1
|
Liu G, Sheng Q, Sun X, Meng F, Liu D, Yan L, Wan LS, Zhou Y. Base-Catalyzed Chemo-, Regio- and Stereoselective Addition of Quinazolinones to Trifluoromethylated Internal Alkynes for Access to N3-Vinylquinazolinones. Org Lett 2025. [PMID: 40448656 DOI: 10.1021/acs.orglett.5c01683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2025]
Abstract
A base-catalyzed addition of quinazolinones to unsymmetrical trifluoromethylated internal alkynes was accomplished for straightforward access to various N3-vinylquinazolinones. Excellent chemo-, regio-, and stereoselectivity were achieved along with moderate to good efficacy for broad substrate scope under environmentally benign conditions. Moreover, N3-vinylquinazolinone adducts could be readily transformed into a useful fused tetracyclic scaffold via one-step intramolecular oxidative cross-coupling. On the basis of preliminary control experiment results, a catalytic cycle was proposed to clarify a plausible reaction mechanism.
Collapse
Affiliation(s)
- Guangyuan Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qiuyu Sheng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xing Sun
- Hebei Chemical and Pharmaceutical College, Shijiazhuang 050026, China
| | - Fangyu Meng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dan Liu
- Hebei Chemical and Pharmaceutical College, Shijiazhuang 050026, China
| | - Linlin Yan
- Hebei Chemical and Pharmaceutical College, Shijiazhuang 050026, China
| | - Luo-Sheng Wan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yirong Zhou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
2
|
Qiu YH, Ma PY, Shao WH, Huang CQ, Wen Y, Huang ZY, Luo W, Long L, Peng X, Yu D. Trifluoromethyl Group (CF 3) Induced Regioselective Larock Indole Synthesis from Unsymmetric β-CF 3-1,3-enynes. Org Lett 2025; 27:3217-3224. [PMID: 40126082 DOI: 10.1021/acs.orglett.5c00501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
The indole skeleton exists widely in natural products, pharmaceuticals, and materials. We disclose here a trifluoromethyl group induced regioselective Larock indole synthetic method from unsymmetric 2-CF3-1,3-enynes. The presence of a trifluoromethyl group is determinable for the regioselectivity. Once the CF3 group was replaced with the methyl or phenyl group, a ratio of 1:1 to 1:1.4 isomers were obtained. This strategy features good regioselectivity, broad substrate scope, and high functional group tolerance. The protocol reported here offers an alternative solution to the rare 3,4-functionalization of 2-CF3-1,3-enynes. The products were further transformed to show distinctive reactivity in hydroboration-oxidation and hydro-bromination.
Collapse
Affiliation(s)
- Yan-Hua Qiu
- Optoelectronic Functional Materials Center, Jiangxi Province Key Laboratory of Synthetic Pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, PR China
| | - Pei-Yan Ma
- Optoelectronic Functional Materials Center, Jiangxi Province Key Laboratory of Synthetic Pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, PR China
| | - Wen-Hao Shao
- Optoelectronic Functional Materials Center, Jiangxi Province Key Laboratory of Synthetic Pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, PR China
| | - Chang-Qi Huang
- Optoelectronic Functional Materials Center, Jiangxi Province Key Laboratory of Synthetic Pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, PR China
| | - Yongshun Wen
- Optoelectronic Functional Materials Center, Jiangxi Province Key Laboratory of Synthetic Pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, PR China
| | - Zi-Ying Huang
- Optoelectronic Functional Materials Center, Jiangxi Province Key Laboratory of Synthetic Pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, PR China
| | - Wenjun Luo
- Optoelectronic Functional Materials Center, Jiangxi Province Key Laboratory of Synthetic Pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, PR China
| | - Lipeng Long
- Optoelectronic Functional Materials Center, Jiangxi Province Key Laboratory of Synthetic Pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, PR China
| | - Xiangjun Peng
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, School of Pharmaceutical Sciences of Gannan Medical University, Ganzhou 341000, PR China
| | - Daohong Yu
- Optoelectronic Functional Materials Center, Jiangxi Province Key Laboratory of Synthetic Pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, PR China
| |
Collapse
|
3
|
Li WD, Fan J, Li CJ, Shi XY. Recent advances in carboxyl-directed dimerizations and cascade annulations via C-H activations. Chem Commun (Camb) 2025; 61:3967-3985. [PMID: 39945206 DOI: 10.1039/d4cc06722c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
C-H functionalization provides an efficient route to construct complex organic molecules. The introduction of directing groups enhances the site-selectivity of the reaction. Carboxyl as a directing group can be easily transformed into other functional groups afterwards. Due to its good reactivity, it can undergo cascade annulation reactions to build valuable heterocycle skeletons in one pot. Moreover, carboxyl can easily be removed via decarboxylation, which allows it to serve as a unique traceless directing group in C-H functionalization. These characteristics make carboxyl a promising directing group, which is superior to nitrogen-containing compounds with strong coordination ability to a certain extent. This feature article reviews the applications of carboxyl as a classical directing group and a unique traceless-directing group in cascade annulation reactions to access diverse carbocycles and heterocycles.
Collapse
Affiliation(s)
- Wan-Di Li
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Juan Fan
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Chao-Jun Li
- Department of Chemistry, and FRQNT Centre for Green Chemistry and Catalysis, McGill University, Montreal, Quebec H3A 0B8, Canada.
| | - Xian-Ying Shi
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
4
|
Li WD, Zhang PJ, Jia JW, Zhang XY, Ma HY, He KX, Dang DF, Jiao J, Shi XY. Oxidative Tandem Cyclization of Aromatic Acids with (Benzo)thiophenes: One-Pot Access to Planar Sulfur-Containing Polycyclic Heteroarenes for Lipid-Droplet-Targeted Probes. Org Lett 2024; 26:4857-4862. [PMID: 38838191 DOI: 10.1021/acs.orglett.4c01208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
The efficient construction of π-conjugated polycyclic heteroarenes represents a significant task in the field of functional materials. A one-step oxidative tandem cyclization of aromatic acids with (benzo)thiophenes was developed to access planar sulfur-containing polycyclic heteroarenes. This protocol undergoes intermolecular cross-dehydrogenative coupling followed by intramolecular Friedel-Crafts acylation and provides a facile pathway to planar polycyclic compounds from inexpensive reactants. The synthesized heteroarenes serving as lipid-droplet-targeted probes exhibit outstanding performance with favorable biocompatibility and photostability.
