1
|
Sajnaga E, Kazimierczak W, Karaś MA, Jach ME. Exploring Xenorhabdus and Photorhabdus Nematode Symbionts in Search of Novel Therapeutics. Molecules 2024; 29:5151. [PMID: 39519791 PMCID: PMC11547657 DOI: 10.3390/molecules29215151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/16/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Xenorhabdus and Photorhabdus bacteria, which live in mutualistic symbiosis with entomopathogenic nematodes, are currently recognised as an important source of bioactive compounds. During their extraordinary life cycle, these bacteria are capable of fine regulation of mutualism and pathogenesis towards two different hosts, a nematode and a wide range of insect species, respectively. Consequently, survival in a specific ecological niche favours the richness of biosynthetic gene clusters and respective metabolites with a specific structure and function, providing templates for uncovering new agrochemicals and therapeutics. To date, numerous studies have been published on the genetic ability of Xenorhabdus and Photorhabdus bacteria to produce biosynthetic novelty as well as distinctive classes of their metabolites with their activity and mechanism of action. Research shows diverse techniques and approaches that can lead to the discovery of new natural products, such as extract-based analysis, genetic engineering, and genomics linked with metabolomics. Importantly, the exploration of members of the Xenorhabdus and Photorhabdus genera has led to encouraging developments in compounds that exhibit pharmaceutically important properties, including antibiotics that act against Gram- bacteria, which are extremely difficult to find. This article focuses on recent advances in the discovery of natural products derived from these nematophilic bacteria, with special attention paid to new valuable leads for therapeutics.
Collapse
Affiliation(s)
- Ewa Sajnaga
- Department of Biomedicine and Environmental Research, John Paul II Catholic University of Lublin, Konstantynów 1J, 20-708 Lublin, Poland;
| | - Waldemar Kazimierczak
- Department of Biomedicine and Environmental Research, John Paul II Catholic University of Lublin, Konstantynów 1J, 20-708 Lublin, Poland;
| | - Magdalena Anna Karaś
- Department of Genetics and Microbiology, Institute of Biological Science, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland;
| | - Monika Elżbieta Jach
- Department of Molecular Biology, John Paul II Catholic University of Lublin, Konstantynów 1H, 20-708 Lublin, Poland;
| |
Collapse
|
2
|
Jaarsma AH, Zervas A, Sipes K, Campuzano Jiménez F, Smith AC, Svendsen LV, Thøgersen MS, Stougaard P, Benning LG, Tranter M, Anesio AM. The undiscovered biosynthetic potential of the Greenland Ice Sheet microbiome. Front Microbiol 2023; 14:1285791. [PMID: 38149278 PMCID: PMC10749974 DOI: 10.3389/fmicb.2023.1285791] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/24/2023] [Indexed: 12/28/2023] Open
Abstract
The Greenland Ice Sheet is a biome which is mainly microbially driven. Several different niches can be found within the glacial biome for those microbes able to withstand the harsh conditions, e.g., low temperatures, low nutrient conditions, high UV radiation in summer, and contrasting long and dark winters. Eukaryotic algae can form blooms during the summer on the ice surface, interacting with communities of bacteria, fungi, and viruses. Cryoconite holes and snow are also habitats with their own microbial community. Nevertheless, the microbiome of supraglacial habitats remains poorly studied, leading to a lack of representative genomes from these environments. Under-investigated extremophiles, like those living on the Greenland Ice Sheet, may provide an untapped reservoir of chemical diversity that is yet to be discovered. In this study, an inventory of the biosynthetic potential of these organisms is made, through cataloging the presence of biosynthetic gene clusters in their genomes. There were 133 high-quality metagenome-assembled genomes (MAGs) and 28 whole genomes of bacteria obtained from samples of the ice sheet surface, cryoconite, biofilm, and snow using culturing-dependent and -independent approaches. AntiSMASH and BiG-SCAPE were used to mine these genomes and subsequently analyze the resulting predicted gene clusters. Extensive sets of predicted Biosynthetic Gene Clusters (BGCs) were collected from the genome collection, with limited overlap between isolates and MAGs. Additionally, little overlap was found in the biosynthetic potential among different environments, suggesting specialization of organisms in specific habitats. The median number of BGCs per genome was significantly higher for the isolates compared to the MAGs. The most talented producers were found among Proteobacteria. We found evidence for the capacity of these microbes to produce antimicrobials, carotenoid pigments, siderophores, and osmoprotectants, indicating potential survival mechanisms to cope with extreme conditions. The majority of identified BGCs, including those in the most prevalent gene cluster families, have unknown functions, presenting a substantial potential for bioprospecting. This study underscores the diverse biosynthetic potential in Greenland Ice Sheet genomes, revealing insights into survival strategies and highlighting the need for further exploration and characterization of these untapped resources.
