1
|
Liu X, Yan K, Wen J, Li Q, Shang W, Yu X, Wang X. Rhodium-catalyzed C-H activation and three-component tandem annulation leading to isoquinolones. Org Biomol Chem 2025; 23:4694-4701. [PMID: 40235456 DOI: 10.1039/d5ob00419e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
A rhodium-catalyzed C-H activation and three-component coupling of oxazolines, vinylene carbonate and carboxylic acids has been developed. Various isoquinolone products were constructed under redox-neutral conditions with satisfactory yields. It is worth noting that diverse bioactive carboxylic acids have been proven to be effective substrates, and their application in this protocol has expanded the range of isoquinolones with biologically relevant motifs. Multi-dimensional mechanism exploration experiments and derivatization reactions were studied in sequence to explore the details and application prospects of this transformation. It offers an alternative approach for the synthesis of useful isoquinolone derivatives.
Collapse
Affiliation(s)
- Xiao Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China.
| | - Kelu Yan
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China.
| | - Jiangwei Wen
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China.
| | - Qiuyun Li
- Faculty of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, P. R. China.
| | - Wenxu Shang
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China.
| | - Xinming Yu
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China.
| | - Xiu Wang
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China.
| |
Collapse
|
2
|
Fu Y, Liang H, Li F, Huang S. Base-Promoted Annulation of o-(Cyanomethyl)aryl Thioester with Thiophenols to Access 3-Thiolated Isoquinolones. Org Lett 2025. [PMID: 39908398 DOI: 10.1021/acs.orglett.4c04197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
An efficient annulation approach to forming 3-thiolated isoquinolones from readily accessible o-(cyanomethyl)aryl thioesters and thiophenols has been established. This metal-free annulation is achieved by taking advantage of solvent-free reactions with no precaution to exclude water or air, enabling broad substrate scope and good functionality tolerance. Furthermore, the protocol is scalable and offers facile access to valuable isoquinolones without chromatography.
Collapse
Affiliation(s)
- Yuanyuan Fu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Hui Liang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Fengming Li
- Hebei Green Agrosino Crop ScienceTechnology Co., LTD., Cangzhou 061100, China
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
3
|
Wang Y, Qi M, Lu P, Wang Y. Rh(III)-Catalyzed Reaction of 4-Diazoisochroman-3-imines with (2-Formylaryl)boronic Acids To Access a Straightforward Construction of 5 H-Isochromeno[3,4- c]isoquinolines. J Org Chem 2023; 88:13544-13552. [PMID: 37698421 DOI: 10.1021/acs.joc.3c01185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
An Rh(III)-catalyzed one-pot synthesis of 5H-isochromeno[3,4-c]isoquinolines from readily available 4-diazoisochroman-3-imines and (2-formylphenyl)boronic acids is reported. The cascade annulation involves a Rh(III)-catalyzed cross-coupling and an intramolecular nucleophilic addition-elimination process. A series of biologically important 5H-isochromeno[3,4-c]isoquinolines were obtained in good to excellent yields. The method can be extended to synthesize 7H-isochromeno[3,4-b]thieno[3,2-d]pyridines and 7H-isochromeno[3,4-b]thieno[2,3-d]pyridines from the corresponding heteroaryl boronic acids.
