. Their predicted polyene product matches the proposed pre-prymnesin precursor of the 90-carbon-backbone A-type prymnesins. This discovery establishes a model system for microalgal polyether biosynthesis and expands expectations of genetic and enzymatic size limits in biology.
Collapse
Affiliation(s)
- Timothy R. Fallon
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography and University of California, San Diego; 9500 Gilman Dr #0204, La Jolla, CA 92093, USA
| | - Vikram V. Shende
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography and University of California, San Diego; 9500 Gilman Dr #0204, La Jolla, CA 92093, USA
| | - Igor H. Wierzbicki
- Department of Pharmacology, University of California, San Diego; 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Robert P. Auber
- Department of Biochemistry, Purdue University; 175 S University St, West Lafayette, IN 47907, USA
- Purdue Center for Plant Biology, Purdue University; 175 S University St, West Lafayette, IN 47907, USA
| | - David J. Gonzalez
- Department of Pharmacology, University of California, San Diego; 9500 Gilman Dr, La Jolla, CA 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego; 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Jennifer H. Wisecaver
- Department of Biochemistry, Purdue University; 175 S University St, West Lafayette, IN 47907, USA
- Purdue Center for Plant Biology, Purdue University; 175 S University St, West Lafayette, IN 47907, USA
| | - Bradley S. Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography and University of California, San Diego; 9500 Gilman Dr #0204, La Jolla, CA 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego; 9500 Gilman Dr, La Jolla, CA 92093, USA
| |
Collapse
|
6
|
Karimian S, Farahmandzad N, Mohammadipanah F. Manipulation and epigenetic control of silent biosynthetic pathways in actinobacteria. World J Microbiol Biotechnol 2024; 40:65. [PMID: 38191749 DOI: 10.1007/s11274-023-03861-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/29/2023] [Indexed: 01/10/2024]
Abstract
Most biosynthetic gene clusters (BGCs) of Actinobacteria are either silent or expressed less than the detectable level. The non-genetic approaches including biological interactions, chemical agents, and physical stresses that can be used to awaken silenced pathways are compared in this paper. These non-genetic induction strategies often need screening approaches, including one strain many compounds (OSMAC), reporter-guided mutant selection, and high throughput elicitor screening (HiTES) have been developed. Different types of genetic manipulations applied in the induction of cryptic BGCs of Actinobacteria can be categorized as genome-wide pleiotropic and targeted approaches like manipulation of global regulatory systems, modulation of regulatory genes, ribosome and engineering of RNA polymerase or phosphopantheteine transferases. Targeted approaches including genome editing by CRISPR, mutation in transcription factors and modification of BGCs promoters, inactivation of the highly expressed biosynthetic pathways, deleting the suppressors or awakening the activators, heterologous expression, or refactoring of gene clusters can be applied for activation of pathways which are predicted to synthesize new bioactive structures in genome mining studies of Acinobacteria. In this review, the challenges and advantages of employing these approaches in induction of Actinobacteria BGCs are discussed. Further, novel natural products needed as drug for pharmaceutical industry or as biofertilizers in agricultural industry can be discovered even from known species of Actinobactera by the innovative approaches of metabolite biosynthesis elicitation.
Collapse
Affiliation(s)
- Sanaz Karimian
- Department of Biotechnology, Faculty of Biological Science, Alzahra University, Tehran, Iran
| | - Navid Farahmandzad
- Department of Biosystems Engineering, Auburn university, Auburn, AL 36849, USA
- Pharmaceutical Biotechnology Lab, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, 14155-6455, Iran
| | - Fatemeh Mohammadipanah
- Pharmaceutical Biotechnology Lab, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, 14155-6455, Iran.
| |
Collapse
|
7
|
Wan J, Ma N, Yuan H. Recent advances in the direct cloning of large natural product biosynthetic gene clusters. ENGINEERING MICROBIOLOGY 2023; 3:100085. [PMID: 39628928 PMCID: PMC11611023 DOI: 10.1016/j.engmic.2023.100085] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 12/06/2024]
Abstract
Large-scale genome-mining analyses have revealed that microbes potentially harbor a huge reservoir of uncharacterized natural product (NP) biosynthetic gene clusters (BGCs), and this has spurred a renaissance of novel drug discovery. However, the majority of these BGCs are often poorly or not at all expressed in their native hosts under laboratory conditions, and thus are regarded as silent/orphan BGCs. Currently, connecting silent BGCs to their corresponding NPs quickly and on a large scale is particularly challenging because of the lack of universal strategies and enabling technologies. Generally, the heterologous host-based genome mining strategy is believed to be a suitable alternative to the native host-based approach for prioritization of the vast and ever-increasing number of uncharacterized BGCs. In the last ten years, a variety of methods have been reported for the direct cloning of BGCs of interest, which is the first and rate-limiting step in the heterologous expression strategy. Essentially, each method requires that the following three issues be resolved: 1) how to prepare genomic DNA; 2) how to digest the bilateral boundaries for release of the target BGC; and 3) how to assemble the BGC and the capture vector. Here, we summarize recent reports regarding how to directly capture a BGC of interest and briefly discuss the advantages and disadvantages of each method, with an emphasis on the notion that direct cloning is very beneficial for accelerating genome mining research and large-scale drug discovery.
Collapse
Affiliation(s)
- Jiaying Wan
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Nan Ma
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Hua Yuan
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
8
|
Kim MC, Winter JM, Cullum R, Smith AJ, Fenical W. Expanding the Utility of Bioinformatic Data for the Full Stereostructural Assignments of Marinolides A and B, 24- and 26-Membered Macrolactones Produced by a Chemically Exceptional Marine-Derived Bacterium. Mar Drugs 2023; 21:367. [PMID: 37367692 DOI: 10.3390/md21060367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023] Open
Abstract
Marinolides A and B, two new 24- and 26-membered bacterial macrolactones, were isolated from the marine-derived actinobacterium AJS-327 and their stereostructures initially assigned by bioinformatic data analysis. Macrolactones typically possess complex stereochemistry, the assignments of which have been one of the most difficult undertakings in natural products chemistry, and in most cases, the use of X-ray diffraction methods and total synthesis have been the major methods of assigning their absolute configurations. More recently, however, it has become apparent that the integration of bioinformatic data is growing in utility to assign absolute configurations. Genome mining and bioinformatic analysis identified the 97 kb mld biosynthetic cluster harboring seven type I polyketide synthases. A detailed bioinformatic investigation of the ketoreductase and enoylreductase domains within the multimodular polyketide synthases, coupled with NMR and X-ray diffraction data, allowed for the absolute configurations of marinolides A and B to be determined. While using bioinformatics to assign the relative and absolute configurations of natural products has high potential, this method must be coupled with full NMR-based analysis to both confirm bioinformatic assignments as well as any additional modifications that occur during biosynthesis.
