1
|
Kanchrana M, Gamidi RK, Kumari J, Sriram D, Basavoju S. Design, synthesis, anti-mycobacterial activity, molecular docking and ADME analysis of spiroquinoxaline-1,2,4-oxadiazoles via [3 + 2] cycloaddition reaction under ultrasound irradiation. Mol Divers 2024; 28:3979-3991. [PMID: 38261121 DOI: 10.1007/s11030-023-10790-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/04/2023] [Indexed: 01/24/2024]
Abstract
The development of anti-tuberculosis (anti-TB) drugs has become a challenging task in medicinal chemistry. This is because Mycobacterium tuberculosis (TB), the pathogen that causes tuberculosis, has an increasing number of drug-resistant strains, and existing medication therapies are not very effective. This resistance significantly demands new anti-TB drug profiles. Here, we present the design and synthesis of a number of hybrid compounds with previously known anti-mycobacterial moieties attached to quinoxaline, quinoline, tetrazole, and 1,2,4-oxadiazole scaffolds. A convenient ultrasound methodology was employed to attain spiroquinoxaline-1,2,4-oxadiazoles via [3 + 2] cycloaddition of quinoxaline Schiff bases and aryl nitrile oxides at room temperature. This approach avoids standard heating and column chromatography while producing high yields and shorter reaction times. The target compounds 3a-p were well-characterized, and their in vitro anti-mycobacterial activity (anti-TB) was evaluated. Among the screened compounds, 3i displayed promising activity against the Mycobacterium tuberculosis cell line H37Rv, with an MIC99 value of 0.78 µg/mL. However, three compounds (3f, 3h, and 3o) exhibited potent activity with MIC99 values of 6.25 µg/mL. To further understand the binding interactions, the synthesized compounds were docked against the tuberculosis protein 5OEQ using in silico molecular docking. Moreover, the most active compounds were additionally tested for their cytotoxicity against the RAW 264.7 cell line, and the cytotoxicity of compounds 3f, 3h, 3i, and 3o was 27.3, 28.9, 26.4, and 30.2 µg/mL, respectively. These results revealed that the compounds 3f, 3h, 3i, and 3o were less harmful to humans. Furthermore, the synthesized compounds were tested for ADME qualities, and the results suggest that this series is useful for producing innovative and potent anti-tubercular medicines in the future.
Collapse
Affiliation(s)
- Madhu Kanchrana
- Department of Chemistry, National Institute of Technology Warangal, Hanamkonda, Telangana, 506004, India
| | - Rama Krishna Gamidi
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra, 411008, India
| | - Jyothi Kumari
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad, Telangana, 500078, India
| | - Dharmarajan Sriram
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad, Telangana, 500078, India
| | - Srinivas Basavoju
- Department of Chemistry, National Institute of Technology Warangal, Hanamkonda, Telangana, 506004, India.
| |
Collapse
|
2
|
Kumar P, Mathpati RS, Ghule VD, Dharavath S. Synthesis of C-C bonded trifluoromethyl-based high-energy density materials via the ANRORC mechanism. Dalton Trans 2024; 53:15324-15329. [PMID: 39224089 DOI: 10.1039/d4dt02088j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
A trifluoromethyl group substituted C-C bonded nitrogen rich energetic material 3-(3-nitro-1H-pyrazol-4-yl)-5-(trifluoromethyl)-1,2,4-oxadiazole (4), its hydroxyl amine (5) and 3,6,7-triamino-7H-[1,2,4]triazolo[4,3-b][1,2,4]triazol-2-ium (6) salts and hydrazinium 5-(3-nitro-1H-pyrazol-4-yl)-3-(trifluoromethyl)-1,2,4-triazol-1-ide (7) were synthesized and fully characterized using infrared spectroscopy (IR), multinuclear magnetic resonance (NMR) spectroscopy (1H, 13C, and 19F), high-resolution mass spectrometry (HRMS), elemental analysis (EA) and differential scanning calorimetry (DSC) studies. Furthermore, compounds 4 and 7 were confirmed using single-crystal X-ray diffraction studies (SC-XRD). All compounds possess good density (1.70-1.80 g cm-3), detonation velocity (6432-7144 m s-1), pressure (16.38-20.31 GPa), and thermal stability (>170 °C). They are insensitive towards mechanical stimuli, impact (IS > 35 J) and friction (FS > 288 N). Overall, due to their balanced performance, these compounds can be a better replacement for presently used explosives such as trinitrotoluene (TNT).