Collapse
Affiliation(s)
- Yingxiao Wang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Minghui Qi
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Ping Lu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yanguang Wang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|
4
|
Li H, Mei M, Zhou L. Rh(III)-Catalyzed Defluorinative [4 + 2] Annulation of N-Sulfonylarylamides with Ethyl 2-Diazo-3,3,3-trifluoropropanoate: Synthesis of 1,3,4-Functionalized Isoquinolines. Org Lett 2022; 24:8969-8974. [DOI: 10.1021/acs.orglett.2c03501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Haosheng Li
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Mingjing Mei
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Lei Zhou
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| |
Collapse
|
5
|
Qi M, Suleman M, Fan J, Lu P, Wang Y. Cu(I)-catalyzed synthesis of spiro[isoquinoline-4,2'-[1,3]oxazin]-3-ones via ring expansion reactions of isoxazoles with 4-diazoisoquinolin-3-ones. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Li Q, Yan K, Zhu Y, Qi G, Wang Y, Hao WJ, Jiang B. Rh(III)-Catalyzed annulative aldehydic C-H functionalization for accessing ring-fluorinated benzo[b]azepin-5-ones. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Luo X, Yang Z, Zheng J, Liang G, Luo H, Yang W. CuX Dual Catalysis: Construction of Oxazolo[2,3- b][1,3]oxazines via a Tandem CuAAC/Ring Cleavage/[4+2+3] Annulation Reaction. Org Lett 2022; 24:7300-7304. [PMID: 36178978 DOI: 10.1021/acs.orglett.2c02705] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
CuX as a simple dual catalyst strategy that promotes the tandem transformations of fused oxazolo[2,3-b][1,3]oxazines has been developed. Copper catalyzed terminal ynones, sulfonyl azides, and nitriles for the CuAAC/ring cleavage/[4+2] annulation reaction, while the halogen catalyzed ring cleavage and [2+3] annulation of oxiranes to form the final fused products. This study provides a four-component, one-pot strategy for synthesizing complex fused heterocycles from simple ingredients and expands the application of CuAAC in organic synthesis.
Collapse
Affiliation(s)
- Xiai Luo
- Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China.,School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Zhongtao Yang
- The Marine Biomedical Research Institute of Guangdong, Zhanjiang 524023, China
| | - Jia Zheng
- Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| | - Gang Liang
- School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China
| | - Hui Luo
- Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| | - Weiguang Yang
- Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| |
Collapse
|
8
|
Voloshkin VA, Kotovshchikov YN, Latyshev GV, Lukashev NV, Beletskaya IP. Annulation-Triggered Denitrogenative Transformations of 2-(5-Iodo-1,2,3-triazolyl)benzoic Acids. J Org Chem 2022; 87:7064-7075. [PMID: 35583492 DOI: 10.1021/acs.joc.2c00235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The ability of [1,2,3]triazolobenzoxazinones to act as a source of "hidden" diazo group was discovered. These diazo precursors can be easily prepared by the intramolecular cyclization of 2-(5-iodo-1,2,3-triazolyl)benzoic acids. The Cu-catalyzed capture of the hidden diazo group allows for further functionalization through the denitrogenative pathway. The transformations proceed via the formation of either diazoimine or diazoamide intermediates. Novel routes to various anthranilamides as well as thiolated benzoxazinones were developed using the one-pot cyclization/diazo capture procedure.
Collapse
Affiliation(s)
- Vladislav A Voloshkin
- Chemistry Department, M. V. Lomonosov Moscow State University, 1/3 Leninskiye Gory, Moscow 119991, Russia
| | - Yury N Kotovshchikov
- Chemistry Department, M. V. Lomonosov Moscow State University, 1/3 Leninskiye Gory, Moscow 119991, Russia
| | - Gennadij V Latyshev
- Chemistry Department, M. V. Lomonosov Moscow State University, 1/3 Leninskiye Gory, Moscow 119991, Russia
| | - Nikolay V Lukashev
- Chemistry Department, M. V. Lomonosov Moscow State University, 1/3 Leninskiye Gory, Moscow 119991, Russia
| | - Irina P Beletskaya
- Chemistry Department, M. V. Lomonosov Moscow State University, 1/3 Leninskiye Gory, Moscow 119991, Russia
| |
Collapse
|
9
|
Qi M, Suleman M, Xie J, Lu P, Wang Y. Cu(II)-Catalyzed Synthesis of 4-(1,4,5,6-Tetrahydropyridin-3-yl)-1,4-dihydroisoquinolin-3-ones from 4-Diazoisoquinolin-3-ones. J Org Chem 2022; 87:4088-4096. [PMID: 35213165 DOI: 10.1021/acs.joc.1c02905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report a simple, efficient, and highly selective C-H bond insertion of copper carbenes generated in situ from 4-diazo-1,4-dihydroisoquinolin-3-ones into β-C(sp2)-H bonds of N-sulfonyl enamides, which gave a series of 4-(1,4,5,6-tetrahydropyridin-3-yl)-1,4-dihydroisoquinolin-3(2H)-ones in good to excellent yields. Operationally simple and mild reaction conditions, a cheap catalyst, readily accessible starting materials, and a broad substrate scope are the merits of this reaction.