Collapse
Affiliation(s)
- Ate H. Jaarsma
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Athanasios Zervas
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Katie Sipes
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | | | | | | | | | - Peter Stougaard
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Liane G. Benning
- German Research Centre for Geosciences, Helmholtz Centre Potsdam, Potsdam, Germany
- Department of Earth Sciences, Freie Universität Berlin, Berlin, Germany
| | - Martyn Tranter
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | | |
Collapse
|
3
|
Zhang K, Kries H. Biomimetic engineering of nonribosomal peptide synthesis. Biochem Soc Trans 2023; 51:1521-1532. [PMID: 37409512 DOI: 10.1042/bst20221264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 07/07/2023]
Abstract
Nonribosomal peptides (NRPs) have gained attention due to their diverse biological activities and potential applications in medicine and agriculture. The natural diversity of NRPs is a result of evolutionary processes that have occurred over millions of years. Recent studies have shed light on the mechanisms by which nonribosomal peptide synthetases (NRPSs) evolve, including gene duplication, recombination, and horizontal transfer. Mimicking natural evolution could be a useful strategy for engineering NRPSs to produce novel compounds with desired properties. Furthermore, the emergence of antibiotic-resistant bacteria has highlighted the urgent need for new drugs, and NRPs represent a promising avenue for drug discovery. This review discusses the engineering potential of NRPSs in light of their evolutionary history.
Collapse
Affiliation(s)
- Kexin Zhang
- Junior Research Group Biosynthetic Design of Natural Products, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI Jena), 07745 Jena, Germany
| | - Hajo Kries
- Junior Research Group Biosynthetic Design of Natural Products, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI Jena), 07745 Jena, Germany
- Organic Chemistry I, University of Bayreuth, 95440 Bayreuth, Germany
| |
Collapse
|
4
|
Dynamics and mechanistic interpretations of nonribosomal peptide synthetase cyclization domains. Curr Opin Chem Biol 2023; 72:102228. [PMID: 36402006 DOI: 10.1016/j.cbpa.2022.102228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022]
Abstract
Ox-/thiazoline groups in nonribosomal peptides are formed by a variant of peptide-forming condensation domains called heterocyclization (Cy) domains and appear in a range of pharmaceutically important natural products and virulence factors. Recent cryo-EM, crystallographic, and NMR studies of Cy domains make it opportune to revisit outstanding questions regarding their molecular mechanisms. This review covers structural and dynamical findings about Cy domains that will inform future bioengineering efforts and our understanding of natural product synthesis.