Collapse
Affiliation(s)
- Parasar Kumar
- Energetic Materials Laboratory, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, Uttar Pradesh, India.
| | - Ramling S Mathpati
- Energetic Materials Laboratory, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, Uttar Pradesh, India.
| | - Vikas D Ghule
- Department of Chemistry, National Institute of Technology Kurukshetra, Kurukshetra-136119, Haryana, India
| | - Srinivas Dharavath
- Energetic Materials Laboratory, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, Uttar Pradesh, India.
| |
Collapse
|
3
|
He X, Chen C, Zhang Z, Yu T, Wen L, Cao Y, Liu Y. Molecule Empowerment and Crystal Desensitization: A Multilevel Structure-Property Analysis toward Designing High-Energy Low-Sensitivity Layered Energetic Materials. ACS APPLIED MATERIALS & INTERFACES 2024; 16:47429-47442. [PMID: 39214567 DOI: 10.1021/acsami.4c07344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Layered energetic materials (LEMs) can effectively balance energy and mechanical sensitivity, making them a current research focus in the field of energetic materials. However, the influence of the layered stacking pattern on impact sensitivity is still unclear, leading to the lack of advanced design strategies for high-energy low-sensitivity LEMs. Herein, we first utilize novel indicators such as maximum plane separation and hydrogen bond dimension to perform high-throughput screening on over 106 candidate structures, resulting in 17 target crystals. A systematic analysis was then conducted on the relationships between the bond dissociation energy (BDE) of the weakest energy-storing bond at the molecular level, the intralayer hydrogen bond energy (HBE), and the sliding energy barrier (SEB) at the crystal level with impact sensitivity. The findings suggest that a material can have low sensitivity only if at least two of the three properties perform well, and the interlayer sliding resistance can be reduced by enhancing the intermolecular hydrogen bond interactions, which reasonably explains the experimental phenomena. More importantly, we developed a prediction model for the impact sensitivity of LEMs with a coefficient of determination of 0.88. Additionally, factors affecting HBE and SEB were identified, and a linear model was established based on molecular-level feature variables. Finally, a new strategy for designing high-energy low-sensitivity LEMs was proposed, namely, empowerment at the molecular scale and desensitization at the crystal scale. This study integrates high-throughput screening, multilevel structure-property relationship analysis, and mathematical model construction, offering new perspectives for the development of novel high-energy and low-sensitivity energetic materials.