Collapse
Affiliation(s)
- Minghui Qi
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Muhammad Suleman
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Jianwei Xie
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Ping Lu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yanguang Wang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|
10
|
Wang Y, Xie J, Lu P, Wang Y. Rh( ii)-catalyzed synthesis of 5 H-isochromeno[3,4- b]indolizines from 4-diazoisochroman-3-imines and pyridines. Org Biomol Chem 2022; 20:8484-8488. [DOI: 10.1039/d2ob01400a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A Rh(ii)-catalyzed (3 + 2) annulation of pyridines with 4-diazoisochroman-3-imines furnished 5H-isochromeno[3,4-b]indolizines with moderate to good yields and complete regioselectivity.
Collapse
Affiliation(s)
- Yingxiao Wang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Jianwei Xie
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Ping Lu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yanguang Wang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|
11
|
Soam P, Kamboj P, Tyagi V. Rhodium‐Catalyzed Cascade Reactions using Diazo Compounds as a Carbene Precursor to Construct Diverse Heterocycles. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Pooja Soam
- School of Chemistry and Biochemistry Thapar Institute of Engineering and Technology Patiala 147004 Punjab India
| | - Priya Kamboj
- School of Chemistry and Biochemistry Thapar Institute of Engineering and Technology Patiala 147004 Punjab India
| | - Vikas Tyagi
- School of Chemistry and Biochemistry Thapar Institute of Engineering and Technology Patiala 147004 Punjab India
| |
Collapse
|
12
|
Jha N, Khot NP, Kapur M. Transition-Metal-Catalyzed C-H Bond Functionalization of Arenes/Heteroarenes via Tandem C-H Activation and Subsequent Carbene Migratory Insertion Strategy. CHEM REC 2021; 21:4088-4122. [PMID: 34647679 DOI: 10.1002/tcr.202100193] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/20/2022]
Abstract
The past decade has witnessed tremendous developments in transition-metal-catalyzed C-H bond activation and subsequent carbene migratory insertion reactions, thus assisting in the construction of diverse arene/heteroarene scaffolds. Various transition-metal catalysts serve this purpose and provide efficient pathways for an easy access to substituted heterocycles. A brief introduction to metal-carbenes has been provided along with key mechanistic pathways underlying the coupling reactions. The purpose of this review is to provide a concise knowledge about diverse directing group-assisted coupling of varied arenes/heteroarenes and acceptor-acceptor/donor-acceptor diazo compounds. The review also highlights the synthesis of various carbocycles and fused heterocycles through diazo insertion pathways, via C-C, C-N and C-O bond forming reactions. The mechanism usually involves a C-H activation process, followed by diazo insertion leading to subsequent coupling.
Collapse
Affiliation(s)
- Neha Jha
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhauri, Bhopal, 462066, Madhya Pradesh, India
| | - Nandkishor Prakash Khot
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhauri, Bhopal, 462066, Madhya Pradesh, India
| | - Manmohan Kapur
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhauri, Bhopal, 462066, Madhya Pradesh, India
| |
Collapse
|
13
|
Wang C, Chen F, Qian P, Cheng J. Recent advances in the Rh-catalyzed cascade arene C-H bond activation/annulation toward diverse heterocyclic compounds. Org Biomol Chem 2021; 19:1705-1721. [PMID: 33537690 DOI: 10.1039/d0ob02377a] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The Rh-catalyzed C-H bond activation/annulation provides a new strategy for the synthesis of new frameworks. In this review, we summarize the recent research on the Rh-catalyzed cascade arene C-H bond activation/annulation toward diverse heterocyclic compounds. The application, scope, limitations and mechanism of these transformations are also discussed.