Collapse
Affiliation(s)
- Wan-Di Li
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P.R. China
| | - Pei-Juan Zhang
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Jing-Wen Jia
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P.R. China
| | - Xiao-Yong Zhang
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P.R. China
| | - Hong-Yu Ma
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P.R. China
| | - Kai-Xin He
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P.R. China
| | - Dong-Feng Dang
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Jiao Jiao
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Xian-Ying Shi
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P.R. China
| |
Collapse
|
5
|
Koga A, Matsuda M, Tanaka R, Endo M, Yamada Y, Hanamoto T. Highly regio- and stereocontrolled preparation of α-(trifluoromethyl)-β-(phenylthio) enamines by the hydroamination of in situ-synthesized 1-(trifluoromethyl)-2-(phenylthio)ethyne. Org Biomol Chem 2023; 21:8528-8534. [PMID: 37840524 DOI: 10.1039/d3ob01473h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Various nitrogen nucleophiles were easily added to in situ-generated 1-(trifluoromethyl)-2-(phenylthio)ethyne to afford the corresponding trifluoromethyl enamines in good-to-high yields and with high regio- and stereocontrol under very mild conditions.
Collapse
Affiliation(s)
- Akihiro Koga
- Department of Chemistry and Applied Chemistry, Saga University, Honjyo-machi 1, Saga 840-8502, Japan.
| | - Maki Matsuda
- Department of Chemistry and Applied Chemistry, Saga University, Honjyo-machi 1, Saga 840-8502, Japan.
| | - Rin Tanaka
- Department of Chemistry and Applied Chemistry, Saga University, Honjyo-machi 1, Saga 840-8502, Japan.
| | - Minami Endo
- Department of Chemistry and Applied Chemistry, Saga University, Honjyo-machi 1, Saga 840-8502, Japan.
| | - Yasunori Yamada
- Department of Chemistry and Applied Chemistry, Saga University, Honjyo-machi 1, Saga 840-8502, Japan.
| | - Takeshi Hanamoto
- Department of Chemistry and Applied Chemistry, Saga University, Honjyo-machi 1, Saga 840-8502, Japan.
| |
Collapse
|
6
|
Cui X, Qu J, Yi J, Sun W, Hu J, Guo S, Jin JW, Chen WH, Wong WL, Wu JQ. Rh(III)-catalyzed redox-neutral C-H alkenylation of benzamides with gem-difluorohomoallylic silyl ethers via β-H elimination. Chem Commun (Camb) 2023; 59:3747-3750. [PMID: 36897608 DOI: 10.1039/d3cc00529a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Fluorinated molecules are widely used in pharmaceutical and agrochemical industries. Herein we report the synthesis of 2-(3,3-difluoro-4-(silyloxy)but-1-en-1-yl)benzamides from the unprecedented rhodium(III)-catalyzed alkenylation of various benzamides with difluorohomoallylic silyl ethers. The practicability of this protocol is demonstrated by its broad substrate compatibility, good functional group tolerance, ready scalability and high regioselectivity. The oxygen in difluorohomoallylic silyl ethers makes β-H elimination feasible, which suppresses both the β-F elimination and dialkenylation of benzamides. This redox-neutral reaction proceeds efficiently via N-O bond cleavage without external oxidants and thus provides new opportunities for the synthesis of elaborate difluorinated compounds from readily available fluorinated synthons.
Collapse
Affiliation(s)
- Xueli Cui
- School of Biotechnology and Health Sciences, Wuyi University, 22 Dongchengcun, Jiangmen 529020, People's Republic of China.
| | - Jing Qu
- School of Biotechnology and Health Sciences, Wuyi University, 22 Dongchengcun, Jiangmen 529020, People's Republic of China.
| | - Jianfeng Yi
- School of Biotechnology and Health Sciences, Wuyi University, 22 Dongchengcun, Jiangmen 529020, People's Republic of China.
| | - Weiqiang Sun
- School of Biotechnology and Health Sciences, Wuyi University, 22 Dongchengcun, Jiangmen 529020, People's Republic of China.
| | - Jinhui Hu
- School of Biotechnology and Health Sciences, Wuyi University, 22 Dongchengcun, Jiangmen 529020, People's Republic of China.
| | - Suqin Guo
- School of Biotechnology and Health Sciences, Wuyi University, 22 Dongchengcun, Jiangmen 529020, People's Republic of China.
| | - Jing-Wei Jin
- School of Biotechnology and Health Sciences, Wuyi University, 22 Dongchengcun, Jiangmen 529020, People's Republic of China.
| | - Wen-Hua Chen
- School of Biotechnology and Health Sciences, Wuyi University, 22 Dongchengcun, Jiangmen 529020, People's Republic of China.
| | - Wing-Leung Wong
- School of Biotechnology and Health Sciences, Wuyi University, 22 Dongchengcun, Jiangmen 529020, People's Republic of China.
| | - Jia-Qiang Wu
- School of Biotechnology and Health Sciences, Wuyi University, 22 Dongchengcun, Jiangmen 529020, People's Republic of China.
| |
Collapse
|
7
|
Chutia K, Sarmah M, Gogoi P. Substituted Isocoumarins: An Assemble of Synthetic Strategies Towards 3-Substituted and 3,4-Disubstituted Isocoumarins. Chem Asian J 2023; 18:e202201240. [PMID: 36647281 DOI: 10.1002/asia.202201240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/18/2023]
Abstract
The versatility of isocoumarin frameworks offers the privilege to access many pharmacological targets. This unique heterocycle core present in many natural products and complex organic molecules contribute to medicinal chemistry as anti-cancer, anti-inflammatory and immunomodulatory agents. The attractive properties exhibited by its analogues urged the scientists to explore their synthetic analogues. In regard to the myriads of synthetic methodologies, we have compiled a review update covering all the articles that have been published towards the synthesis of 3-substituted and 3,4-disubstituted isocoumarins. Additionally, we have also highlighted a systematic survey of catalytic methods for their synthesis along with their scope towards diverse functionalizations and plausible mechanistic aspects.