Collapse
Affiliation(s)
- Xiaokai He
- Xi'an Modern Chemistry Research Institute, Xi'an 710065, P.R. China
- Xi'an Key Laboratory of Liquid Crystal and Organic Photovoltaic Materials, Xi'an 710065, P.R. China
| | - Chao Chen
- Xi'an Modern Chemistry Research Institute, Xi'an 710065, P.R. China
- Xi'an Key Laboratory of Liquid Crystal and Organic Photovoltaic Materials, Xi'an 710065, P.R. China
| | - Zhixiang Zhang
- Xi'an Modern Chemistry Research Institute, Xi'an 710065, P.R. China
- Xi'an Key Laboratory of Liquid Crystal and Organic Photovoltaic Materials, Xi'an 710065, P.R. China
| | - Tao Yu
- Xi'an Modern Chemistry Research Institute, Xi'an 710065, P.R. China
- Xi'an Key Laboratory of Liquid Crystal and Organic Photovoltaic Materials, Xi'an 710065, P.R. China
| | - Linyuan Wen
- Xi'an Modern Chemistry Research Institute, Xi'an 710065, P.R. China
- Xi'an Key Laboratory of Liquid Crystal and Organic Photovoltaic Materials, Xi'an 710065, P.R. China
| | - Yilin Cao
- Xi'an Modern Chemistry Research Institute, Xi'an 710065, P.R. China
- Xi'an Key Laboratory of Liquid Crystal and Organic Photovoltaic Materials, Xi'an 710065, P.R. China
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Yingzhe Liu
- Xi'an Modern Chemistry Research Institute, Xi'an 710065, P.R. China
- National Key Laboratory of Energetic Materials, Xi'an 710065, P.R. China
- State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi'an 710065, P.R. China
- Xi'an Key Laboratory of Liquid Crystal and Organic Photovoltaic Materials, Xi'an 710065, P.R. China
| |
Collapse
|
4
|
Marrs FW, Davis JV, Burch AC, Brown GW, Lease N, Huestis PL, Cawkwell MJ, Manner VW. Chemical Descriptors for a Large-Scale Study on Drop-Weight Impact Sensitivity of High Explosives. J Chem Inf Model 2023; 63:753-769. [PMID: 36695777 PMCID: PMC9930127 DOI: 10.1021/acs.jcim.2c01154] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Indexed: 01/26/2023]
Abstract
The drop-weight impact test is an experiment that has been used for nearly 80 years to evaluate handling sensitivity of high explosives. Although the results of this test are known to have large statistical uncertainties, it is one of the most common tests due to its accessibility and modest material requirements. In this paper, we compile a large data set of drop-weight impact sensitivity test results (mainly performed at Los Alamos National Laboratory), along with a compendium of molecular and chemical descriptors for the explosives under test. These data consist of over 500 unique explosives, over 1000 repeat tests, and over 100 descriptors, for a total of about 1500 observations. We use random forest methods to estimate a model of explosive handling sensitivity as a function of chemical and molecular properties of the explosives under test. Our model predicts well across a wide range of explosive types, spanning a broad range of explosive performance and sensitivity. We find that properties related to explosive performance, such as heat of explosion, oxygen balance, and functional group, are highly predictive of explosive handling sensitivity. Yet, models that omit many of these properties still perform well. Our results suggest that there is not one or even several factors that explain explosive handling sensitivity, but that there are many complex, interrelated effects at play.
Collapse
Affiliation(s)
- Frank W. Marrs
- Los Alamos National Laboratory, Los Alamos, New Mexico87545, United States
| | - Jack V. Davis
- Los Alamos National Laboratory, Los Alamos, New Mexico87545, United States
| | - Alexandra C. Burch
- Los Alamos National Laboratory, Los Alamos, New Mexico87545, United States
| | - Geoffrey W. Brown
- Los Alamos National Laboratory, Los Alamos, New Mexico87545, United States
| | - Nicholas Lease
- Los Alamos National Laboratory, Los Alamos, New Mexico87545, United States
| | | | - Marc J. Cawkwell
- Los Alamos National Laboratory, Los Alamos, New Mexico87545, United States
| | - Virginia W. Manner
- Los Alamos National Laboratory, Los Alamos, New Mexico87545, United States
| |
Collapse
|
5
|
Marzullo P, Vasto S, Buscemi S, Pace A, Nuzzo D, Palumbo Piccionello A. Ammonium Formate-Pd/C as a New Reducing System for 1,2,4-Oxadiazoles. Synthesis of Guanidine Derivatives and Reductive Rearrangement to Quinazolin-4-Ones with Potential Anti-Diabetic Activity. Int J Mol Sci 2021; 22:12301. [PMID: 34830187 PMCID: PMC8621334 DOI: 10.3390/ijms222212301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 11/17/2022] Open
Abstract
1,2,4-Oxadiazole is a heterocycle with wide reactivity and many useful applications. The reactive O-N bond is usually reduced using molecular hydrogen to obtain amidine derivatives. NH4CO2H-Pd/C is here demonstrated as a new system for the O-N reduction, allowing us to obtain differently substituted acylamidine, acylguanidine and diacylguanidine derivatives. The proposed system is also effective for the achievement of a reductive rearrangement of 5-(2'-aminophenyl)-1,2,4-oxadiazoles into 1-alkylquinazolin-4(1H)-ones. The alkaloid glycosine was also obtained with this method. The obtained compounds were preliminarily tested for their biological activity in terms of their cytotoxicity, induced oxidative stress, α-glucosidase and DPP4 inhibition, showing potential application as anti-diabetics.