Collapse
Affiliation(s)
- Min Cheol Kim
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, Skaggs School of Pharmacy and Pharmaceutical Sciences, Moores Comprehensive Cancer Center, University of California, La Jolla, San Diego, CA 92093, USA
| | - Jaclyn M Winter
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA
| | - Reiko Cullum
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, Skaggs School of Pharmacy and Pharmaceutical Sciences, Moores Comprehensive Cancer Center, University of California, La Jolla, San Diego, CA 92093, USA
| | - Alexander J Smith
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, Skaggs School of Pharmacy and Pharmaceutical Sciences, Moores Comprehensive Cancer Center, University of California, La Jolla, San Diego, CA 92093, USA
| | - William Fenical
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, Skaggs School of Pharmacy and Pharmaceutical Sciences, Moores Comprehensive Cancer Center, University of California, La Jolla, San Diego, CA 92093, USA
| |
Collapse
|
9
|
Komaki H, Tamura T, Igarashi Y. Taxonomic Positions and Secondary Metabolite-Biosynthetic Gene Clusters of Akazaoxime- and Levantilide-Producers. Life (Basel) 2023; 13:life13020542. [PMID: 36836900 PMCID: PMC9967187 DOI: 10.3390/life13020542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Micromonospora sp. AKA109 is a producer of akazaoxime and A-76356, whereas Micromonospora sp. AKA38 is that of levantilide C. We aimed to clarify their taxonomic positions and identify biosynthetic gene clusters (BGCs) of these compounds. In 16S rRNA gene and DNA gyrase subunit B gene (gyrB) sequence analyses, strains AKA109 and AKA38 were the most closely related to Micromonospora humidisoli MMS20-R2-29T and Micromonospora schwarzwaldensis HKI0641T, respectively. Although Micromonospora sp. AKA109 was identified as M. humidisoli by the gyrB sequence similarity and DNA-DNA relatedness based on whole genome sequences, Micromonospora sp. AKA38 was classified to a new genomospecies. M. humidisoli AKA109 harbored six type-I polyketide synthase (PKS), one type-II PKS, one type-III PKS, three non-ribosomal peptide synthetase (NRPS) and three hybrid PKS/NRPS gene clusters, among which the BGC of akazaoxime and A-76356 was identified. These gene clusters are conserved in M. humidisoli MMS20-R2-29T. Micromonospora sp. AKA38 harbored two type-I PKS, one of which was responsible for levantilide C, one type-II PKS, one type-III PKS, two NRPS and five hybrid PKS/NRPS gene clusters. We predicted products derived from these gene clusters through bioinformatic analyses. Consequently, these two strains are revealed to be promising sources for diverse non-ribosomal peptide and polyketide compounds.
Collapse
Affiliation(s)
- Hisayuki Komaki
- Biological Resource Center, National Institute of Technology and Evaluation (NBRC), Chiba 292-0818, Japan
- Correspondence:
| | - Tomohiko Tamura
- Biological Resource Center, National Institute of Technology and Evaluation (NBRC), Chiba 292-0818, Japan
| | - Yasuhiro Igarashi
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Toyama 939-0398, Japan
| |
Collapse
|
10
|
Dashti Y, Tajabadi FM, Wu LJ, Sumang FA, Escasinas A, Ellis Allenby NE, Errington J. Discovery of Demurilactone A: A Specific Growth Inhibitor of L-Form Bacillus subtilis. ACS Infect Dis 2022; 8:2253-2258. [PMID: 36268971 PMCID: PMC9673147 DOI: 10.1021/acsinfecdis.2c00220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Metabolic profiling of the extracts from a library of actinobacteria led to the identification of a novel polyketide, demurilactone A, produced by Streptomyces strain DEM21308. The structure of the compound was assigned based on a detailed investigation of 1D/2D NMR spectra and HR-MS. Whole genome DNA sequencing, followed by bioinformatics analysis and insertional mutagenesis, identified type I polyketide synthases encoded by the dml gene cluster to direct the biosynthesis of this polyene macrolide. While the number of modules is consistent with the carbon backbone of the assigned structure, some discrepancies were identified in the domain organization of five modules. Close investigation of the amino acid sequences identified several mutations in the conserved motifs of nonfunctional domains. Furthermore, the absolute configuration of hydroxy-bearing stereocenters was proposed based on analyses of the ketoreductase domains. Remarkably, although demurilactone A has little detectable activity against normal-walled bacteria, it specifically inhibits the growth of cell wall-deficient "L-form" Bacillus subtilis at a minimum inhibitory concentration value of 16 μg/mL. Time-lapse microscopy analyses revealed that demurilactone affects membrane dynamics, probably by reducing membrane fluidity. This compound could be a powerful reagent for studying long-standing questions about the involvement of L-forms in recurrent infection.
