1
|
Wang BR, Li YB, Zhang Q, Gao D, Tian P, Li Q, Yin L. Copper(I)-catalyzed asymmetric 1,3-dipolar cycloaddition of 1,3-enynes and azomethine ylides. Nat Commun 2023; 14:4688. [PMID: 37542041 PMCID: PMC10403559 DOI: 10.1038/s41467-023-40409-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 07/25/2023] [Indexed: 08/06/2023] Open
Abstract
Herein, we report a copper(I)-catalyzed asymmetric 1,3-dipolar cycloaddition of azomethine ylides and 1,3-enynes, which provides a series of chiral poly-substituted pyrrolidines in high regio-, diastereo-, and enantioselectivities. Both 4-aryl-1,3-enynes and 4-silyl-1,3-enynes serve as suitable dipolarophiles while 4-alkyl-1,3-enynes are inert. Moreover, the method is successfully applied in the construction of both tetrasubstituted stereogenic carbon centers and chiral spiro pyrrolidines. The DFT calculations are also conducted, which imply a concerted mechanism rather than a stepwise mechanism. Finally, various transformations started from the pyrrolidine bearing a triethylsilylethynyl group and centered on the alkyne group are achieved, which compensates for the inertness of 4-alkyl-1,3-enynes in the present reaction.
Collapse
Affiliation(s)
- Bo-Ran Wang
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Yan-Bo Li
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Qi Zhang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Dingding Gao
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Ping Tian
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| | - Qinghua Li
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| | - Liang Yin
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.
| |
Collapse
|
2
|
Chang X, Liu XT, Li F, Yang Y, Chung LW, Wang CJ. Electron-rich benzofulvenes as effective dipolarophiles in copper(i)-catalyzed asymmetric 1,3-dipolar cycloaddition of azomethine ylides. Chem Sci 2023; 14:5460-5469. [PMID: 37234882 PMCID: PMC10207880 DOI: 10.1039/d3sc00435j] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
A series of benzofulvenes without any electron-withdrawing substituents were employed as 2π-type dipolarophiles for the first time to participate in Cu(i)-catalyzed asymmetric 1,3-dipolar cycloaddition (1,3-DC) reactions of azomethine ylides. An intrinsic non-benzenoid aromatic characteristic from benzofulvenes serves as a key driving force for activation of the electron-rich benzofulvenes. Utilizing the current methodology, a wide range of multi-substituted chiral spiro-pyrrolidine derivatives containing two contiguous all-carbon quaternary centers were formed in good yield with exclusive chemo-/regioselectivity and high to excellent stereoselectivity. Computational mechanistic studies elucidate the origin of the stereochemical outcome and the chemoselectivity, in which the thermostability of these cycloaddition products is the major factor.
Collapse
Affiliation(s)
- Xin Chang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry Shanghai 230021 China
| | - Xue-Tao Liu
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry Shanghai 230021 China
| | - Fangfang Li
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen 518055 China
| | - Yuhong Yang
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen 518055 China
| | - Lung Wa Chung
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen 518055 China
| | - Chun-Jiang Wang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry Shanghai 230021 China
| |
Collapse
|
3
|
Xiao L, Li B, Xiao F, Fu C, Wei L, Dang Y, Dong XQ, Wang CJ. Stereodivergent synthesis of enantioenriched azepino[3,4,5- cd]-indoles via cooperative Cu/Ir-catalyzed asymmetric allylic alkylation and intramolecular Friedel-Crafts reaction. Chem Sci 2022; 13:4801-4812. [PMID: 35655885 PMCID: PMC9067570 DOI: 10.1039/d1sc07271d] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/27/2022] [Indexed: 12/20/2022] Open
Abstract
The development of enantioselective annulation reactions using readily available substrates for the construction of structurally and stereochemically diverse heterocycles is a compelling topic in diversity-oriented synthesis. Herein, we report efficient catalytic asymmetric formal 1,3-dipolar (3 + 4) cycloadditions of azomethine ylides with 4-indolyl allylic carbonates for the construction of azepino[3,4,5-cd]-indoles fused with a challenging seven-membered N-heterocycle, a frequently occurring tricyclic indole scaffold in bioactive compounds and pharmaceuticals. Through cooperative Cu/Ir-catalyzed asymmetric allylic alkylation followed by intramolecular Friedel-Crafts reaction, an array of azepino[3,4,5-cd]-indoles were obtained in good yields with excellent diastereo-/enantioselective control. More importantly, the full stereodivergence of this transformation was established via synergistic catalysis followed by acid-promoted epimerization, and up to eight stereoisomers of the cycloadducts bearing three stereogenic centers could be predictably achieved from the same set of starting materials for the first time. Quantum mechanical computations established a plausible mechanism for the synergistic Cu/Ir catalysis to stereodivergently introduce two vicinal stereocenters whose stereochemical information is remotely delivered across the fused azepine ring to control the third chiral center. Epimerization of the last center involves protonation-enabled reversal of the thermodynamically controlled relative configuration.