Collapse
|
5
|
Zhang L, Wang C, Chen K, Zhong W, Xu Y, Molnár I. Engineering the biosynthesis of fungal nonribosomal peptides. Nat Prod Rep 2023; 40:62-88. [PMID: 35796260 DOI: 10.1039/d2np00036a] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Covering: 2011 up to the end of 2021.Fungal nonribosomal peptides (NRPs) and the related polyketide-nonribosomal peptide hybrid products (PK-NRPs) are a prolific source of bioactive compounds, some of which have been developed into essential drugs. The synthesis of these complex natural products (NPs) utilizes nonribosomal peptide synthetases (NRPSs), multidomain megaenzymes that assemble specific peptide products by sequential condensation of amino acids and amino acid-like substances, independent of the ribosome. NRPSs, collaborating polyketide synthase modules, and their associated tailoring enzymes involved in product maturation represent promising targets for NP structure diversification and the generation of small molecule unnatural products (uNPs) with improved or novel bioactivities. Indeed, reprogramming of NRPSs and recruiting of novel tailoring enzymes is the strategy by which nature evolves NRP products. The recent years have witnessed a rapid development in the discovery and identification of novel NRPs and PK-NRPs, and significant advances have also been made towards the engineering of fungal NRP assembly lines to generate uNP peptides. However, the intrinsic complexities of fungal NRP and PK-NRP biosynthesis, and the large size of the NRPSs still present formidable conceptual and technical challenges for the rational and efficient reprogramming of these pathways. This review examines key examples for the successful (and for some less-successful) re-engineering of fungal NRPS assembly lines to inform future efforts towards generating novel, biologically active peptides and PK-NRPs.
Collapse
Affiliation(s)
- Liwen Zhang
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P. R. China.
| | - Chen Wang
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P. R. China.
| | - Kang Chen
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P. R. China.
| | - Weimao Zhong
- Southwest Center for Natural Products Research, University of Arizona, 250 E. Valencia Rd., Tucson, AZ 85706, USA
| | - Yuquan Xu
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P. R. China.
| | - István Molnár
- Southwest Center for Natural Products Research, University of Arizona, 250 E. Valencia Rd., Tucson, AZ 85706, USA.,VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT, Espoo, Finland.
| |
Collapse
|
6
|
Cai X, Zhao L, Bode HB. Engineering of Specific Single-Module Nonribosomal Peptide Synthetases of the RXP Type for the Production of Defined Peptides. ACS Synth Biol 2022; 12:203-212. [PMID: 36535068 PMCID: PMC9872161 DOI: 10.1021/acssynbio.2c00472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Rhabdopeptide/xenortide-like peptide (RXP) nonribosomal peptide synthetases (NRPSs) derived from entomophathogenic Xenorhabdus and Photorhabdus bacteria often produce libraries of different peptides varying in amino acid composition, number and degree of methylation, which mainly is a result of promiscuous docking domains (DDs) mediating protein-protein interactions between the different NRPS subunits. In this study, we present two specific RXP-NRPS systems with rather specific DDs that were used as platforms to generate a series of defined RXPs via the exchange of adenylation/methyltransferase (A-MT) domains in the systems followed by heterologous expression in Escherichia coli. Additionally, these results suggest that NRPS subunit interaction is not only exclusively dependent on DDs but at least partially also on A domains.