Collapse
Affiliation(s)
- Yousef Dashti
- The
Centre for Bacterial Cell Biology, Biosciences Institute, Medical School, Newcastle University, Newcastle Upon Tyne NE2
4AX, U.K.,,
| | - Fatemeh Mazraati Tajabadi
- Odyssey
Therapeutics Inc, The Biosphere, Draymans Way, Newcastle Helix, Newcastle
Upon Tyne NE4 5BX, U.K.
| | - Ling Juan Wu
- The
Centre for Bacterial Cell Biology, Biosciences Institute, Medical School, Newcastle University, Newcastle Upon Tyne NE2
4AX, U.K.
| | - Felaine Anne Sumang
- The
Centre for Bacterial Cell Biology, Biosciences Institute, Medical School, Newcastle University, Newcastle Upon Tyne NE2
4AX, U.K.
| | - Alexander Escasinas
- Odyssey
Therapeutics Inc, The Biosphere, Draymans Way, Newcastle Helix, Newcastle
Upon Tyne NE4 5BX, U.K.
| | | | - Jeff Errington
- The
Centre for Bacterial Cell Biology, Biosciences Institute, Medical School, Newcastle University, Newcastle Upon Tyne NE2
4AX, U.K.,Odyssey
Therapeutics Inc, The Biosphere, Draymans Way, Newcastle Helix, Newcastle
Upon Tyne NE4 5BX, U.K.,
| |
Collapse
|
11
|
Mamada SS, Nainu F, Masyita A, Frediansyah A, Utami RN, Salampe M, Emran TB, Lima CMG, Chopra H, Simal-Gandara J. Marine Macrolides to Tackle Antimicrobial Resistance of Mycobacterium tuberculosis. Mar Drugs 2022; 20:691. [PMID: 36355013 PMCID: PMC9697125 DOI: 10.3390/md20110691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 09/01/2023] Open
Abstract
Tuberculosis has become a major health problem globally. This is worsened by the emergence of resistant strains of Mycobacterium tuberculosis showing ability to evade the effectiveness of the current antimycobacterial therapies. Therefore, the efforts carried out to explore new entities from many sources, including marine, are critical. This review summarizes several marine-derived macrolides that show promising activity against M. tuberculosis. We also provide information regarding the biosynthetic processes of marine macrolides, including the challenges that are usually experienced in this process. As most of the studies reporting the antimycobacterial activities of the listed marine macrolides are based on in vitro studies, the future direction should consider expanding the trials to in vivo and clinical trials. In addition, in silico studies should also be explored for a quick screening on marine macrolides with potent activities against mycobacterial infection. To sum up, macrolides derived from marine organisms might become therapeutical options for tackling antimycobacterial resistance of M. tuberculosis.
Collapse
Affiliation(s)
- Sukamto S. Mamada
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Ayu Masyita
- Department of Pharmaceutical Science and Technology, Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
- Research Center for Vaccine and Drugs, Research Organization for Health, National Research and Innovation Agency (BRIN), Tangerang Selatan 15318, Indonesia
| | - Andri Frediansyah
- Research Center for Food Technology and Processing, National Research and Innovation Agency (BRIN), Yogyakarta 55861, Indonesia
| | - Rifka Nurul Utami
- Department of Pharmaceutical Science and Technology, Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
- Institute of Pharmaceutical Science, King’s College London, London SE1 9NH, UK
| | | | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | | | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E32004 Ourense, Spain
| |
Collapse
|
12
|
Zhang L, Awakawa T, Abe I. Understanding and Manipulating Assembly Line Biosynthesis by Heterologous Expression in Streptomyces. Methods Mol Biol 2022; 2489:223-238. [PMID: 35524053 DOI: 10.1007/978-1-0716-2273-5_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Assembly line enzymes, including polyketide synthases and nonribosomal peptide synthetases, play central roles in the construction of complex natural products. Due to the sequential biochemistry processed in each domain, the domain architecture of the assembly line enzymes strictly correlates with the product molecule. This colinearity makes assembly line enzymes an ideal target for rational reprogramming. Although many of the past engineering attempts suffered from decreased product yield, recent advancements in the bioinformatic analysis and engineering design now provide new opportunity to work on these modular megaenzymes. This chapter describes the methods for analyzing and engineering the assembly line enzymes, including module and domain analysis needed for designing the engineering of assembly line biosynthesis, and the expression vector construction with an example of two-vector heterologous expression system in Streptomyces.
Collapse
Affiliation(s)
- Lihan Zhang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Hangzhou, Zhejiang Province, China.
| | - Takayoshi Awakawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
13
|
Carretero-Molina D, Ortiz-López FJ, Gren T, Oves-Costales D, Martín J, Román-Hurtado F, Sparholt Jørgensen T, de la Cruz M, Díaz C, Vicente F, Blin K, Reyes F, Weber T, Genilloud O. Discovery of gargantulides B and C, new 52-membered macrolactones from Amycolatopsis sp. Complete absolute stereochemistry of the gargantulide family. Org Chem Front 2022. [DOI: 10.1039/d1qo01480c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Gargantulides B and C are among the most complex bacterial polyketides discovered so far. A combination of NMR and genome-based bioinformatics analyses allowed us to complete and revise the absolute stereochemistry of the entire gargantulide family.
Collapse
Affiliation(s)
- Daniel Carretero-Molina
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda. del Conocimiento 34, 18016 Armilla, Granada, Spain
| | - Francisco Javier Ortiz-López
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda. del Conocimiento 34, 18016 Armilla, Granada, Spain
| | - Tetiana Gren
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, building 220, 2800 Kgs. Lyngby, Denmark
| | - Daniel Oves-Costales
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda. del Conocimiento 34, 18016 Armilla, Granada, Spain
| | - Jesús Martín
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda. del Conocimiento 34, 18016 Armilla, Granada, Spain
| | - Fernando Román-Hurtado
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda. del Conocimiento 34, 18016 Armilla, Granada, Spain
| | - Tue Sparholt Jørgensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, building 220, 2800 Kgs. Lyngby, Denmark
| | - Mercedes de la Cruz
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda. del Conocimiento 34, 18016 Armilla, Granada, Spain
| | - Caridad Díaz
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda. del Conocimiento 34, 18016 Armilla, Granada, Spain
| | - Francisca Vicente
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda. del Conocimiento 34, 18016 Armilla, Granada, Spain
| | - Kai Blin
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, building 220, 2800 Kgs. Lyngby, Denmark
| | - Fernando Reyes
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda. del Conocimiento 34, 18016 Armilla, Granada, Spain
| | - Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, building 220, 2800 Kgs. Lyngby, Denmark
| | - Olga Genilloud
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda. del Conocimiento 34, 18016 Armilla, Granada, Spain
| |
Collapse
|
14
|
In Silico Analysis of PKS and NRPS Gene Clusters in Arisostatin- and Kosinostatin-Producers and Description of Micromonospora okii sp. nov. Antibiotics (Basel) 2021; 10:antibiotics10121447. [PMID: 34943659 PMCID: PMC8698034 DOI: 10.3390/antibiotics10121447] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/25/2022] Open
Abstract
Micromonospora sp. TP-A0316 and Micromonospora sp. TP-A0468 are producers of arisostatin and kosinostatin, respectively. Micromonospora sp. TP-A0316 showed a 16S rRNA gene sequence similarity of 100% to Micromonosporaoryzae CP2R9-1T whereas Micromonospora sp. TP-A0468 showed a 99.3% similarity to Micromonospora haikouensis 232617T. A phylogenetic analysis based on gyrB sequences suggested that Micromonospora sp. TP-A0316 is closely related to Micromonospora oryzae whereas Micromonospora TP-A0468 is an independent genomospecies. As Micromonospora sp. TP-A0468 showed some phenotypic differences to its closely related species, it was classified as a novel species, for which the name Micromonospora okii sp. nov. is proposed. The type strain is TP-A0468T (= NBRC 110461T). Micromonospora sp. TP-A0316 and M. okii TP-A0468T were both found to harbor 15 gene clusters for secondary metabolites such as polyketides and nonribosomal peptides in their genomes. Arisostatin-biosynthetic gene cluster (BGC) of Micromonospora sp. TP-A0316 closely resembled tetrocarcin A-BGC of Micromonospora chalcea NRRL 11289. A large type-I polyketide synthase gene cluster was present in each genome of Micromonospora sp. TP-A0316 and M. okii TP-A0468T. It was an ortholog of quinolidomicin-BGC of M. chalcea AK-AN57 and widely distributed in the genus Micromonospora.