Collapse
Affiliation(s)
- Kangkana Chutia
- Applied Organic Chemistry Group, Chemical Science and Technology Division CSIR-North East Institute of Science and Technology, NH 37, Pulibor, Jorhat, Assam, 785006, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P., 201002, India
| | - Manashi Sarmah
- Applied Organic Chemistry Group, Chemical Science and Technology Division CSIR-North East Institute of Science and Technology, NH 37, Pulibor, Jorhat, Assam, 785006, India
| | - Pranjal Gogoi
- Applied Organic Chemistry Group, Chemical Science and Technology Division CSIR-North East Institute of Science and Technology, NH 37, Pulibor, Jorhat, Assam, 785006, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P., 201002, India
| |
Collapse
|
8
|
Zhang X, Liu G, Peng Y, li H, Zhou Y. Trifluoromethylated Indolopyranones through Regioselective Annulation of Indole Carboxylic Acids with Unsymmetric Internal Trifluoromethylated Alkynes. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xingxing Zhang
- Huazhong University of Science and Technology Tongji Medical College School of Pharmacy CHINA
| | - Guangyuan Liu
- Huazhong University of Science and Technology Tongji Medical College School of Pharmacy CHINA
| | - Yiyuan Peng
- Jiangxi Normal University College of Chemistry and Chemical Engineering CHINA
| | - Hua li
- Huazhong University of Science and Technology Tongji Medical College School of Pharmacy CHINA
| | - Yirong Zhou
- Huazhong University of Science and Technology school of pharmacy No. 13 Hangkong Road 430030 wuhan CHINA
| |
Collapse
|
9
|
Li X, li D, zhang X. Ru(II)-Catalyzed C-H Bond Activation/Annulation of N-iminopyridinium Ylides with Sulfoxonium Ylides. Org Biomol Chem 2022; 20:1475-1479. [DOI: 10.1039/d1ob02427b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Ru(II)-catalyzed C-H bond activation/annulation of N-iminopyridinium ylides with sulfoxonium ylides has been developed for the synthesis of diverse functionalized isocoumarin derivatives. This method features broad substrate scope, high-functional-group tolerance,...
Collapse
|
10
|
Wang L, Shao Y, Chen F, Qian P, Cheng J. Rhodium-Catalyzed Directing Group-Assisted Annulation of Arene C—H Bond with Vinylene Carbonate toward Isocoumarins. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202106023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Sindhe H, Chaudhary B, Chowdhury N, Kamble A, Kumar V, Lad A, Sharma S. Recent advances in transition-metal catalyzed directed C–H functionalization with fluorinated building blocks. Org Chem Front 2022. [DOI: 10.1039/d1qo01544c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review focuses on the advances in transition-metal catalyzed reactions with fluorinated building blocks via directed C–H bond activation for the construction of diverse organic molecules with an insight into the probable mechanistic pathway.
Collapse
Affiliation(s)
- Haritha Sindhe
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER-A), Gandhinagar, Gujarat-382355, India
| | - Bharatkumar Chaudhary
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER-A), Gandhinagar, Gujarat-382355, India
| | - Neelanjan Chowdhury
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER-A), Gandhinagar, Gujarat-382355, India
| | - Akshay Kamble
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER-A), Gandhinagar, Gujarat-382355, India
| | - Vivek Kumar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER-A), Gandhinagar, Gujarat-382355, India
| | - Aishwarya Lad
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER-A), Gandhinagar, Gujarat-382355, India
| | - Satyasheel Sharma
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER-A), Gandhinagar, Gujarat-382355, India
| |
Collapse
|
12
|
Choi I, Messinis AM, Hou X, Ackermann L. A Strategy for Site‐ and Chemoselective C−H Alkenylation through Osmaelectrooxidative Catalysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Isaac Choi
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry (WISCh) Georg-August-Universität Tammanstraße 2 37077 Göttingen Germany
| | - Antonis M. Messinis
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry (WISCh) Georg-August-Universität Tammanstraße 2 37077 Göttingen Germany
| | - Xiaoyan Hou
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry (WISCh) Georg-August-Universität Tammanstraße 2 37077 Göttingen Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry (WISCh) Georg-August-Universität Tammanstraße 2 37077 Göttingen Germany
| |
Collapse
|
13
|
Choi I, Messinis AM, Hou X, Ackermann L. A Strategy for Site- and Chemoselective C-H Alkenylation through Osmaelectrooxidative Catalysis. Angew Chem Int Ed Engl 2021; 60:27005-27012. [PMID: 34665924 PMCID: PMC9298884 DOI: 10.1002/anie.202110616] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Indexed: 01/06/2023]
Abstract
Herein, we disclose osmaelectrocatalyzed C-H activations that set the stage for electrooxidative alkyne annulations by benzoic acids. The osmium electrocatalysis enables site- and chemoselective electrooxidative C-H activations with unique levels of selectivity. The isolation of unprecedented osmium(0) and osmium(II) intermediates, along with crystallographic characterization and analyses by spectrometric and spectroscopic in operando techniques delineate a synergistic osmium redox catalyst regime. Detailed mechanistic studies revealed a facile C-H cleavage, which allows for an ample substrate scope, providing provide robust and user-friendly access to annulated heterocycles.