Collapse
Affiliation(s)
- Xiaofeng Cai
- School
of Pharmacy, Tongji Medical College, Huazhong
University of Science and Technology, 430030 Wuhan, China,Molecular
Biotechnology, Department of Biosciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany,
| | - Lei Zhao
- Molecular
Biotechnology, Department of Biosciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany,State
Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai
Institute of Organic Chemistry, Chinese
Academy of Sciences, 200032 Shanghai, China
| | - Helge B. Bode
- Molecular
Biotechnology, Department of Biosciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany,Department
of Natural Products in Organismic Interactions, Max-Planck-Institute for Terrestrial Microbiology, 35043 Marburg, Germany,Chemical
Biology, Department of Chemistry, Philipps
University Marburg, 35037 Marburg, Germany,Senckenberg
Gesellschaft für Naturforschung, 60325 Frankfurt, Germany,
| |
Collapse
|
7
|
Kinner A, Nerke P, Siedentop R, Steinmetz T, Classen T, Rosenthal K, Nett M, Pietruszka J, Lütz S. Recent Advances in Biocatalysis for Drug Synthesis. Biomedicines 2022; 10:964. [PMID: 35625702 PMCID: PMC9138302 DOI: 10.3390/biomedicines10050964] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/16/2022] [Accepted: 04/17/2022] [Indexed: 02/01/2023] Open
Abstract
Biocatalysis is constantly providing novel options for the synthesis of active pharmaceutical ingredients (APIs). In addition to drug development and manufacturing, biocatalysis also plays a role in drug discovery and can support many active ingredient syntheses at an early stage to build up entire scaffolds in a targeted and preparative manner. Recent progress in recruiting new enzymes by genome mining and screening or adapting their substrate, as well as product scope, by protein engineering has made biocatalysts a competitive tool applied in academic and industrial spheres. This is especially true for the advances in the field of nonribosomal peptide synthesis and enzyme cascades that are expanding the capabilities for the discovery and synthesis of new bioactive compounds via biotransformation. Here we highlight some of the most recent developments to add to the portfolio of biocatalysis with special relevance for the synthesis and late-stage functionalization of APIs, in order to bypass pure chemical processes.
Collapse
Affiliation(s)
- Alina Kinner
- Chair for Bioprocess Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany; (A.K.); (P.N.); (R.S.); (K.R.)
| | - Philipp Nerke
- Chair for Bioprocess Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany; (A.K.); (P.N.); (R.S.); (K.R.)
| | - Regine Siedentop
- Chair for Bioprocess Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany; (A.K.); (P.N.); (R.S.); (K.R.)
| | - Till Steinmetz
- Laboratory for Technical Biology, Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany; (T.S.); (M.N.)
| | - Thomas Classen
- Institute of Bio- and Geosciences: Biotechnology (IBG-1), Forschungszentrum Jülich, 52428 Jülich, Germany; (T.C.); (J.P.)
| | - Katrin Rosenthal
- Chair for Bioprocess Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany; (A.K.); (P.N.); (R.S.); (K.R.)
| | - Markus Nett
- Laboratory for Technical Biology, Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany; (T.S.); (M.N.)
| | - Jörg Pietruszka
- Institute of Bio- and Geosciences: Biotechnology (IBG-1), Forschungszentrum Jülich, 52428 Jülich, Germany; (T.C.); (J.P.)
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf Located at Forschungszentrum Jülich, 52426 Jülich, Germany
| | - Stephan Lütz
- Chair for Bioprocess Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany; (A.K.); (P.N.); (R.S.); (K.R.)
| |
Collapse
|
8
|
Bozhueyuek KAJ, Watzel J, Abbood N, Bode HB. Synthetic Zippers as an Enabling Tool for Engineering of Non-Ribosomal Peptide Synthetases*. Angew Chem Int Ed Engl 2021; 60:17531-17538. [PMID: 34015175 PMCID: PMC8362031 DOI: 10.1002/anie.202102859] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/31/2021] [Indexed: 12/29/2022]
Abstract
Non‐ribosomal peptide synthetases (NRPSs) are the origin of a wide range of natural products, including many clinically used drugs. Efficient engineering of these often giant biosynthetic machineries to produce novel non‐ribosomal peptides (NRPs) is an ongoing challenge. Here we describe a cloning and co‐expression strategy to functionally combine NRPS fragments of Gram‐negative and ‐positive origin, synthesising novel peptides at titres up to 220 mg L−1. Extending from the recently introduced definition of eXchange Units (XUs), we inserted synthetic zippers (SZs) to split single protein NRPSs into independently expressed and translated polypeptide chains. These synthetic type of NRPS (type S) enables easier access to engineering, overcomes cloning limitations, and provides a simple and rapid approach to building peptide libraries via the combination of different NRPS subunits.