Collapse
|
15
|
Um S, Guo H, Thiengmag S, Benndorf R, Murphy R, Rischer M, Braga D, Poulsen M, de Beer ZW, Lackner G, Beemelmanns C. Comparative Genomic and Metabolic Analysis of Streptomyces sp. RB110 Morphotypes Illuminates Genomic Rearrangements and Formation of a New 46-Membered Antimicrobial Macrolide. ACS Chem Biol 2021; 16:1482-1492. [PMID: 34275291 DOI: 10.1021/acschembio.1c00357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Morphotype switches frequently occur in Actinobacteria and are often associated with disparate natural product production. Here, we report on differences in the secondary metabolomes of two morphotypes of a Streptomyces species, including the discovery of a novel antimicrobial glycosylated macrolide, which we named termidomycin A. While exhibiting an unusual 46-member polyene backbone, termidomycin A (1) shares structural features with the clinically important antifungal agents amphotericin B and nystatin A1. Genomic analyses revealed a biosynthetic gene cluster encoding for a putative giant type I polyketide synthase (PKS), whose domain structure allowed us to propose the relative configuration of the 46-member macrolide. The architecture of the biosynthetic gene cluster was different in both morphotypes, thus leading to diversification of the product spectrum. Given the high frequency of genomic rearrangements in Streptomycetes, the metabolic analysis of distinct morphotypes as exemplified in this study is a promising approach for the discovery of bioactive natural products and pathways of diversification.
Collapse
Affiliation(s)
- Soohyun Um
- Chemical Biology of Microbe-Host Interactions, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Beutenbergstraße 11a, 07745 Jena, Germany
| | - Huijuan Guo
- Chemical Biology of Microbe-Host Interactions, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Beutenbergstraße 11a, 07745 Jena, Germany
| | - Sirinthra Thiengmag
- Synthetic Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Beutenbergstraße 11a, 07745 Jena, Germany
| | - René Benndorf
- Chemical Biology of Microbe-Host Interactions, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Beutenbergstraße 11a, 07745 Jena, Germany
| | - Robert Murphy
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen East, Denmark
| | - Maja Rischer
- Chemical Biology of Microbe-Host Interactions, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Beutenbergstraße 11a, 07745 Jena, Germany
| | - Daniel Braga
- Synthetic Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Beutenbergstraße 11a, 07745 Jena, Germany
| | - Michael Poulsen
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen East, Denmark
| | - Z. Wilhelm de Beer
- Department of Biochemistry, Genetics, and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0002, South Africa
| | - Gerald Lackner
- Synthetic Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Beutenbergstraße 11a, 07745 Jena, Germany
| | - Christine Beemelmanns
- Chemical Biology of Microbe-Host Interactions, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Beutenbergstraße 11a, 07745 Jena, Germany
| |
Collapse
|
16
|
Wang W, Zheng G, Lu Y. Recent Advances in Strategies for the Cloning of Natural Product Biosynthetic Gene Clusters. Front Bioeng Biotechnol 2021; 9:692797. [PMID: 34327194 PMCID: PMC8314000 DOI: 10.3389/fbioe.2021.692797] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/18/2021] [Indexed: 11/13/2022] Open
Abstract
Microbial natural products (NPs) are a major source of pharmacological agents. Most NPs are synthesized from specific biosynthetic gene clusters (BGCs). With the rapid increase of sequenced microbial genomes, large numbers of NP BGCs have been discovered, regarded as a treasure trove of novel bioactive compounds. However, many NP BGCs are silent in native hosts under laboratory conditions. In order to explore their therapeutic potential, a main route is to activate these silent NP BGCs in heterologous hosts. To this end, the first step is to accurately and efficiently capture these BGCs. In the past decades, a large number of effective technologies for cloning NP BGCs have been established, which has greatly promoted drug discovery research. Herein, we describe recent advances in strategies for BGC cloning, with a focus on the preparation of high-molecular-weight DNA fragment, selection and optimization of vectors used for carrying large-size DNA, and methods for assembling targeted DNA fragment and appropriate vector. The future direction into novel, universal, and high-efficiency methods for cloning NP BGCs is also prospected.
