1
|
Zhou C, Qin W, Tu C, Chen Y, Fu S, Liu B. Total Synthesis of Euphane Triterpenoids Using Metal-Catalyzed Hydrogen Atom Transfer. Angew Chem Int Ed Engl 2025; 64:e202503943. [PMID: 40110973 DOI: 10.1002/anie.202503943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/19/2025] [Accepted: 03/19/2025] [Indexed: 03/22/2025]
Abstract
Euphane triterpenoids are widely distributed in nature and show various intriguing bioactivities, but relatively few synthetic routes to them have been described. Here, we report asymmetric convergent total syntheses of euphanes involving two triterpenoids and two nortriterpenoids: euphol, 25,26,27-trisnor-3β-hydroxy-euphan-24-al, euphorbiumrin D, and 3-oxo-tirucall-7-ene-3,20-dione. The syntheses employ an enantioselective Antilla allylboration and intramolecular radical cyclization to construct ring A, a palladium-catalyzed Liebeskind stannane-thioester coupling to connect ring A with the bicyclic CD system, and a novel radical cascade with metal-catalyzed hydrogen atom transfer (MHAT) to complete the polycyclic architecture. The late-stage syntheses of both triterpenoids feature a diimide reduction and a MHAT/1,5-hydrogen transfer cascade to diastereoselectively forge the C20 and C17 stereogenic centers.
Collapse
Affiliation(s)
- Chengying Zhou
- Key Laboratory of Green Chemistry and Technology of the Ministry of Education, College of Chemistry Sichuan University, 29 Wangjiang Rd., Chengdu, Sichuan, 610064, China
| | - Weitian Qin
- Key Laboratory of Green Chemistry and Technology of the Ministry of Education, College of Chemistry Sichuan University, 29 Wangjiang Rd., Chengdu, Sichuan, 610064, China
| | - Canhui Tu
- Key Laboratory of Green Chemistry and Technology of the Ministry of Education, College of Chemistry Sichuan University, 29 Wangjiang Rd., Chengdu, Sichuan, 610064, China
| | - Yunxuan Chen
- Key Laboratory of Green Chemistry and Technology of the Ministry of Education, College of Chemistry Sichuan University, 29 Wangjiang Rd., Chengdu, Sichuan, 610064, China
| | - Shaomin Fu
- Key Laboratory of Green Chemistry and Technology of the Ministry of Education, College of Chemistry Sichuan University, 29 Wangjiang Rd., Chengdu, Sichuan, 610064, China
| | - Bo Liu
- Key Laboratory of Green Chemistry and Technology of the Ministry of Education, College of Chemistry Sichuan University, 29 Wangjiang Rd., Chengdu, Sichuan, 610064, China
| |
Collapse
|
2
|
Sakamoto K, Nagashima Y, Kamino S, Uchiyama M. Nucleophilic Germylation of Stable π Bonds via Ge─Ge Bond Heterolysis. Angew Chem Int Ed Engl 2025:e202506106. [PMID: 40326001 DOI: 10.1002/anie.202506106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/17/2025] [Accepted: 05/05/2025] [Indexed: 05/07/2025]
Abstract
Organogermanes have recently attracted a great deal of attention as building blocks for the synthesis of bioactive products, drugs, and functional materials. Metallo-germyls were classically synthesized and employed for nucleophilic germylation to form C─Ge bonds. However, their syntheses require highly reactive organometal reagents, and the scope of germylations involving metallo-germyls is limited due to competition with kinetically favored side reactions. Here, we present a regio/stereo-convergent nucleophilic germylation of stable π bonds by germyl anion generated in situ via heterolytic cleavage of the Ge─Ge bond of digermane (Ge─Ge) in the presence of KOtBu. This methodology affords unprecedented reactivity, enabling multiple germylation of alkynes and internally selective germylation of alkenes. These reactions are operationally simple, have broad functional group tolerance, and afford densely functionalized aliphatic organogermanes, such as 1-alkyl-1-germylalkanes, 1,1-digermylalkanes, and 1,1,1-trigermylalkanes, without any catalyst.