Collapse
Affiliation(s)
- Kenan A J Bozhueyuek
- Molecular Biotechnology, Institute of Molecular Biosciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Jonas Watzel
- Molecular Biotechnology, Institute of Molecular Biosciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Nadya Abbood
- Molecular Biotechnology, Institute of Molecular Biosciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany.,Max-Planck-Institute for Terrestrial Microbiology, Department of Natural Products in Organismic Interactions, 35043, Marburg, Germany
| | - Helge B Bode
- Molecular Biotechnology, Institute of Molecular Biosciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany.,Max-Planck-Institute for Terrestrial Microbiology, Department of Natural Products in Organismic Interactions, 35043, Marburg, Germany.,Senckenberg Gesellschaft für Naturforschung, 60325, Frankfurt am Main, Germany
| |
Collapse
|
9
|
Iacovelli R, Bovenberg RAL, Driessen AJM. Nonribosomal peptide synthetases and their biotechnological potential in Penicillium rubens. J Ind Microbiol Biotechnol 2021; 48:6324005. [PMID: 34279620 PMCID: PMC8788816 DOI: 10.1093/jimb/kuab045] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 07/12/2021] [Indexed: 01/23/2023]
Abstract
Nonribosomal peptide synthetases (NRPS) are large multimodular enzymes that synthesize a diverse variety of peptides. Many of these are currently used as pharmaceuticals, thanks to their activity as antimicrobials (penicillin, vancomycin, daptomycin, echinocandin), immunosuppressant (cyclosporin) and anticancer compounds (bleomycin). Because of their biotechnological potential, NRPSs have been extensively studied in the past decades. In this review, we provide an overview of the main structural and functional features of these enzymes, and we consider the challenges and prospects of engineering NRPSs for the synthesis of novel compounds. Furthermore, we discuss secondary metabolism and NRP synthesis in the filamentous fungus Penicillium rubens and examine its potential for the production of novel and modified β-lactam antibiotics.
Collapse
Affiliation(s)
- Riccardo Iacovelli
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Roel A L Bovenberg
- Synthetic Biology and Cell Engineering, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands.,DSM Biotechnology Centre, 2613 AX Delft, The Netherlands
| | - Arnold J M Driessen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| |
Collapse
|
10
|
Bozhueyuek KAJ, Watzel J, Abbood N, Bode HB. Synthetic Zippers as an Enabling Tool for Engineering of Non‐Ribosomal Peptide Synthetases**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Kenan A. J. Bozhueyuek
- Molecular Biotechnology Institute of Molecular Biosciences Goethe University Frankfurt 60438 Frankfurt am Main Germany
| | - Jonas Watzel
- Molecular Biotechnology Institute of Molecular Biosciences Goethe University Frankfurt 60438 Frankfurt am Main Germany
| | - Nadya Abbood
- Molecular Biotechnology Institute of Molecular Biosciences Goethe University Frankfurt 60438 Frankfurt am Main Germany
- Max-Planck-Institute for Terrestrial Microbiology Department of Natural Products in Organismic Interactions 35043 Marburg Germany
| | - Helge B. Bode
- Molecular Biotechnology Institute of Molecular Biosciences Goethe University Frankfurt 60438 Frankfurt am Main Germany
- Max-Planck-Institute for Terrestrial Microbiology Department of Natural Products in Organismic Interactions 35043 Marburg Germany
- Senckenberg Gesellschaft für Naturforschung 60325 Frankfurt am Main Germany
| |
Collapse
|
11
|
Watzel J, Duchardt-Ferner E, Sarawi S, Bode HB, Wöhnert J. Cooperation between a T Domain and a Minimal C-Terminal Docking Domain to Enable Specific Assembly in a Multiprotein NRPS. Angew Chem Int Ed Engl 2021; 60:14171-14178. [PMID: 33876501 PMCID: PMC8251938 DOI: 10.1002/anie.202103498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Indexed: 01/27/2023]
Abstract
Non-ribosomal peptide synthetases (NRPS) produce natural products from amino acid building blocks. They often consist of multiple polypeptide chains which assemble in a specific linear order via specialized N- and C-terminal docking domains (N/C DDs). Typically, docking domains function independently from other domains in NRPS assembly. Thus, docking domain replacements enable the assembly of "designer" NRPS from proteins that normally do not interact. The multiprotein "peptide-antimicrobial-Xenorhabdus" (PAX) peptide-producing PaxS NRPS is assembled from the three proteins PaxA, PaxB and PaxC. Herein, we show that the small C DD of PaxA cooperates with its preceding thiolation (T1 ) domain to bind the N DD of PaxB with very high affinity, establishing a structural and thermodynamical basis for this unprecedented docking interaction, and we test its functional importance in vivo in a truncated PaxS assembly line. Similar docking interactions are apparently present in other NRPS systems.