Collapse
Affiliation(s)
- Isaac Choi
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry (WISCh)Georg-August-UniversitätTammanstraße 237077GöttingenGermany
| | - Antonis M. Messinis
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry (WISCh)Georg-August-UniversitätTammanstraße 237077GöttingenGermany
| | - Xiaoyan Hou
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry (WISCh)Georg-August-UniversitätTammanstraße 237077GöttingenGermany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry (WISCh)Georg-August-UniversitätTammanstraße 237077GöttingenGermany
| |
Collapse
|
14
|
Liu S, Mao H, Qiao J, Zhang X, Lu Y, Gong X, Jia A, Gu L, Wu X, Zhao F. Temperature‐Controlled Divergent Synthesis of Tetrasubstituted Alkenes and Pyrrolo[1,2‐
a
]indole Derivatives via Iridium Catalysis. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Siyu Liu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University No. 2025, Chengluo Avenue Chengdu 610106 P. R. China
- Jinhua Branch Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University 888 West Hai Tang Road Jinhua 321007 P. R. China
| | - Hui Mao
- College of Pharmacy Jinhua Polytechnic 888 West Hai Tang Road Jinhua 321007 P. R. China
| | - Jin Qiao
- Jinhua Branch Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University 888 West Hai Tang Road Jinhua 321007 P. R. China
| | - Xiaoning Zhang
- Jinhua Branch Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University 888 West Hai Tang Road Jinhua 321007 P. R. China
| | - Yangbin Lu
- Jinhua Branch Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University 888 West Hai Tang Road Jinhua 321007 P. R. China
| | - Xin Gong
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University No. 2025, Chengluo Avenue Chengdu 610106 P. R. China
| | - Aiqiong Jia
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University No. 2025, Chengluo Avenue Chengdu 610106 P. R. China
| | - Linghui Gu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University No. 2025, Chengluo Avenue Chengdu 610106 P. R. China
| | - Xiaowei Wu
- Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 P. R. China
- Zhongshan Institute for Drug Discovery Shanghai Institute of Materia Medica Chinese Academy of Sciences Zhongshan 528400 P. R. China
| | - Fei Zhao
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University No. 2025, Chengluo Avenue Chengdu 610106 P. R. China
- Jinhua Branch Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University 888 West Hai Tang Road Jinhua 321007 P. R. China
| |
Collapse
|
15
|
Hu Y, Ye L, Chen J, Zhang H, Deng H, Lin J, Cao W. An Efficient Construction of CF
3
‐Substituted Spirooxindole‐Fused Benzo[a]quinolizidines by a Three‐Component Cyclization. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Yijie Hu
- Department of Chemistry Shanghai University Shanghai 200444 P. R. China
| | - Liufeiyang Ye
- Department of Chemistry Shanghai University Shanghai 200444 P. R. China
| | - Jie Chen
- Department of Chemistry Shanghai University Shanghai 200444 P. R. China
| | - Hui Zhang
- Laboratory for Microstructures and Instrumental Analysis and Research Center Shanghai University Shanghai 200444 P. R. China
| | - Hongmei Deng
- Laboratory for Microstructures and Instrumental Analysis and Research Center Shanghai University Shanghai 200444 P. R. China
| | - Jin‐Hong Lin
- Department of Chemistry Shanghai University Shanghai 200444 P. R. China
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 P. R. China
| | - Weiguo Cao
- Department of Chemistry Shanghai University Shanghai 200444 P. R. China
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 P. R. China
| |
Collapse
|
16
|
Wu H, Wang YC, Shatskiy A, Li QY, Liu JQ, Kärkäs MD, Wang XS. Modular synthesis of 3-substituted isocoumarins via silver-catalyzed aerobic oxidation/ 6-endo heterocyclization of ortho-alkynylbenzaldehydes. Org Biomol Chem 2021; 19:6657-6664. [PMID: 34271583 DOI: 10.1039/d1ob01065d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A method involving silver-catalyzed aerobic oxidation/6-endo heterocyclization of ortho-alkynylbenzaldehydes to yield 3-substituted isocoumarins is described. The developed protocol allows convenient access to a range of synthetically useful 3-substituted isocoumarins and related fused heterocyclolactones in good to high yields, using silver tetrafluoroborate as the catalyst, and atmospheric oxygen as the terminal oxidant and the source of endocyclic oxygen. Mechanistic studies suggest the involvement of a free-radical pathway.
Collapse
Affiliation(s)
- Hao Wu
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthesis for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China.
| | - Yi-Chun Wang
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthesis for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China.
| | - Andrey Shatskiy
- Department of Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| | - Qiu-Yan Li
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthesis for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China.
| | - Jian-Quan Liu
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthesis for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China. and Department of Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| | - Markus D Kärkäs
- Department of Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| | - Xiang-Shan Wang
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthesis for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China.
| |
Collapse
|
17
|
Yang J, Shi W, Chen W, Gao H, Zhou Z, Yi W. Rh(III)-Catalyzed Chemoselective C-H Alkenylation and [5 + 1] Annulation with Gem-Difluoromethylene Enabled by the Distinctive Fluorine Effect. J Org Chem 2021; 86:9711-9722. [PMID: 34189921 DOI: 10.1021/acs.joc.1c01012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The efficient couplings of diverse N-arylureas and gem-difluoromethylene alkynes have been realized via Rh(III)-catalyzed chemoselective C-H alkenylation and [5 + 1] annulation, which were induced by the distinctive fluorine effect to provide the different coordination mode of the Rh(III) catalyst binding to the directing group, thereby giving the direct access to difluorinated 2-alkenyl arylureas and 3,4-dihydroquinazolin-2(1H)-ones bearing both an α-quaternary carbon center and a monofluoroalkenyl moiety with broad substrate compatibility and good functional group tolerance. The synthetic application in C-H alkenylation of the N-pyridylaniline, the late-stage [3 + 2] annulation, and the derivation of the obtained products has been also demonstrated to further strengthen the synthetic utility of the chemodivergent transformations.
Collapse
Affiliation(s)
- Jian Yang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P. R. China
| | - Wendi Shi
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P. R. China
| | - Weijie Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P. R. China
| | - Hui Gao
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P. R. China
| | - Zhi Zhou
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P. R. China
| | - Wei Yi
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P. R. China
| |
Collapse
|
18
|
Kumon T, Wu J, Shimada M, Yamada S, Agou T, Fukumoto H, Kubota T, Hammond GB, Konno T. Cobalt-Catalyzed C-H Activation/Annulation of Benzamides with Fluorine-Containing Alkynes: A Route to 3- and 4-Fluoroalkylated Isoquinolinones. J Org Chem 2021; 86:5183-5196. [PMID: 33725448 DOI: 10.1021/acs.joc.1c00080] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The C-H activation/annulation reaction of various benzamides with fluoroalkylated alkynes in the presence of a Co(acac)2·2H2O catalyst proceeded very smoothly to give the corresponding 3- and 4-fluoroalkylated isoquinolinones in excellent yields with approximately 70% regioselectivities. These regioisomers could be successfully separated and obtained in pure form. Major or minor regioisomers were determined as 4- or 3-fluoroalkylated isoquinolinones, respectively, based on X-ray crystallographic analyses.