Collapse
Affiliation(s)
- Wenfang Wang
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Guosong Zheng
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yinhua Lu
- College of Life Sciences, Shanghai Normal University, Shanghai, China.,Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China
| |
Collapse
|
17
|
Alam K, Hao J, Zhang Y, Li A. Synthetic biology-inspired strategies and tools for engineering of microbial natural product biosynthetic pathways. Biotechnol Adv 2021; 49:107759. [PMID: 33930523 DOI: 10.1016/j.biotechadv.2021.107759] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/28/2021] [Accepted: 04/23/2021] [Indexed: 02/08/2023]
Abstract
Microbial-derived natural products (NPs) and their derivative products are of great importance and used widely in many fields, especially in pharmaceutical industries. However, there is an immediate need to establish innovative approaches, strategies, and techniques to discover new NPs with novel or enhanced biological properties, due to the less productivity and higher cost on traditional drug discovery pipelines from natural bioresources. Revealing of untapped microbial cryptic biosynthetic gene clusters (BGCs) using DNA sequencing technology and bioinformatics tools makes genome mining possible for NP discovery from microorganisms. Meanwhile, new approaches and strategies in the area of synthetic biology offer great potentials for generation of new NPs by engineering or creating synthetic systems with improved and desired functions. Development of approaches, strategies and tools in synthetic biology can facilitate not only exploration and enhancement in supply, and also in the structural diversification of NPs. Here, we discussed recent advances in synthetic biology-inspired strategies, including bioinformatics and genetic engineering tools and approaches for identification, cloning, editing/refactoring of candidate biosynthetic pathways, construction of heterologous expression hosts, fitness optimization between target pathways and hosts and detection of NP production.
Collapse
Affiliation(s)
- Khorshed Alam
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China.
| | - Jinfang Hao
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Youming Zhang
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China.
| | - Aiying Li
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China.
| |
Collapse
|
18
|
Ueoka R, Hashimoto J, Kozone I, Hashimoto T, Kudo K, Kagaya N, Suenaga H, Ikeda H, Shin-Ya K. A novel methymycin analog, 12-ketomethymycin N-oxide, produced by the heterologous expression of the large pikromycin/methymycin biosynthetic gene cluster of Streptomyces sp. AM4900. Biosci Biotechnol Biochem 2021; 85:890-894. [PMID: 33590846 DOI: 10.1093/bbb/zbaa111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/11/2020] [Indexed: 11/13/2022]
Abstract
A novel methymycin analog, 12-ketomethymycin N-oxide, was produced by the heterologous expression of the pikromycin/methymycin biosynthetic gene cluster of Streptomyces sp. AM4900 together with 12-ketomethymycin, which was only isolated by the biotransformation of the synthetic intermediate before. Their structures were determined by the spectroscopic data and the chemical derivatization. 12-Ketomethymycin showed a weak cytotoxicity against SKOV-3 and Jurkat cells, although its N-oxide analog did not show any activity. Both showed no antibacterial activities against Escherichia coli and Micrococcus luteus.
Collapse
Affiliation(s)
- Reiko Ueoka
- National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Junko Hashimoto
- Japan Biological Informatics Consortium (JBIC), Tokyo, Japan
| | - Ikuko Kozone
- Japan Biological Informatics Consortium (JBIC), Tokyo, Japan
| | - Takuya Hashimoto
- National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Kei Kudo
- National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Noritaka Kagaya
- National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Hikaru Suenaga
- National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Haruo Ikeda
- Kitasato Institute for Life Sciences, Kitasato University, Kanagawa, Japan
| | - Kazuo Shin-Ya
- National Institute of Advanced Industrial Science and Technology, Tokyo, Japan.,Biotechnology Research Center, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
19
|
Hashimoto T, Hashimoto J, Kagaya N, Nishimura T, Suenaga H, Nishiyama M, Kuzuyama T, Shin-Ya K. A novel oxazole-containing tetraene compound, JBIR-159, produced by heterologous expression of the cryptic trans-AT type polyketide synthase biosynthetic gene cluster. J Antibiot (Tokyo) 2021; 74:354-358. [PMID: 33558648 DOI: 10.1038/s41429-021-00410-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 11/09/2022]
Abstract
Using genome mining approach, we identified a novel biosynthetic gene cluster containing trans-AT type PKS genes from Streptomyces versipellis 4083-SVS6. A bacterial artificial chromosome (BAC) clone, pKU503JL68_PN1_P10-C12, accommodating the entire biosynthetic gene cluster was obtained from a BAC library. Heterologous expression of the biosynthetic gene cluster in Streptomyces lividans TK23 led to the production of a novel polyene compound, JBIR-159. We report herein the biosynthetic gene cluster for JBIR-159, and the heterologous expression, isolation, structure determination and a brief biological activity.
Collapse
Affiliation(s)
- Takuya Hashimoto
- National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Junko Hashimoto
- Japan Biological Informatics Consortium (JBIC), Tokyo, Japan
| | - Noritaka Kagaya
- National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Takehiro Nishimura
- Technology Research Association for Next Generation Natural Products Chemistry, Tokyo, Japan
| | - Hikaru Suenaga
- National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Makoto Nishiyama
- Biotechnology Research Center, The University of Tokyo, Tokyo, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Tomohisa Kuzuyama
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan.,Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuo Shin-Ya
- National Institute of Advanced Industrial Science and Technology, Tokyo, Japan. .,Biotechnology Research Center, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
20
|
Takao R, Sakai K, Koshino H, Osada H, Takahashi S. Identification of the kinanthraquinone biosynthetic gene cluster by expression of an atypical response regulator. Biosci Biotechnol Biochem 2021; 85:714-721. [DOI: 10.1093/bbb/zbaa082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/29/2020] [Indexed: 01/15/2023]
Abstract
ABSTRACT
Recent advances in genome sequencing have revealed a variety of secondary metabolite biosynthetic gene clusters in actinomycetes. Understanding the biosynthetic mechanism controlling secondary metabolite production is important for utilizing these gene clusters. In this study, we focused on the kinanthraquinone biosynthetic gene cluster, which has not been identified yet in Streptomyces sp. SN-593. Based on chemical structure, 5 type II polyketide synthase gene clusters were listed from the genome sequence of Streptomyces sp. SN-593. Among them, a candidate gene cluster was selected by comparing the gene organization with grincamycin, which is synthesized through an intermediate similar to kinanthraquinone. We initially utilized a BAC library for subcloning the kiq gene cluster, performed heterologous expression in Streptomyces lividans TK23, and identified the production of kinanthraquinone and kinanthraquinone B. We also found that heterologous expression of kiqA, which belongs to the DNA-binding response regulator OmpR family, dramatically enhanced the production of kinanthraquinones.