Collapse
Affiliation(s)
- Jonas Watzel
- Molecular Biotechnology, Institute of Molecular Biosciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Elke Duchardt-Ferner
- Institute of Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Sepas Sarawi
- Institute of Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, 60438, Frankfurt am Main, Germany.,Molecular Biotechnology, Institute of Molecular Biosciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Helge B Bode
- Department of Natural Products in Organismic Interactions, Max-Planck-Institute for Terrestrial Microbiology, 35043, Marburg, Germany.,Senckenberg Gesellschaft für Naturforschung, 60325, Frankfurt am Main, Germany.,Molecular Biotechnology, Institute of Molecular Biosciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Jens Wöhnert
- Institute of Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| |
Collapse
|
12
|
Watzel J, Duchardt‐Ferner E, Sarawi S, Bode HB, Wöhnert J. Kooperation zwischen T‐Domäne und minimaler C‐terminaler Docking‐Domäne für funktionelle Proteininteraktionen in Multiprotein‐NRPS. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jonas Watzel
- Molekulare Biotechnologie Institut für Molekulare Biowissenschaften Goethe-Universität Frankfurt 60438 Frankfurt am Main Deutschland
| | - Elke Duchardt‐Ferner
- Institut für Molekulare Biowissenschaften und Biomolekulares Magnetresonanz Zentrum (BMRZ) Goethe-Universität Frankfurt 60438 Frankfurt am Main Deutschland
| | - Sepas Sarawi
- Institut für Molekulare Biowissenschaften und Biomolekulares Magnetresonanz Zentrum (BMRZ) Goethe-Universität Frankfurt 60438 Frankfurt am Main Deutschland
- Molekulare Biotechnologie Institut für Molekulare Biowissenschaften Goethe-Universität Frankfurt 60438 Frankfurt am Main Deutschland
| | - Helge B. Bode
- Abteilung Naturstoffe in organismischen Interaktionen Max-Planck-Institut für terrestrische Mikrobiologie 35043 Marburg Deutschland
- Senckenberg Gesellschaft für Naturforschung 60325 Frankfurt am Main Deutschland
- Molekulare Biotechnologie Institut für Molekulare Biowissenschaften Goethe-Universität Frankfurt 60438 Frankfurt am Main Deutschland
| | - Jens Wöhnert
- Institut für Molekulare Biowissenschaften und Biomolekulares Magnetresonanz Zentrum (BMRZ) Goethe-Universität Frankfurt 60438 Frankfurt am Main Deutschland
| |
Collapse
|
13
|
Smith HG, Beech MJ, Lewandowski JR, Challis GL, Jenner M. Docking domain-mediated subunit interactions in natural product megasynth(et)ases. J Ind Microbiol Biotechnol 2021; 48:6152290. [PMID: 33640957 PMCID: PMC9113145 DOI: 10.1093/jimb/kuab018] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 02/24/2021] [Indexed: 12/19/2022]
Abstract
Polyketide synthase (PKS) and non-ribosomal peptide synthetase (NRPS) multienzymes produce numerous high value metabolites. The protein subunits which constitute these megasynth(et)ases must undergo ordered self-assembly to ensure correct organisation of catalytic domains for the biosynthesis of a given natural product. Short amino acid regions at the N- and C-termini of each subunit, termed docking domains (DDs), often occur in complementary pairs, which interact to facilitate substrate transfer and maintain pathway fidelity. This review details all structurally characterised examples of NRPS and PKS DDs to date and summarises efforts to utilise DDs for the engineering of biosynthetic pathways.