Collapse
Affiliation(s)
- Paola Marzullo
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche-STEBICEF, Università degli Studi di Palermo, 90128 Palermo, Italy; (P.M.); (S.B.); (A.P.); (D.N.)
| | - Sonya Vasto
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche-STEBICEF, Università degli Studi di Palermo, 90128 Palermo, Italy; (P.M.); (S.B.); (A.P.); (D.N.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Silvestre Buscemi
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche-STEBICEF, Università degli Studi di Palermo, 90128 Palermo, Italy; (P.M.); (S.B.); (A.P.); (D.N.)
| | - Andrea Pace
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche-STEBICEF, Università degli Studi di Palermo, 90128 Palermo, Italy; (P.M.); (S.B.); (A.P.); (D.N.)
| | - Domenico Nuzzo
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche-STEBICEF, Università degli Studi di Palermo, 90128 Palermo, Italy; (P.M.); (S.B.); (A.P.); (D.N.)
- Consiglio Nazionale delle Ricerche, Istituto di Biofisica (CNR-IBF), 90146 Palermo, Italy
| | - Antonio Palumbo Piccionello
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche-STEBICEF, Università degli Studi di Palermo, 90128 Palermo, Italy; (P.M.); (S.B.); (A.P.); (D.N.)
| |
Collapse
|
6
|
Wang C, Rui X, Si D, Dai R, Zhu Y, Wen H, Li W, Liu J. Copper‐Catalyzed Three‐Component Cascade Reaction of Benzaldehyde with Benzylamine and Hydroxylamine or Aniline: Synthesis of 1,2,4‐Oxadiazoles and Quinazolines. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Chao Wang
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing 210023 People's Republic of China
| | - Xiyan Rui
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing 210023 People's Republic of China
| | - Dongjuan Si
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing 210023 People's Republic of China
| | - Rupeng Dai
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing 210023 People's Republic of China
| | - Yueyue Zhu
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing 210023 People's Republic of China
| | - Hongmei Wen
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing 210023 People's Republic of China
| | - Wei Li
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing 210023 People's Republic of China
| | - Jian Liu
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing 210023 People's Republic of China
| |
Collapse
|
7
|
Yang R, Liu Y, Dong Z, Li H, Ye Z. 3- R-4-(5-Methyleneazide-1,2,4-oxadiazol-3-yl)furazan and its ionic salts as low-sensitivity and high-detonation energetic materials. NEW J CHEM 2021. [DOI: 10.1039/d1nj01099a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
3-R-4-(5-Methyleneazide-1,2,4-oxadiazol-3-yl)furazan compounds as low-sensitivity and high-detonation energetic materials.