Collapse
Affiliation(s)
- Chang Wang
- Institute of New Materials & Industry Technology, College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China.
| | - Fan Chen
- Institute of New Materials & Industry Technology, College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China.
| | - Pengcheng Qian
- Institute of New Materials & Industry Technology, College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China.
| | - Jiang Cheng
- Institute of New Materials & Industry Technology, College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China.
| |
Collapse
|
14
|
Wu L, Chen J, Xie J, Lu P, Wang Y. Synthesis of 4-boraneyl-1,4-dihydroisoquinolin-3-ones via copper-catalyzed Boron–Hydrogen bond insertion of 4-diazo-1,4-dihydroisoquinolin-3-ones into amine-borane adduct. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Xu Z, Wang W, Cen M, Feng Z, Duan S, Li C. Synthesis of α‐(2‐Hydroxyphenyl)‐α‐Aminoketones by Rhodium‐Catalyzed Tandem Reaction of 1‐Sulfonyl‐1,2,3‐Triazoles and Benzoquinone‐Derived Alcohols. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000487] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ze‐Feng Xu
- Department of ChemistryZhejiang Sci-Tech University, Xiasha West Higher Education District Hangzhou 310018 China
- Key Laboratory of Organofluorine ChemistryShanghai Institute of Organic ChemistryChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Weipeng Wang
- Department of ChemistryZhejiang Sci-Tech University, Xiasha West Higher Education District Hangzhou 310018 China
| | - Mengjie Cen
- Department of ChemistryZhejiang Sci-Tech University, Xiasha West Higher Education District Hangzhou 310018 China
| | - Zijuan Feng
- Department of ChemistryZhejiang Sci-Tech University, Xiasha West Higher Education District Hangzhou 310018 China
| | - Shengguo Duan
- Department of ChemistryZhejiang Sci-Tech University, Xiasha West Higher Education District Hangzhou 310018 China
| | - Chuan‐Ying Li
- Department of ChemistryZhejiang Sci-Tech University, Xiasha West Higher Education District Hangzhou 310018 China
| |
Collapse
|
16
|
Li Z, Xie J, Lu P, Wang Y. Synthesis of 8-Alkoxy-5 H-isochromeno[3,4- c]isoquinolines and 1-Alkoxy-4-arylisoquinolin-3-ols through Rh(III)-Catalyzed C-H Functionalization of Benzimidates with 4-Diazoisochroman-3-imines and 4-Diazoisoquinolin-3-ones. J Org Chem 2020; 85:5525-5535. [PMID: 32200640 DOI: 10.1021/acs.joc.0c00283] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rh(III)-catalyzed C-H activation/annulation of benzimidates with 4-diazoisochroman-3-imines furnished 8-alkoxy-5H-isochromeno[3,4-c]isoquinolines in moderate to excellent yields with a broad range of substrate scope. The reaction was carried out under mild reaction conditions and could be scaled up with practical usage. Similar reaction between benzimidates and 4-diazoisoquinolin-3-ones provided 1-alkoxy-4-arylisoquinolin-3-ols in excellent yields. Moreover, the synthesized products could be conveniently transformed to the corresponding heterocycles with a 1,8-naphthyridinone or isochromenopyridinone core, which are privileged structures in medicinal chemistry.
Collapse
Affiliation(s)
- Zhenmin Li
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Jianwei Xie
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Ping Lu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yanguang Wang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|
17
|
Chaudhary B, Kulkarni N, Sharma S. Rhodium(iii)-catalyzed synthesis of 3-trifluoromethylindanones from N-methoxybenzamides via C–H activation and Claisen/retro-Claisen reaction. Org Chem Front 2020. [DOI: 10.1039/d0qo00330a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
An efficient synthesis of 3-trifluoromethylindanones via C–H annulation of N-methoxybenzamides with β-trifluoromethyl-α,β-unsaturated ketones under Rh(iii)-catalysis is described.