Collapse
Affiliation(s)
- Lu Xiao
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China .,State Key Laboratory of Elemento-organic Chemistry, Nankai University Tianjin 300071 China
| | - Bo Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University Tianjin 300072 China
| | - Fan Xiao
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Cong Fu
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Liang Wei
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Yanfeng Dang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University Tianjin 300072 China
| | - Xiu-Qin Dong
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Chun-Jiang Wang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China .,State Key Laboratory of Elemento-organic Chemistry, Nankai University Tianjin 300071 China
| |
Collapse
|
4
|
Liu H, Shen C, Chang X, Wang C. Recent Advances in Catalytic Asymmetric 1,3-Dipolar Cycloaddition Reactions with Kinetic Resolution. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202205037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
5
|
Berry SS, Jones S. Current applications of kinetic resolution in the asymmetric synthesis of substituted pyrrolidines. Org Biomol Chem 2021; 19:10493-10515. [PMID: 34842884 DOI: 10.1039/d1ob01943k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Chiral substituted pyrrolidines are key elements in various biologically active molecules and are therefore valuable synthetic targets. One traditional method towards enantiomerically pure compounds is the application of kinetic resolution. In this review, current KR methodology used in the synthesis of substituted pyrrolidines is surveyed, including enzymatic methods, cycloadditions and reduction of ketones.
Collapse
Affiliation(s)
- Sian S Berry
- Department of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield, S3 7HF, UK.
| | - Simon Jones
- Department of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield, S3 7HF, UK.
| |
Collapse
|
6
|
Cu-catalyzed endo-selective asymmetric 1,3-dipolar cycloaddition of azomethine ylides with ethenesulfonyl fluorides: Efficient access to chiral pyrrolidine-3-sulfonyl fluorides. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.05.063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Chang X, Yang Y, Shen C, Xue KS, Wang ZF, Cong H, Tao HY, Chung LW, Wang CJ. β-Substituted Alkenyl Heteroarenes as Dipolarophiles in the Cu(I)-Catalyzed Asymmetric 1,3-Dipolar Cycloaddition of Azomethine Ylides Empowered by a Dual Activation Strategy: Stereoselectivity and Mechanistic Insight. J Am Chem Soc 2021; 143:3519-3535. [DOI: 10.1021/jacs.0c12911] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Xin Chang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
- State Key Laboratory of of Elemento-organic Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Yuhong Yang
- Shenzhen Grubbs Institute, Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, People’s Republic of China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People’s Republic of China
| | - Chong Shen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Kun-Shan Xue
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Zuo-Fei Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Hengjiang Cong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Hai-Yan Tao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Lung Wa Chung
- Shenzhen Grubbs Institute, Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, People’s Republic of China
| | - Chun-Jiang Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
- State Key Laboratory of of Elemento-organic Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| |
Collapse
|
8
|
Yang WL, Ni T, Deng WP. Iridium-Catalyzed Diastereo- and Enantioselective [4 + 3] Cycloaddition of 4-Indolyl Allylic Alcohols with Azomethine Ylides. Org Lett 2021; 23:588-594. [PMID: 33404250 DOI: 10.1021/acs.orglett.0c04132] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
An unprecedented iridium-catalyzed asymmetric [4 + 3] cycloaddition of racemic 4-indolyl allylic alcohols with azomethine ylides is reported. The ability of acid promoter zinc triflate to perform multiple roles is the key factor for the success of this strategy. This method provides scalable and efficient access to biologically important azepino[3,4,5-cd] indoles in good yields with generally excellent diastereo- and enantioselectivities (up to >20:1 dr and >99% ee). Mild reaction conditions, easily accessible substrates and chiral catalyst, and broad substrate scope highlight the practicality of this methodology.