Collapse
Affiliation(s)
- Tatsuya Kumon
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Jianyan Wu
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Miroku Shimada
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Shigeyuki Yamada
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Tomohiro Agou
- Department of Materials Science, Ibaraki University, 4-12-1 Nakanarusawa, Hitachi 316-8511, Japan
| | - Hiroki Fukumoto
- Department of Materials Science, Ibaraki University, 4-12-1 Nakanarusawa, Hitachi 316-8511, Japan
| | - Toshio Kubota
- Department of Materials Science, Ibaraki University, 4-12-1 Nakanarusawa, Hitachi 316-8511, Japan
| | - Gerald B Hammond
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Tsutomu Konno
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
19
|
Yang QL, Jia HW, Liu Y, Xing YK, Ma RC, Wang MM, Qu GR, Mei TS, Guo HM. Electrooxidative Iridium-Catalyzed Regioselective Annulation of Benzoic Acids with Internal Alkynes. Org Lett 2021; 23:1209-1215. [PMID: 33538167 DOI: 10.1021/acs.orglett.0c04168] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electrochemically driven, Cp*Ir(III)-catalyzed regioselective annulative couplings of benzoic acids with alkynes have been established herein. The combination of iridium catalyst and electricity not only circumvents the need for stoichiometric amount of chemical oxidant, but also ensures broad reaction compatibility with a wide array of sterically and electronically diverse substrates. This electrochemical approach represents a sustainable strategy as an ideal alternative and supplement to the oxidative annulations methodology to be engaged in the synthesis of isocoumarin derivatives.
Collapse
Affiliation(s)
- Qi-Liang Yang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Hong-Wei Jia
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Ying Liu
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yi-Kang Xing
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Rui-Cong Ma
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Man-Man Wang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Gui-Rong Qu
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Tian-Sheng Mei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Hai-Ming Guo
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
20
|
Kathuria L, Samuelson AG. Chiral N-heterocyclic carbene-iridium complexes for asymmetric reduction of prochiral ketimines. Polyhedron 2021. [DOI: 10.1016/j.poly.2020.114976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
21
|
Zhao F, Gong X, Lu Y, Qiao J, Jia X, Ni H, Wu X, Zhang X. Additive-Controlled Divergent Synthesis of Tetrasubstituted 1,3-Enynes and Alkynylated 3H-Pyrrolo[1,2-a]indol-3-ones via Rhodium Catalysis. Org Lett 2021; 23:727-733. [DOI: 10.1021/acs.orglett.0c03950] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Fei Zhao
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, P. R. China
| | - Xin Gong
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, P. R. China
| | - Yangbin Lu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, P. R. China
| | - Jin Qiao
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, P. R. China
| | - Xiuwen Jia
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, P. R. China
| | - Hangcheng Ni
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, P. R. China
| | - Xiaowei Wu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, P. R. China
| | - Xiaoning Zhang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, P. R. China
| |
Collapse
|
22
|
Chen K, Chen W, Chen F, Zhang H, Xu H, Zhou Z, Yi W. Synthesis of 2-aminobenzofurans via base-mediated [3 + 2] annulation of N-phenoxy amides with gem-difluoroalkenes. Org Chem Front 2021. [DOI: 10.1039/d1qo00709b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Efficient metal-free [3 + 2] annulation of N-phenoxy amides with gem-difluoroalkenes has been realized for the assembly of 2-aminobenzofuran derivatives with potent cytotoxicity against cancer cell lines and application potential for DELs.
Collapse
Affiliation(s)
- Kaifeng Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease
- School of Pharmaceutical Sciences & the Fifth Affiliated Hospital
- Guangzhou Medical University
- Guangzhou
- P. R. China
| | - Weijie Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease
- School of Pharmaceutical Sciences & the Fifth Affiliated Hospital
- Guangzhou Medical University
- Guangzhou
- P. R. China
| | - Fangyuan Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease
- School of Pharmaceutical Sciences & the Fifth Affiliated Hospital
- Guangzhou Medical University
- Guangzhou
- P. R. China
| | - Haiman Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease
- School of Pharmaceutical Sciences & the Fifth Affiliated Hospital
- Guangzhou Medical University
- Guangzhou
- P. R. China
| | - Huiying Xu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease
- School of Pharmaceutical Sciences & the Fifth Affiliated Hospital
- Guangzhou Medical University
- Guangzhou
- P. R. China
| | - Zhi Zhou
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease
- School of Pharmaceutical Sciences & the Fifth Affiliated Hospital
- Guangzhou Medical University
- Guangzhou
- P. R. China
| | - Wei Yi
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease
- School of Pharmaceutical Sciences & the Fifth Affiliated Hospital
- Guangzhou Medical University
- Guangzhou
- P. R. China
| |
Collapse
|
23
|
Li J, Fang F, Wang R, Li Y, Xu B, Liu H, Zhou Y. A Rh(iii)-catalyzed C–H activation/regiospecific annulation cascade of benzoic acids with propargyl acetates to unusual 3-alkylidene-isochromanones. Org Chem Front 2021. [DOI: 10.1039/d1qo00387a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We developed a new approach to synthesize isochromanones with benzoic acids and propargyl acetates, which introducing an unusual exocyclic C–C double bond at the 3-position with high regioselectivity and moderate to excellent yields.
Collapse
Affiliation(s)
- Jiyuan Li
- Department of Chemistry
- Shanghai University
- Shanghai 200444
- China
- State Key Laboratory of Drug Research
| | - Feifei Fang
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| | - Run Wang
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| | - Yuan Li
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| | - Bin Xu
- Department of Chemistry
- Shanghai University
- Shanghai 200444
- China
| | - Hong Liu
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| | - Yu Zhou
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| |
Collapse
|
24
|
Zhou J, Yin C, Zhong T, Zheng X, Yi X, Chen J, Yu C. A direct synthesis method towards spirocyclic indazole derivatives via Rh( iii)-catalyzed C–H activation and spiroannulation. Org Chem Front 2021. [DOI: 10.1039/d1qo00805f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A rhodium(iii)-catalyzed [4 + 1] spiroannulation of N-aryl phthalazine-diones (pyridazine-diones) with diazo compounds to construct spirocyclic indazole derivatives with diverse structures is described.