Collapse
Affiliation(s)
- Helen G Smith
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | - Matthew J Beech
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | | | - Gregory L Challis
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
- Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry CV4 7AL, UK
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton, VIC 3800, Australia
| | - Matthew Jenner
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
- Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
14
|
|
15
|
Kegler C, Bode HB. Artificial Splitting of a Non-Ribosomal Peptide Synthetase by Inserting Natural Docking Domains. Angew Chem Int Ed Engl 2020; 59:13463-13467. [PMID: 32329545 PMCID: PMC7496407 DOI: 10.1002/anie.201915989] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/18/2020] [Indexed: 12/13/2022]
Abstract
The interaction in multisubunit non‐ribosomal peptide synthetases (NRPSs) is mediated by docking domains that ensure the correct subunit‐to‐subunit interaction. We introduced natural docking domains into the three‐module xefoampeptide synthetase (XfpS) to create two to three artificial NRPS XfpS subunits. The enzymatic performance of the split biosynthesis was measured by absolute quantification of the products by HPLC‐ESI‐MS. The connecting role of the docking domains was probed by deleting integral parts of them. The peptide production data was compared to soluble protein amounts of the NRPS using SDS‐PAGE. Reduced peptide synthesis was not a result of reduced soluble NRPS concentration but a consequence of the deletion of vital docking domain parts. Splitting the xefoampeptide biosynthesis polypeptide by introducing docking domains was feasible and resulted in higher amounts of product in one of the two tested split‐module cases compared to the full‐length wild‐type enzyme.
Collapse
Affiliation(s)
- Carsten Kegler
- Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt am Main, Germany
| | - Helge B Bode
- Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt am Main, Germany.,Buchmann Institute for Molecular Life Sciences (BMLS), Goethe-Universität Frankfurt, 60438, Frankfurt, Germany.,Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325, Frankfurt, Germany
| |
Collapse
|
16
|
Kegler C, Bode HB. Artificial Splitting of a Non‐Ribosomal Peptide Synthetase by Inserting Natural Docking Domains. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Carsten Kegler
- Molekulare Biotechnologie, Fachbereich Biowissenschaften Goethe Universität Frankfurt Max-von-Laue-Straße 9 60438 Frankfurt am Main Germany
| | - Helge B. Bode
- Molekulare Biotechnologie, Fachbereich Biowissenschaften Goethe Universität Frankfurt Max-von-Laue-Straße 9 60438 Frankfurt am Main Germany
- Buchmann Institute for Molecular Life Sciences (BMLS) Goethe-Universität Frankfurt 60438 Frankfurt Germany
- Senckenberg Gesellschaft für Naturforschung Senckenberganlage 25 60325 Frankfurt Germany
| |
Collapse
|
17
|
Watzel J, Hacker C, Duchardt-Ferner E, Bode HB, Wöhnert J. A New Docking Domain Type in the Peptide-Antimicrobial-Xenorhabdus Peptide Producing Nonribosomal Peptide Synthetase from Xenorhabdus bovienii. ACS Chem Biol 2020; 15:982-989. [DOI: 10.1021/acschembio.9b01022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jonas Watzel
- Molecular Biotechnology, Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Carolin Hacker
- Institute of Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Elke Duchardt-Ferner
- Institute of Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Helge B. Bode
- Molecular Biotechnology, Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
- Senckenberg Gesellschaft für Naturforschung, 60325 Frankfurt am Main, Germany
| | - Jens Wöhnert
- Institute of Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| |
Collapse
|