Collapse
Affiliation(s)
- Risa Takao
- Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama-shi, Saitama, Japan
- Natural Product Biosynthesis Research Unit, RIKEN Centre for Sustainable Resource Science, Wako, Saitama, Japan
| | - Katsuyuki Sakai
- Natural Product Biosynthesis Research Unit, RIKEN Centre for Sustainable Resource Science, Wako, Saitama, Japan
| | - Hiroyuki Koshino
- Molecular Structure Characterization Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Hiroyuki Osada
- Chemical Biology Research Group, RIKEN Centre for Sustainable Resource Science, Wako, Saitama, Japan
| | - Shunji Takahashi
- Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama-shi, Saitama, Japan
- Natural Product Biosynthesis Research Unit, RIKEN Centre for Sustainable Resource Science, Wako, Saitama, Japan
| |
Collapse
|
21
|
Kang HS, Kim ES. Recent advances in heterologous expression of natural product biosynthetic gene clusters in Streptomyces hosts. Curr Opin Biotechnol 2021; 69:118-127. [PMID: 33445072 DOI: 10.1016/j.copbio.2020.12.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/02/2020] [Accepted: 12/15/2020] [Indexed: 01/09/2023]
Abstract
The heterologous expression of natural product biosynthetic gene clusters (BGCs) has traditionally been used as a genetic platform to link various natural product chemotypes to their corresponding genotypes. In recent years, heterologous expression has played an increasing role in natural products research with the advances in sequencing technologies and bioinformatics tools that allow for the rapid and systematic identification of known and cryptic BGCs from a large number of microbial genome sequences. The advances in synthetic biology have also facilitated the process of heterologous expression by providing tools for rapid cloning and engineering of BGCs to improve production yield or to activate silent BGCs. This paper summarizes the recent progress in the cloning and engineering of natural product BGCs and highlights recent examples of the heterologous expression of both known and cryptic BGCs in Streptomyces hosts, which will continue to play a pivotal role in genomics-driven natural product research.
Collapse
Affiliation(s)
- Hahk-Soo Kang
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Republic of Korea.
| | - Eung-Soo Kim
- Department of Biological Engineering, Inha University, Incheon 22212, Republic of Korea.
| |
Collapse
|
22
|
Gao Y, Zhao Y, He X, Deng Z, Jiang M. Challenges of functional expression of complex polyketide biosynthetic gene clusters. Curr Opin Biotechnol 2021; 69:103-111. [PMID: 33422913 DOI: 10.1016/j.copbio.2020.12.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/27/2020] [Accepted: 12/02/2020] [Indexed: 11/28/2022]
Abstract
Polyketide natural products are valuable sources of bioactive molecules such as nutraceuticals and pharmaceuticals. The tremendous development of the genome sequence database revealed that the majority of the biosynthetic gene clusters (BGCs) are cryptic. Activation of these cryptic BGCs and identification of the related products is essential for finding more lead compounds for pharmaceuticals. On the other hand, 99% of microbes in nature cannot be cultured in regular conditions, which greatly hinders the efforts to explore their biosynthetic potentials. Expression of polyketide BGCs in heterologous hosts with better growth, good genetic characteristics, and amenable molecular tools is a robust approach to identify new polyketides and characterize their biosynthesis. This review outlines the challenges in the heterologous production of polyketide BGCs of bacterial origins.
Collapse
Affiliation(s)
- Yaojie Gao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Yuchun Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Xinyi He
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Ming Jiang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, PR China.
| |
Collapse
|
23
|
Nogawa T, Terai A, Amagai K, Hashimoto J, Futamura Y, Okano A, Fujie M, Satoh N, Ikeda H, Shin-Ya K, Osada H, Takahashi S. Heterologous Expression of the Biosynthetic Gene Cluster for Verticilactam and Identification of Analogues. JOURNAL OF NATURAL PRODUCTS 2020; 83:3598-3605. [PMID: 33216528 DOI: 10.1021/acs.jnatprod.0c00755] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Verticilactam and the new geometric isomers, verticilactams B and C, were produced by heterologous expression of the biosynthetic gene cluster for verticilactam using the Streptomyces avermitilis SUKA17 strain. Only verticilactam, a compound with a characteristic β-ketoamide unit within a 16-membered polyketide macrolactam conjugated with an octalin skeleton, had been previously reported having been isolated from Streptomyces spiroverticillatus JC-8444. In this report, minor verticilactam derivatives were isolated from the transformed strain, and their structures elucidated by spectral analysis. Verticilactam B was a geometric isomer at Δ17 and Δ19, and verticilactam C was the Δ19 and Δ21 isomer. In addition, the absolute configuration of verticilactam was confirmed by ECD analysis and NMR chemical shifts. The stereochemistry assignments of the hydroxy groups at C-10 and C-12 were supported by the domain organization of the polyketide synthase identified in the verticilactam gene cluster. Verticilactam showed moderate activity against the malaria parasite Plasmodium falciparum 3D7 strain with no significant cytotoxicity or antimicrobial effects.
Collapse
Affiliation(s)
- Toshihiko Nogawa
- RIKEN Center for Sustainable Resource Science, Chemical Biology Research Group, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Atsutaka Terai
- RIKEN Center for Sustainable Resource Science, Chemical Biology Research Group, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Keita Amagai
- RIKEN Center for Sustainable Resource Science, Natural Product Biosynthesis Research Unit, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Junko Hashimoto
- Japan Biological Informatics Consortium, 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Yushi Futamura
- RIKEN Center for Sustainable Resource Science, Chemical Biology Research Group, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Akiko Okano
- RIKEN Center for Sustainable Resource Science, Chemical Biology Research Group, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Manabu Fujie
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| | - Noriyuki Satoh
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| | - Haruo Ikeda
- Kitasato Institute for Life Sciences, Kitasato University, 1-15-1, Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Kazuo Shin-Ya
- National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
- The Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hiroyuki Osada
- RIKEN Center for Sustainable Resource Science, Chemical Biology Research Group, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Shunji Takahashi
- RIKEN Center for Sustainable Resource Science, Natural Product Biosynthesis Research Unit, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- The Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
24
|
Heterologous biosynthesis as a platform for producing new generation natural products. Curr Opin Biotechnol 2020; 66:123-130. [DOI: 10.1016/j.copbio.2020.06.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/27/2020] [Accepted: 06/30/2020] [Indexed: 12/18/2022]
|
25
|
In vitro Cas9-assisted editing of modular polyketide synthase genes to produce desired natural product derivatives. Nat Commun 2020; 11:4022. [PMID: 32782248 PMCID: PMC7419507 DOI: 10.1038/s41467-020-17769-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 07/10/2020] [Indexed: 02/08/2023] Open
Abstract
One major bottleneck in natural product drug development is derivatization, which is pivotal for fine tuning lead compounds. A promising solution is modifying the biosynthetic machineries of middle molecules such as macrolides. Although intense studies have established various methodologies for protein engineering of type I modular polyketide synthase(s) (PKSs), the accurate targeting of desired regions in the PKS gene is still challenging due to the high sequence similarity between its modules. Here, we report an innovative technique that adapts in vitro Cas9 reaction and Gibson assembly to edit a target region of the type I modular PKS gene. Proof-of-concept experiments using rapamycin PKS as a template show that heterologous expression of edited biosynthetic gene clusters produced almost all the desired derivatives. Our results are consistent with the promiscuity of modular PKS and thus, our technique will provide a platform to generate rationally designed natural product derivatives for future drug development. Several different genetic strategies have been reported for the modification of polyketide synthases but the highly repetitive modular structure makes this difficult. Here the authors report on an adapted Cas9 reaction and Gibson assembly to edit a target region of the polyketide synthases gene in vitro.