Collapse
Affiliation(s)
- Wu-Lin Yang
- School of Pharmacy and Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Tao Ni
- School of Pharmacy and Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Wei-Ping Deng
- School of Pharmacy and Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| |
Collapse
|
9
|
Dong WW, Li YN, Chang X, Shen C, Wang CJ. Chiral Ugi-Type Amines: Practical Synthesis, Ligand Development, and Asymmetric Catalysis. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Wu-Wei Dong
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yi-Nan Li
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xin Chang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Chong Shen
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Chun-Jiang Wang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
10
|
Wei L, Chang X, Wang CJ. Catalytic Asymmetric Reactions with N-Metallated Azomethine Ylides. Acc Chem Res 2020; 53:1084-1100. [PMID: 32320206 DOI: 10.1021/acs.accounts.0c00113] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Optically active nitrogen-containing compounds have attracted substantial attention due to their ubiquity in the cores of natural products and bioactive molecules. Among the various synthetic approaches to nitrogenous frameworks, catalytic asymmetric 1,3-dipolar cycloadditions are one of the most attractive methods because of their powerful ability to rapidly construct various chiral N-heterocycles. In particular, N-metallated azomethine ylides, common and readily available 1,3-dipoles, have been extensively applied in dipolar cycloaddition reactions. Despite the fact that asymmetric transformations of azomethine ylides have been investigated for decades, most of the efforts have been directed toward the preparation of pyrrolidines using glycinate-derived α-unsubstituted aldimine esters as the precursors of the azomethine ylides. While α-substituted azomethine ylides derived from amino esters other than glycinate have seldom been harnessed, the construction of non-five-membered chiral N-heterocycles via 1,3-dipolar cycloadditions remains underexplored. In addition, the asymmetric α-functionalization of aldimine esters to prepare acyclic nitrogenous compounds such as α-amino acids, in which an in situ-generated N-metallated azomethine ylide serves as the nucleophile, has not been sufficiently described.In this Account, we mainly discuss the achievements we have made in the past decade toward broadening the applications of N-metallated azomethine ylides for the preparation of nitrogen-containing compounds. We began our investigation with the design and synthesis of a new type of chiral ligand, TF-BiphamPhos, which not only coordinates with Lewis acids to activate dipolar species but also serves as an H-bond donor to increase the reactivity of dipolarophiles with significantly enhanced stereochemical control. Using the Cu(I) or Ag(I)/TF-BiphamPhos complex as the catalyst, we achieved highly stereoselective (3+2) cycloadditions of glycinate and non-glycinate-derived azomethine ylides with diverse dipolarophiles, producing a variety of enantioenriched pyrrolidines with multiple stereocenters in a single step. To further expand the synthetic utility of N-metallated azomethine ylides, we successfully developed higher order cycloadditions with fulvenes, tropone, 2-acyl cycloheptatrienes, and pyrazolidinium ylides serving as the reaction partner, and this reaction provides straightforward access to enantioenriched fused piperidines, bridged azabicyclic frameworks, and triazines via (3+6)- and (3+3)-type cycloadditions. Using N-metallated azomethine ylides as the nucleophile, we realized Cu(I)-catalyzed asymmetric 1,4-Michael additions with α,β-unsaturated bisphosphates/Morita-Baylis-Hillman products, furnishing an array of structurally diverse unnatural α-amino acids. Based on the strategy of synergistic activation, we achieved highly efficient dual Cu/Pd and Cu/Ir catalysis for the α-functionalization of aldimine esters via the asymmetric allylic/allenylic alkylation of N-metallated azomethine ylides. Notably, Cu/Ir catalysis allowed the stereodivergent synthesis of α,α-disubstituted α-amino acids via a branched allylic alkylation reaction, in which the two distinct chiral metal catalysts independently have full stereochemical control over the corresponding nucleophile and electrophile. Furthermore, an expedient and stereodivergent preparation of biologically important tetrahydro-γ-carbolines was realized through a Cu/Ir-catalyzed cascade allylation/iso-Pictet-Spengler cyclization. In addition, when the steric congestion in the allylation intermediates was increased, the combined Cu/Ir catalysts provided an asymmetric cascade allylation/2-aza-Cope rearrangement, producing various optically active homoallylic amines with impressive results.