Collapse
Affiliation(s)
- Jian Zhou
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. of China
| | - Chuanliu Yin
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. of China
| | - Tianshuo Zhong
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. of China
| | - Xiangyun Zheng
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. of China
| | - Xiao Yi
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. of China
| | - Junyu Chen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. of China
| | - Chuanming Yu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. of China
| |
Collapse
|
25
|
Gao H, Lin S, Zhang S, Chen W, Liu X, Yang G, Lerner RA, Xu H, Zhou Z, Yi W. gem
‐Difluoromethylene Alkyne‐Enabled Diverse C−H Functionalization and Application to the on‐DNA Synthesis of Difluorinated Isocoumarins. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202013052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Hui Gao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou Guangdong 511436 P. R. China
| | - Shuang Lin
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou Guangdong 511436 P. R. China
| | - Shuning Zhang
- Shanghai Institute for Advanced Immunochemical Studies & School of Life Science and Technology ShanghaiTech University Shanghai 201210 P. R. China
| | - Weijie Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou Guangdong 511436 P. R. China
| | - Xiawen Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou Guangdong 511436 P. R. China
| | - Guang Yang
- Shanghai Institute for Advanced Immunochemical Studies & School of Life Science and Technology ShanghaiTech University Shanghai 201210 P. R. China
| | - Richard A. Lerner
- Department of Chemistry Scripps Research Institute La Jolla CA 92037 USA
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies & School of Life Science and Technology ShanghaiTech University Shanghai 201210 P. R. China
| | - Zhi Zhou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou Guangdong 511436 P. R. China
| | - Wei Yi
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou Guangdong 511436 P. R. China
| |
Collapse
|
26
|
Gao H, Lin S, Zhang S, Chen W, Liu X, Yang G, Lerner RA, Xu H, Zhou Z, Yi W. gem
‐Difluoromethylene Alkyne‐Enabled Diverse C−H Functionalization and Application to the on‐DNA Synthesis of Difluorinated Isocoumarins. Angew Chem Int Ed Engl 2020; 60:1959-1966. [DOI: 10.1002/anie.202013052] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Hui Gao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou Guangdong 511436 P. R. China
| | - Shuang Lin
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou Guangdong 511436 P. R. China
| | - Shuning Zhang
- Shanghai Institute for Advanced Immunochemical Studies & School of Life Science and Technology ShanghaiTech University Shanghai 201210 P. R. China
| | - Weijie Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou Guangdong 511436 P. R. China
| | - Xiawen Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou Guangdong 511436 P. R. China
| | - Guang Yang
- Shanghai Institute for Advanced Immunochemical Studies & School of Life Science and Technology ShanghaiTech University Shanghai 201210 P. R. China
| | - Richard A. Lerner
- Department of Chemistry Scripps Research Institute La Jolla CA 92037 USA
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies & School of Life Science and Technology ShanghaiTech University Shanghai 201210 P. R. China
| | - Zhi Zhou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou Guangdong 511436 P. R. China
| | - Wei Yi
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou Guangdong 511436 P. R. China
| |
Collapse
|
27
|
Mihara G, Ghosh K, Nishii Y, Miura M. Concise Synthesis of Isocoumarins through Rh-Catalyzed Direct Vinylene Annulation: Scope and Mechanistic Insight. Org Lett 2020; 22:5706-5711. [PMID: 32638595 DOI: 10.1021/acs.orglett.0c02112] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Transition-metal-catalyzed activation of inert C-H bonds and subsequent C-C bond formation have emerged as powerful synthetic tools for the synthesis of elaborate cyclic molecules. In this report, we introduce an efficient synthetic method of 3,4-unsubstituted isocoumarins adopting an electron-deficient CpERh complex as the catalyst. The use of vinylene carbonate as a vinylene transfer reagent enables the direct construction of isocoumarins from readily available benzoic acids, without any external oxidants as well as bases. The reaction mechanism is evaluated by computational analysis to find an unprecedented "rhodium shift" event within the catalytic cycle.
Collapse
Affiliation(s)
- Gen Mihara
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Koushik Ghosh
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuji Nishii
- Frontier Research Base for Global Young Researchers, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masahiro Miura
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
28
|
Zhou K, Geng J, Wang D, Zhang J, Zhao Y. An Indirect Strategy for Trifluoromethylation via an Iridium Catalyst: Approach to Generate Isocoumarin Skeletons in Bioactive Molecules. Org Lett 2020; 22:5109-5114. [PMID: 32551685 DOI: 10.1021/acs.orglett.0c01700] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
3-Bromo-1,1,1-trifluoroacetone was first disclosed as an effective indirect trifluoromethylation reagent to construct the important 3-trifluoromethyl isocoumarin skeleton. The reaction proceeds through a ligand-promoted, iridium-catalyzed ortho-selective C-H alkylation of benzoic acid and an intermolecular cyclization reaction promoted by silver acetate. A wide range of 3-trifluoromethyl isocoumarins can be easily obtained in moderate to good yields. Importantly, the isocoumarin skeleton can be easily formed in bioactive compounds, highlighting the importance of this reaction.
Collapse
Affiliation(s)
- Kehan Zhou
- College of Energy, Soochow Institute for Energy and Materials Innovations, Soochow University, Suzhou 215006, P. R. China.,Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Jingyao Geng
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Dongjie Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Jingyu Zhang
- College of Energy, Soochow Institute for Energy and Materials Innovations, Soochow University, Suzhou 215006, P. R. China
| | - Yingsheng Zhao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
29
|
Guo S, Liu Y, Zhang X, Fan X. Iridium‐Catalyzed Oxidative Annulation of 2‐Arylindoles with Benzoquinone Leading to Indolo[1,2‐
f
]phenanthridin‐6‐ols. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000449] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shenghai Guo
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical EngineeringHenan Normal University, Xinxiang Henan 453007 People's Republic of China
| | - Yangfan Liu