Collapse
|
26
|
Hifnawy MS, Fouda MM, Sayed AM, Mohammed R, Hassan HM, AbouZid SF, Rateb ME, Keller A, Adamek M, Ziemert N, Abdelmohsen UR. The genus Micromonospora as a model microorganism for bioactive natural product discovery. RSC Adv 2020; 10:20939-20959. [PMID: 35517724 PMCID: PMC9054317 DOI: 10.1039/d0ra04025h] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 05/28/2020] [Indexed: 11/21/2022] Open
Abstract
This review covers the development of the genus Micromonospora as a model for natural product research and the timeline of discovery progress from the classical bioassay-guided approaches through the application of genome mining and genetic engineering techniques that target specific products. It focuses on the reported chemical structures along with their biological activities and the synthetic and biosynthetic studies they have inspired. This survey summarizes the extraordinary biosynthetic diversity that can emerge from a widely distributed actinomycete genus and supports future efforts to explore under-explored species in the search for novel natural products.
Collapse
Affiliation(s)
- Mohamed S Hifnawy
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University Cairo Egypt 11787
| | - Mohamed M Fouda
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University Beni-Suef Egypt 62513
| | - Ahmed M Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University Beni-Suef Egypt 62513
| | - Rabab Mohammed
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University Beni-Suef Egypt 62514
| | - Hossam M Hassan
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University Beni-Suef Egypt 62514
| | - Sameh F AbouZid
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University Beni-Suef Egypt 62514
| | - Mostafa E Rateb
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University Beni-Suef Egypt 62514
- School of Computing, Engineering and Physical Sciences, University of the West of Scotland Paisley PA1 2BE UK
| | - Alexander Keller
- Center for Computational and Theoretical Biology, Biocenter, University of Würzburg Hubland Nord 97074 Würzburg Germany
| | - Martina Adamek
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen Tübingen Germany
- German Centre for Infection Research (DZIF) Partner Site Tübingen Tübingen Germany
| | - Nadine Ziemert
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen Tübingen Germany
- German Centre for Infection Research (DZIF) Partner Site Tübingen Tübingen Germany
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University 61519 Minia Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, Universities Zone P.O. Box 61111 New Minia City 61519 Minia Egypt
| |
Collapse
|
27
|
Hashimoto T, Kozone I, Hashimoto J, Suenaga H, Fujie M, Satoh N, Ikeda H, Shin-Ya K. Identification, cloning and heterologous expression of biosynthetic gene cluster for desertomycin. J Antibiot (Tokyo) 2020; 73:650-654. [PMID: 32457441 DOI: 10.1038/s41429-020-0319-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/22/2020] [Accepted: 05/01/2020] [Indexed: 01/23/2023]
Abstract
From our in-house microbial genome database of secondary metabolite producers, we identified a candidate biosynthetic gene cluster for desertomycin from Streptomyces nobilis JCM4274. We report herein the cloning of the 127-kb entire gene cluster for desertomycin biosynthesis using bacterial artificial chromosome vector. The entire biosynthetic gene cluster for desertomycin was introduced in the heterologous host, Streptomyces lividans TK23, with an average yield of more than 130 mg l-1.
Collapse
Affiliation(s)
- Takuya Hashimoto
- National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Ikuko Kozone
- Japan Biological Informatics Consortium, 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Junko Hashimoto
- Japan Biological Informatics Consortium, 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Hikaru Suenaga
- National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Manabu Fujie
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| | - Noriyuki Satoh
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| | - Haruo Ikeda
- Kitasato Institute for Life Sciences, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Kazuo Shin-Ya
- National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan. .,The Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan. .,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
28
|
Tan B, Zhang Q, Zhu Y, Jin H, Zhang L, Chen S, Zhang C. Deciphering Biosynthetic Enzymes Leading to 4-Chloro-6-Methyl-5,7-Dihydroxyphenylglycine, a Non-Proteinogenic Amino Acid in Totopotensamides. ACS Chem Biol 2020; 15:766-773. [PMID: 32118401 DOI: 10.1021/acschembio.9b00997] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Totopotensamide A (TPM A, 1) is a polyketide-peptide glycoside featuring a nonproteinogenic amino acid 4-chloro-6-methyl-5,7-dihydroxyphenylglycine (ClMeDPG). The biosynthetic gene cluster (BGC) of totopotensamides (tot) was previously activated by manipulating transcription regulators in marine-derived Streptomyces pactum SCSIO 02999. Herein, we report the heterologous expression of the tot BGC in Streptomyces lividans TK64, and the production improvement of TPM A via in-frame deletion of two negative regulators totR5 and totR3. The formation of ClMeDPG was proposed to require six enzymes, including four enzymes TotC1C2C3C4 for 3,5-dihydroxyphenylglycine (DPG) biosynthesis and two modifying enzymes TotH (halogenase) and TotM (methyltransferase). Heterologous expression of the four-gene cassette totC1C2C3C4 led to production of 3,5-dihydroxyphenylglyoxylate (DPGX). The aminotransferase TotC4 was biochemically characterized to convert DPGX to S-DPG. Inactivation of totH led to a mutant accumulated a deschloro derivative TPM H1, and the ΔtotHi/ΔtotMi double mutant afforded two deschloro-desmethyl products TPMs HM1 and HM2. A hydrolysis experiment demonstrated that the DPG moiety in TPM HM2 was S-DPG, consistent with that of the TotC4 enzymatic product. These results confirmed that TotH and TotM were responsible for ClMeDPG biosynthesis. Bioinformatics analysis indicated that both TotH and TotM might act on thiolation domain-tethered substrates. This study provided evidence for deciphering enzymes leading to ClMeDPG in TPM A, and unambiguously determined its absolute configuration as S.