Collapse
Affiliation(s)
- Bharatkumar Chaudhary
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research
- Ahmedabad (NIPER-A)
- Gandhinagar
- India
| | - Neeraj Kulkarni
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research
- Ahmedabad (NIPER-A)
- Gandhinagar
- India
| | - Satyasheel Sharma
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research
- Ahmedabad (NIPER-A)
- Gandhinagar
- India
| |
Collapse
|
18
|
Li Z, Chen J, Wu L, Ren A, Lu P, Wang Y. Preparation of 4-Diazoisoquinolin-3-ones via Dimroth Rearrangement and Their Extension to 4-Aryltetrahydroisoquinolin-3-ones. Org Lett 2019; 22:26-30. [DOI: 10.1021/acs.orglett.9b03708] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhenmin Li
- Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Junrong Chen
- Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Li Wu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Anni Ren
- Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Ping Lu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Yanguang Wang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| |
Collapse
|
19
|
Liu Z, Zhang W, Guo S, Zhu J. Spiro[indene-1,4'-oxa-zolidinones] Synthesis via Rh(III)-Catalyzed Coupling of 4-Phenyl-1,3-oxazol-2(3 H)-ones with Alkynes: A Redox-Neutral Approach. J Org Chem 2019; 84:11945-11957. [PMID: 31436097 DOI: 10.1021/acs.joc.9b01804] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Transition-metal-catalyzed C-H activation synthesis of heterocyclic spiro[4,4]nonanes has persistently witnessed the use of additional stoichiometric transition-metal oxidant when employing C═C bond as the spiro ring closure site. Herein, we have addressed the issue by reporting a redox-neutral strategy for spiro[indene-1,4'-oxa-zolidinones] synthesis via Rh(III)-catalyzed coupling of 4-phenyl-1,3-oxazol-2(3H)-ones with alkynes. The synthesis features a broad substrate scope and high regiospecificity.
Collapse
Affiliation(s)
- Zhongsu Liu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures , Nanjing University , Nanjing 210023 , China
| | - Wenjing Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures , Nanjing University , Nanjing 210023 , China
| | - Shan Guo
- School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures , Nanjing University , Nanjing 210023 , China
| | - Jin Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures , Nanjing University , Nanjing 210023 , China
| |
Collapse
|
20
|
Xu S, Qiao S, Sun S, Yu JT, Cheng J. Rhodium-catalyzed C–H activation/annulation of amidines with 4-diazoisochroman-3-imines toward isochromeno[3,4-c]isoquinolines. Org Biomol Chem 2019; 17:8417-8424. [DOI: 10.1039/c9ob01612k] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Rhodium-catalyzed C–H activation/annulation of amidines with 4-diazoisochroman-3-imines toward 8-amino-5H-isochromeno[3,4-c]isoquinolines with good functional group tolerance.
Collapse
Affiliation(s)
- Shengbo Xu
- School of Petrochemical Engineering
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology
- and Jiangsu Province Key Laboratory of Fine Petrochemical Engineering
- Changzhou University
- Changzhou
| | - Shanshan Qiao
- School of Petrochemical Engineering
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology
- and Jiangsu Province Key Laboratory of Fine Petrochemical Engineering
- Changzhou University
- Changzhou
| | - Song Sun
- School of Petrochemical Engineering
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology
- and Jiangsu Province Key Laboratory of Fine Petrochemical Engineering
- Changzhou University
- Changzhou
| | - Jin-Tao Yu
- School of Petrochemical Engineering
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology
- and Jiangsu Province Key Laboratory of Fine Petrochemical Engineering
- Changzhou University
- Changzhou
| | - Jiang Cheng
- School of Petrochemical Engineering
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology
- and Jiangsu Province Key Laboratory of Fine Petrochemical Engineering
- Changzhou University
- Changzhou
| |
Collapse
|