Collapse
Affiliation(s)
- Rui Yang
- School of Chemical Engineering
- Nanjing University of Science and Technology
- Xiaolingwei 200
- Nanjing
- China
| | - Yifei Liu
- School of Chemical Engineering
- Nanjing University of Science and Technology
- Xiaolingwei 200
- Nanjing
- China
| | - Zhen Dong
- School of Chemical Engineering
- Nanjing University of Science and Technology
- Xiaolingwei 200
- Nanjing
- China
| | - Haiyan Li
- School of Chemical Engineering
- Nanjing University of Science and Technology
- Xiaolingwei 200
- Nanjing
- China
| | - Zhiwen Ye
- School of Chemical Engineering
- Nanjing University of Science and Technology
- Xiaolingwei 200
- Nanjing
- China
| |
Collapse
|
8
|
Tang Y, Li K, Chinnam AK, Staples RJ, Shreeve JM. Mono-N-oxidation of heterocycle-fused pyrimidines. Dalton Trans 2021; 50:2143-2148. [DOI: 10.1039/d0dt03260c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mild oxidation reactions of nitrogen-rich heterocyclic rings lead to the formation of energetic compounds with the mono-N-oxide moiety which show good thermal stabilities and detonation performances.
Collapse
Affiliation(s)
- Yongxing Tang
- Nanjing University of Science and Technology
- Nanjing
- China
- Department of Chemistry
- University of Idaho
| | - Kejia Li
- Nanjing University of Science and Technology
- Nanjing
- China
| | | | | | | |
Collapse
|
9
|
Wu J, Xu J, Li W, Li H. Coplanar Fused Heterocycle‐Based Energetic Materials. PROPELLANTS EXPLOSIVES PYROTECHNICS 2020. [DOI: 10.1002/prep.201900333] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Jin‐Ting Wu
- School of Materials Science and EngineeringSouthwest University of Science and Technology Mianyang 621010, Sichuan PR China
| | - Jin Xu
- School of Materials Science and EngineeringSouthwest University of Science and Technology Mianyang 621010, Sichuan PR China
| | - Wei Li
- Institute of system engineeringChina Academy of Engineering Physics (CAEP) Mianyang 621900, Sichuan PR China
| | - Hong‐Bo Li
- School of Materials Science and EngineeringSouthwest University of Science and Technology Mianyang 621010, Sichuan PR China
| |
Collapse
|
10
|
3-Amino-4-[5-(chloromethyl)-1,2,4-oxadiazol-3-yl]furazan –a multifunctional synthon for the synthesis of 1,2,5-oxadiazole derivatives. Chem Heterocycl Compd (N Y) 2019. [DOI: 10.1007/s10593-019-02607-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
11
|
Bystrov DM, Fershtat LL, Makhova NN. Synthesis and reactivity of aminofuroxans. Chem Heterocycl Compd (N Y) 2019. [DOI: 10.1007/s10593-019-02593-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
12
|
Prezent MA, Baranin SV. A convenient route to the 1,2,5-oxadiazole-substituted 1,2,4-triazolo[1,5-a]pyrimidine derivatives. Chem Heterocycl Compd (N Y) 2019. [DOI: 10.1007/s10593-019-02590-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
13
|
Fershtat LL, Makhova NN. 1,2,5‐Oxadiazole‐Based High‐Energy‐Density Materials: Synthesis and Performance. Chempluschem 2019. [DOI: 10.1002/cplu.201900542] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Leonid L. Fershtat
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences 119991, Leninsky Prospect, 47 Moscow Russia
| | - Nina N. Makhova
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences 119991, Leninsky Prospect, 47 Moscow Russia
| |
Collapse
|
14
|
Tang Y, Liu Y, Imler GH, Parrish DA, Shreeve JM. Green Synthetic Approach for High-Performance Energetic Nitramino Azoles. Org Lett 2019; 21:2610-2614. [DOI: 10.1021/acs.orglett.9b00589] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yongxing Tang
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, United States
| | - Yingle Liu
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, United States
- Sichuan University of Science & Engineering, Zigong, Sichuan 643000, China
| | - Gregory H. Imler
- Naval Research Laboratory, 4555 Overlook Avenue, Washington, D.C. 20375, United States
| | - Damon A. Parrish
- Naval Research Laboratory, 4555 Overlook Avenue, Washington, D.C. 20375, United States
| | - Jean’ne M. Shreeve
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, United States
| |
Collapse
|