Collapse
Affiliation(s)
- Bin Tan
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Institutions of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of the Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Qingbo Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Institutions of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Yiguang Zhu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Institutions of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Hongbo Jin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Institutions of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of the Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Liping Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Institutions of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Siqiang Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Institutions of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of the Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Changsheng Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Institutions of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| |
Collapse
|
29
|
Abbasi MN, Fu J, Bian X, Wang H, Zhang Y, Li A. Recombineering for Genetic Engineering of Natural Product Biosynthetic Pathways. Trends Biotechnol 2020; 38:715-728. [PMID: 31973879 DOI: 10.1016/j.tibtech.2019.12.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 01/21/2023]
Abstract
Microbial genomes encode many cryptic and uncharacterized biosynthetic gene clusters (BGCs). Exploiting this unexplored genetic wealth to discover microbial novel natural products (NPs) remains a challenging issue. We review homologous recombination (HR)-based recombineering, mediated by the recombinases RecE/RecT from Rac prophage and Redα/Redβ from lambda phage, which has developed into a highly inclusive tool for direct cloning of large DNA up to 100 kb, seamless mutation, multifragment assembly, and heterologous expression of microbial NP BGCs. Its utilization in the refactoring, engineering, and functional expression of long BGCs for NP biosynthesis makes it easy to elucidate NP-producing potential in microbes. This review also highlights various applications of recombineering in NP-derived drug discovery.
Collapse
Affiliation(s)
- Muhammad Nazeer Abbasi
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Jun Fu
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Xiaoying Bian
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Hailong Wang
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China.
| | - Youming Zhang
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China.
| | - Aiying Li
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China.
| |
Collapse
|
30
|
Novel macrolactam compound produced by the heterologous expression of a large cryptic biosynthetic gene cluster of Streptomyces rochei IFO12908. J Antibiot (Tokyo) 2019; 73:171-174. [DOI: 10.1038/s41429-019-0265-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/19/2019] [Accepted: 11/28/2019] [Indexed: 12/21/2022]
|
31
|
Zhang JJ, Tang X, Moore BS. Genetic platforms for heterologous expression of microbial natural products. Nat Prod Rep 2019; 36:1313-1332. [PMID: 31197291 PMCID: PMC6750982 DOI: 10.1039/c9np00025a] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Covering: 2005 up to 2019Natural products are of paramount importance in human medicine. Not only are most antibacterial and anticancer drugs derived directly from or inspired by natural products, many other branches of medicine, such as immunology, neurology, and cardiology, have similarly benefited from natural product-based drugs. Typically, the genetic material required to synthesize a microbial specialized product is arranged in a multigene biosynthetic gene cluster (BGC), which codes for proteins associated with molecule construction, regulation, and transport. The ability to connect natural product compounds to BGCs and vice versa, along with ever-increasing knowledge of biosynthetic machineries, has spawned the field of genomics-guided natural product genome mining for the rational discovery of new chemical entities. One significant challenge in the field of natural product genome mining is how to rapidly link orphan biosynthetic genes to their associated chemical products. This review highlights state-of-the-art genetic platforms to identify, interrogate, and engineer BGCs from diverse microbial sources, which can be broken into three stages: (1) cloning and isolation of genomic loci, (2) heterologous expression in a host organism, and (3) genetic manipulation of cloned pathways. In the future, we envision natural product genome mining will be rapidly accelerated by de novo DNA synthesis and refactoring of whole biosynthetic pathways in combination with systematic heterologous expression methodologies.
Collapse
Affiliation(s)
- Jia Jia Zhang
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California, USA.
| | - Xiaoyu Tang
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California, USA.
| | - Bradley S Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California, USA. and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, California, USA
| |
Collapse
|
32
|
Dhakal D, Sohng JK, Pandey RP. Engineering actinomycetes for biosynthesis of macrolactone polyketides. Microb Cell Fact 2019; 18:137. [PMID: 31409353 PMCID: PMC6693128 DOI: 10.1186/s12934-019-1184-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 08/02/2019] [Indexed: 12/18/2022] Open
Abstract
Actinobacteria are characterized as the most prominent producer of natural products (NPs) with pharmaceutical importance. The production of NPs from these actinobacteria is associated with particular biosynthetic gene clusters (BGCs) in these microorganisms. The majority of these BGCs include polyketide synthase (PKS) or non-ribosomal peptide synthase (NRPS) or a combination of both PKS and NRPS. Macrolides compounds contain a core macro-lactone ring (aglycone) decorated with diverse functional groups in their chemical structures. The aglycon is generated by megaenzyme polyketide synthases (PKSs) from diverse acyl-CoA as precursor substrates. Further, post-PKS enzymes are responsible for allocating the structural diversity and functional characteristics for their biological activities. Macrolides are biologically important for their uses in therapeutics as antibiotics, anti-tumor agents, immunosuppressants, anti-parasites and many more. Thus, precise genetic/metabolic engineering of actinobacteria along with the application of various chemical/biological approaches have made it plausible for production of macrolides in industrial scale or generation of their novel derivatives with more effective biological properties. In this review, we have discussed versatile approaches for generating a wide range of macrolide structures by engineering the PKS and post-PKS cascades at either enzyme or cellular level in actinobacteria species, either the native or heterologous producer strains.
Collapse
Affiliation(s)
- Dipesh Dhakal
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, 31460 Chungnam Republic of Korea
| | - Jae Kyung Sohng
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, 31460 Chungnam Republic of Korea
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, 31460 Chungnam Republic of Korea
| | - Ramesh Prasad Pandey
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, 31460 Chungnam Republic of Korea
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, 31460 Chungnam Republic of Korea
| |
Collapse
|