Collapse
Affiliation(s)
- Liang Wei
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xin Chang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Chun-Jiang Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai230021, China
| |
Collapse
|
11
|
Molina A, Díaz-Tendero S, Adrio J, Carretero JC. Catalytic asymmetric synthesis of diazabicyclo[3.1.0]hexanes by 1,3-dipolar cycloaddition of azomethine ylides with azirines. Chem Commun (Camb) 2020; 56:5050-5053. [PMID: 32243487 DOI: 10.1039/d0cc01061h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Substituted 1,3-diazabicyclo[3.1.0]hexanes with two contiguous quaternary stereocentres are readily prepared by catalytic asymmetric [3+2] cycloaddition of α-substituted iminoesters with azirines. High diastereoselectivities and enantioselectivities (up to 98% ee) are achieved using CuI/(R)-Fesulphos as the catalytic system.
Collapse
Affiliation(s)
- Alba Molina
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.
| | | | | | | |
Collapse
|
12
|
Li J, Stoltz BM, Grubbs RH. Enantioselective Synthesis of 15-Deoxy-Δ 12,14-Prostaglandin J 2. Org Lett 2019; 21:10139-10142. [PMID: 31808699 DOI: 10.1021/acs.orglett.9b04198] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
An enantioselective synthesis of 15-deoxy-Δ12,14-prostaglandin J2 is reported. The synthesis begins with the preparation of enantiopure 3-oxodicyclopentadiene by a lipase-mediated kinetic resolution. A three-component coupling followed by a retro-Diels-Alder reaction provides the C8 stereochemistry of the prostaglandin skeleton with high enantioselectivity. Stereoretentive olefin metathesis followed by a Pinnick oxidation affords 15-deoxy-Δ12,14-prostaglandin J2 in high enantiopurity.
Collapse
Affiliation(s)
- Jiaming Li
- The Arnold and Mabel Beckman Laboratory of Chemical Synthesis, Division of Chemistry and Chemical Engineering , California Institute of Technology , Pasadena , California 91125 , United States
| | - Brian M Stoltz
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering , California Institute of Technology , 1200 East California Boulevard, MC 101-20 , Pasadena , California 91125 , United States
| | - Robert H Grubbs
- The Arnold and Mabel Beckman Laboratory of Chemical Synthesis, Division of Chemistry and Chemical Engineering , California Institute of Technology , Pasadena , California 91125 , United States
| |
Collapse
|
13
|
Fulgheri T, Cornwall P, Turner AR, Sweeney JB, Gill DM. Parallel Kinetic Resolution of Intramolecular Furan Diels-Alder Cycloadducts via Asymmetric Hydroboration. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Tamara Fulgheri
- Department of Chemical Sciences; University of Huddersfield; Queensgate HD1 3DH Huddersfield UK
| | - Philip Cornwall
- Early Chemical Development; Pharmaceutical Sciences; R&D, AstraZeneca; SK11 6 Macclesfield UK
| | - Andrew R. Turner
- Early Chemical Development; Pharmaceutical Sciences; R&D, AstraZeneca; SK11 6 Macclesfield UK
| | - Joseph B. Sweeney
- Department of Chemistry; Pharmaceutical Sciences; University of Lancaster; LA1 4YB Lancaster UK
| | - Duncan M. Gill
- Department of Chemical Sciences; University of Huddersfield; Queensgate HD1 3DH Huddersfield UK
| |
Collapse
|
14
|
Sun BB, Hu QX, Hu JM, Yu JQ, Jia J, Wang XW. Asymmetric [4+2] cycloaddition of azlactones with dipolar copper–allenylidene intermediates for chiral 3,4-dhydroquinolin-2-one derivatives. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.06.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
15
|
Deng H, Jia R, Yang WL, Yu X, Deng WP. Ligand-controlled switch in diastereoselectivities: catalytic asymmetric construction of spirocyclic pyrrolidine-azetidine/oxe(thie)tane derivatives. Chem Commun (Camb) 2019; 55:7346-7349. [DOI: 10.1039/c9cc03589c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An asymmetric [3+2] cycloaddition of azomethine ylides with four-membered ring-containing dipolarophiles was developed, and either exo or endo spirocyclic pyrrolidine-azetidine/oxe(thie)tanes were obtained.
Collapse
Affiliation(s)
- Hua Deng
- School of Pharmacy and Shanghai Key Laboratory of New Drug Design
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| | - Renmeng Jia
- School of Pharmacy and Shanghai Key Laboratory of New Drug Design
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| | - Wu-Lin Yang
- School of Pharmacy and Shanghai Key Laboratory of New Drug Design
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| | - Xingxin Yu
- School of Pharmacy and Shanghai Key Laboratory of New Drug Design
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| | - Wei-Ping Deng
- School of Pharmacy and Shanghai Key Laboratory of New Drug Design
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| |
Collapse
|