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical EngineeringHenan Normal University, Xinxiang Henan 453007 People's Republic of China
| | - Xinying Zhang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical EngineeringHenan Normal University, Xinxiang Henan 453007 People's Republic of China
| | - Xuesen Fan
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical EngineeringHenan Normal University, Xinxiang Henan 453007 People's Republic of China
| |
Collapse
|
30
|
Karuppasamy M, Vachan BS, Jandial T, Babiola Annes S, Bhuvanesh N, Uma Maheswari C, Sridharan V. Palladium(II)‐Catalyzed Direct Access to Indeno[1,2‐
c
]isochromen‐5(11
H
)‐Ones via Intramolecular Oxypalladation‐Initiated Cascade Process. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Muthu Karuppasamy
- Department of Chemistry, School of Chemical and BiotechnologySASTRA Deemed University Thanjavur 613401, Tamil Nadu India
| | - B. S. Vachan
- Department of Chemistry, School of Chemical and BiotechnologySASTRA Deemed University Thanjavur 613401, Tamil Nadu India
| | - Tanvi Jandial
- Department of Chemistry and Chemical SciencesCentral University of Jammu, Rahya-Suchani (Bagla), District-Samba Jammu 181143, J&K India
| | - Sesuraj Babiola Annes
- Department of Chemistry, School of Chemical and BiotechnologySASTRA Deemed University Thanjavur 613401, Tamil Nadu India
| | - Nattamai Bhuvanesh
- Department of ChemistryTexas A & M University, College Station Texas 77843 United States
| | - C. Uma Maheswari
- Department of Chemistry, School of Chemical and BiotechnologySASTRA Deemed University Thanjavur 613401, Tamil Nadu India
| | - Vellaisamy Sridharan
- Department of Chemistry, School of Chemical and BiotechnologySASTRA Deemed University Thanjavur 613401, Tamil Nadu India
- Department of Chemistry and Chemical SciencesCentral University of Jammu, Rahya-Suchani (Bagla), District-Samba Jammu 181143, J&K India
| |
Collapse
|
31
|
Liu R, Wei Y, Shi M. Rhodium
III
/
Silver
I
Relay Catalyzed C—H Aminomethylation with Imine Equivalents and Lewis Acid Catalyzed [4+2] Cycloaddition of Indoles with Triarylhexahydrotriazine
†. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ruixing Liu
- State Key Laboratory of Organometallic ChemistryCenter for Excellence in Molecular Synthesis, University of Chinese Academy of Science, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Yin Wei
- State Key Laboratory of Organometallic ChemistryCenter for Excellence in Molecular Synthesis, University of Chinese Academy of Science, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Min Shi
- State Key Laboratory of Organometallic ChemistryCenter for Excellence in Molecular Synthesis, University of Chinese Academy of Science, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
32
|
Gandhi S, Baire B. Fe(III)‐Catalyzed, Cyclizative Coupling between 2‐Alkynylbenzoates and Carbinols: Rapid Generation of Polycyclic Isocoumarins and Phthalides and Mechanistic Study. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000313] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Soniya Gandhi
- Department of ChemistryInstitute of Technology Madras Chennai 600036
| | - Beeraiah Baire
- Department of ChemistryInstitute of Technology Madras Chennai 600036
| |
Collapse
|
33
|
Dai L, Yu S, Xiong W, Chen Z, Xu T, Shao Y, Chen J. Divergent Palladium‐Catalyzed Tandem Reaction of Cyanomethyl Benzoates with Arylboronic Acids: Synthesis of Oxazoles and Isocoumarins. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000125] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Ling Dai
- College of Chemistry and Materials EngineeringWenzhou University Wenzhou 325035 People's Republic of China
| | - Shuling Yu
- College of Chemistry and Materials EngineeringWenzhou University Wenzhou 325035 People's Republic of China
| | - Wenzhang Xiong
- College of Chemistry and Materials EngineeringWenzhou University Wenzhou 325035 People's Republic of China
| | - Zhongyan Chen
- College of Chemistry and Materials EngineeringWenzhou University Wenzhou 325035 People's Republic of China
| | - Tong Xu
- College of Chemistry and Materials EngineeringWenzhou University Wenzhou 325035 People's Republic of China
| | - Yinlin Shao
- College of Chemistry and Materials EngineeringWenzhou University Wenzhou 325035 People's Republic of China
| | - Jiuxi Chen
- College of Chemistry and Materials EngineeringWenzhou University Wenzhou 325035 People's Republic of China
| |
Collapse
|
34
|
Son J, Maeng C, Lee PH. Synthetic Methods of Isocoumarins and Phosphaisocoumarins through CH Activation. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.11996] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Jeong‐Yu Son
- Department of ChemistryKangwon National University Chuncheon 24341 Republic of Korea
| | - Chanyoung Maeng
- Department of ChemistryKangwon National University Chuncheon 24341 Republic of Korea
| | - Phil Ho Lee
- Department of ChemistryKangwon National University Chuncheon 24341 Republic of Korea
| |
Collapse
|
35
|
Kumar A, Prabhu KR. Rhodium(III)-Catalyzed C-H Activation: A Cascade Approach for the Regioselective Synthesis of Fused Heterocyclic Lactone Scaffolds. J Org Chem 2020; 85:3548-3559. [PMID: 31994394 DOI: 10.1021/acs.joc.9b03266] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A Rh(III)-catalyzed cascade C-H activation; regioselective [4 + 2] oxidative annulation; and lactonization of aromatic acids, anhydrides, and acrylic acid derivatives with 4-hydroxy-2-alkynoates have been disclosed. This strategy leads to fused heterocyclic lactone scaffolds in a single step with moderate functional group tolerance and excellent site selectivity. Besides, in one step, an antipode of the cephalosol intermediate natural product that contains a tricyclic isocoumarin framework has been synthesized.
Collapse
Affiliation(s)
- Anil Kumar
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, Karnataka, India
| | - Kandikere Ramaiah Prabhu
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, Karnataka, India
| |
Collapse
|
36
|
Liu G, Zhang X, Kuang G, Lu N, Fu Y, Peng Y, Xiao Q, Zhou Y. Phosphine-Free Ru-Catalyzed Regio- and Stereoselective Addition of Benzoic Acids to Trifluoromethylated Alkynes toward Facile Access to Trifluoromethyl Group-Substituted ( E)-Enol Esters. ACS OMEGA 2020; 5:4158-4166. [PMID: 32149245 PMCID: PMC7057715 DOI: 10.1021/acsomega.9b03936] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 11/25/2019] [Indexed: 06/10/2023]
Abstract
A combination of ruthenium catalyst with silver salt and copper salt was proved to be a highly efficient protocol for the direct addition reaction of benzoic acids with unsymmetrical trifluoromethylated internal alkynes. Diverse trifluoromethyl group-substituted (E)-enol esters were readily obtained for a broad substrate scope in moderate to good yields with excellent regio- and stereoselectivities under mild reaction conditions.
Collapse
Affiliation(s)
- Guangyuan Liu
- Key
Laboratory of Functional Small Organic Molecule, Ministry of Education,
College of Chemistry and Chemical Engineering, Jiangxi Normal University, No. 99 Ziyang Road, Nanchang 330022, China
| | - Xingxing Zhang
- Key
Laboratory of Functional Small Organic Molecule, Ministry of Education,
College of Chemistry and Chemical Engineering, Jiangxi Normal University, No. 99 Ziyang Road, Nanchang 330022, China
| | - Guanghua Kuang
- Key
Laboratory of Functional Small Organic Molecule, Ministry of Education,
College of Chemistry and Chemical Engineering, Jiangxi Normal University, No. 99 Ziyang Road, Nanchang 330022, China
| | - Naihao Lu
- Key
Laboratory of Functional Small Organic Molecule, Ministry of Education,
College of Chemistry and Chemical Engineering, Jiangxi Normal University, No. 99 Ziyang Road, Nanchang 330022, China
| | - Yang Fu
- Key
Laboratory of Functional Small Organic Molecule, Ministry of Education,
College of Chemistry and Chemical Engineering, Jiangxi Normal University, No. 99 Ziyang Road, Nanchang 330022, China
| | - Yiyuan Peng
- Key
Laboratory of Functional Small Organic Molecule, Ministry of Education,
College of Chemistry and Chemical Engineering, Jiangxi Normal University, No. 99 Ziyang Road, Nanchang 330022, China
| | - Qiang Xiao
- Jiangxi
Key Laboratory of Functional Organic Molecules, Jiangxi Science and Technology Normal University, No. 605 Fenglin Road, Nanchang 330013, China
| | - Yirong Zhou
- Key
Laboratory of Functional Small Organic Molecule, Ministry of Education,
College of Chemistry and Chemical Engineering, Jiangxi Normal University, No. 99 Ziyang Road, Nanchang 330022, China
- Hubei
Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation,
School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, China
| |
Collapse
|
37
|
Wen S, Chen Y, Zhao Z, Ba D, Lv W, Cheng G. Ruthenium(II)-Catalyzed Construction of Isocoumarins via Dual C–H/C–C Activation of Sulfoxonium Ylides. J Org Chem 2019; 85:1216-1223. [DOI: 10.1021/acs.joc.9b02520] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Si Wen
- College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, China
| | - Yanhui Chen
- College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, China
| | - Zemin Zhao
- College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, China
| | - Dan Ba
- College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, China
| | - Weiwei Lv
- College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, China
| | - Guolin Cheng
- College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, China
| |
Collapse
|
38
|
Shi S, Chen CH, Chai Y, Zhang LT, Li JW, Liu B, Liu YJ, Zeng MH. Switchable Synthesis of Arylalkynes and Phthalides via Controllable Palladium-Catalyzed Alkynylation and Alkynylation-Annulation of Benzoic Acids with Bromoalkynes. J Org Chem 2019; 84:9161-9168. [PMID: 31262173 DOI: 10.1021/acs.joc.9b01102] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A ligand-promoted palladium(II)-catalyzed synthesis of arylalkynes and phthalides from benzoic acids and bromoalkynes via carboxylate-assisted ortho-C-H activation is reported. A series of phthalides with various functional groups are prepared via ortho-alkynylation and alkynylation-annulation. Moreover, the key ortho-alkynylated products are also obtained by controlling the reaction conditions. In addition, heteroaryl acids could react smoothly to form the corresponding alkynylation and cyclization products.
Collapse
Affiliation(s)
- Shuai Shi
- Department of Hubei Collaborative Innovation Center for Advanced Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, and College of Chemistry and Chemical Engineering , Hubei University , Wuhan 430062 , China
| | - Cui-Hong Chen
- Department of Hubei Collaborative Innovation Center for Advanced Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, and College of Chemistry and Chemical Engineering , Hubei University , Wuhan 430062 , China
| | - Yun Chai
- Department of Hubei Collaborative Innovation Center for Advanced Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, and College of Chemistry and Chemical Engineering , Hubei University , Wuhan 430062 , China
| | - Li-Ting Zhang
- Department of Hubei Collaborative Innovation Center for Advanced Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, and College of Chemistry and Chemical Engineering , Hubei University , Wuhan 430062 , China
| | - Jia-Wei Li
- Department of Hubei Collaborative Innovation Center for Advanced Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, and College of Chemistry and Chemical Engineering , Hubei University , Wuhan 430062 , China
| | - Bin Liu
- Department of Hubei Collaborative Innovation Center for Advanced Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, and College of Chemistry and Chemical Engineering , Hubei University , Wuhan 430062 , China
| | - Yue-Jin Liu
- Department of Hubei Collaborative Innovation Center for Advanced Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, and College of Chemistry and Chemical Engineering , Hubei University , Wuhan 430062 , China
| | - Ming-Hua Zeng
- Department of Hubei Collaborative Innovation Center for Advanced Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, and College of Chemistry and Chemical Engineering , Hubei University , Wuhan 430062 , China.,Department of Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences , Guangxi Normal University , Guilin 541004 , China
| |
Collapse
|
39
|
Luo MJ, Zhang TT, Cai FJ, Li JH, He DL. Decarboxylative [4+2] annulation of arylglyoxylic acids with internal alkynes using the anodic ruthenium catalysis. Chem Commun (Camb) 2019; 55:7251-7254. [PMID: 31168528 DOI: 10.1039/c9cc03210j] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A new electrochemical decarboxylative [4+2] annulation of arylglyoxylic acids with internal alkynes involving C-H functionalization by means of a cooperative anode and ruthenium catalysis is presented. This reaction represents a mechanistically novel strategy as an ideal supplement to the decarboxylative [4+2] annulation methodology by employing an electrooxidative process to avoid the use of an additional external oxidizing reagent and utilizing H2O as the carboxyl oxygen atom source to be engaged in the synthesis of 1H-isochromen-1-ones.
Collapse
Affiliation(s)
- Mu-Jia Luo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China. and Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Ting-Ting Zhang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Fang-Jun Cai
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Jin-Heng Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China. and Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - De-Liang He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China.
| |
Collapse
|
40
|
Li J, Zhang S, Lonka MR, Zhang J, Zou H. Rhodium(iii)-catalyzed cascade reactions of benzoic acids with dioxazolones: discovery of 2,5-substituted benzoxazinones as AIE molecules. Chem Commun (Camb) 2019; 55:11203-11206. [DOI: 10.1039/c9cc05178c] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rhodium-catalyzed cascade reactions of benzoic acids with 1,4,2-dioxazol-5-ones afford 2,5-substituted benzoxazinones, which exhibited AIE properties with an ESIPT phenomenon.
Collapse
Affiliation(s)
- Jinbiao Li
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou
- P. R. China
| | - Shuaizhong Zhang
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou
- P. R. China
| | | | - Jinquan Zhang
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou
- P. R. China
| | - Hongbin Zou
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou
- P. R. China
| |
Collapse
|