Collapse
Affiliation(s)
- Kyoka Sakamoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, 464-8650, Japan
| | - Yuki Nagashima
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Fusion Oriented Research for disruptive Science and Technology (FOREST), Japan Science and Technology Agency (JST), 4-1-8 Kawaguchi, Saitama, 332-0012, Japan
| | - Shinichiro Kamino
- School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, 464-8650, Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
3
|
Juliá F. Catalysis in the Excited State: Bringing Innate Transition Metal Photochemistry into Play. ACS Catal 2025; 15:4665-4680. [PMID: 40144674 PMCID: PMC11934144 DOI: 10.1021/acscatal.4c07962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/11/2025] [Accepted: 02/11/2025] [Indexed: 03/28/2025]
Abstract
Transition metal catalysis is an indispensable tool for organic synthesis that has been harnessed, modulated, and perfected for many decades by careful selection of metal centers and ligands, giving rise to synthetic methods with unparalleled efficiency and chemoselectivity. Recent developments have demonstrated how light irradiation can also be recruited as a powerful tool to dramatically alter the outcome of catalytic reactions, providing access to innovative pathways with remarkable synthetic potential. In this context, the adoption of photochemical conditions as a mainstream strategy to drive organic reactions has unveiled exciting opportunities to exploit the rich excited-state framework of transition metals for catalytic applications. This Perspective examines advances in the application of transition metal complexes as standalone photocatalysts, exploiting the innate reactivity of their excited states beyond their common use as photoredox catalysts. An account of relevant examples is dissected to provide a discussion on the electronic reorganization, the orbitals involved, and the associated reactivity of different types of excited states. This analysis aims to provide practitioners with fundamental principles and guiding strategies to understand, design, and apply light-activation strategies to homogeneous transition metal catalysis for organic synthesis.
Collapse
Affiliation(s)
- Fabio Juliá
- Facultad de Química,
Centro de Investigación Multidisciplinar Pleiades-Vitalis, Universidad de Murcia, Campus de Espinardo, 30100 Murcia, Spain
| |
Collapse
|
4
|
Chen S, Gao M, He X, Shen X. Photo-induced ring-maintaining hydrosilylation of unactivated alkenes with hydrosilacyclobutanes. Nat Commun 2025; 16:2468. [PMID: 40074750 PMCID: PMC11903747 DOI: 10.1038/s41467-025-57705-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
Increasing attention has been paid to silacyclobutanes because of their wide application in ring opening and ring extension reactions. However, the synthesis of functionalized silacyclobutanes remains an unmet challenge because of the limited functional group tolerance of the reactions with organometallic reagents and chlorosilacyclobutanes. Herein, we report a conceptually different solution to this end through a visible-light-induced metal-free hydrosilylation of unactivated alkenes with hydrosilacyclobutanes. A wide range of unactivated alkenes with diverse functional groups including the base-sensitive acid, alcohol and ketones participated in this reaction smoothly. In particular, the first hydrosilylation reaction of alkenes with dihydrosilacyclobutane provides a facile access to various functionalized alkyl monohydrosilacyclobutanes. Unsymmetrical dialkyl silacyclobutanes have also been synthesized through consecutive hydrosilylation with dihydrosilacyclobutane in one pot. The mechanism study reveals that the Lewis basic solvent could promote the generation of strained silyl radicals by direct light irradiation without a redox-active photocatalyst and the thiol catalyst plays an important role in accelerating the reaction.
Collapse
Affiliation(s)
- Shaowei Chen
- The Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, 299 Bayi Road, 430072, Wuhan, Hubei, PR China
| | - Meiyun Gao
- The Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, 299 Bayi Road, 430072, Wuhan, Hubei, PR China
| | - Xiaoqian He
- The Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, 299 Bayi Road, 430072, Wuhan, Hubei, PR China
| | - Xiao Shen
- The Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, 299 Bayi Road, 430072, Wuhan, Hubei, PR China.
| |
Collapse
|
5
|
Humbert M, Clerc A, Miqueu K, Monot J, Martin-Vaca B, Bourissou D. Hydrogermylation of alkynes via metal-ligand cooperative catalysis. Chem Commun (Camb) 2025; 61:3327-3330. [PMID: 39898498 DOI: 10.1039/d4cc06374k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
E-H bond activation (E = B, Ge, Sn) with a (PNS)Pd complex has been investigated theoretically and experimentally. Et3GeH readily adds across the Pd/S bond. Subsequent transfer to CC bonds enables catalytic hydrogermylation. The reaction is most regio and stereoselective with terminal alkynes. Downstream derivatization of silyl-functionalized vinyl germanes is exemplified.
Collapse
Affiliation(s)
- Marceline Humbert
- CNRS/Université Paul Sabatier, Laboratoire Hétérochimie Fondamentale et Appliquée (LFA, UMR 5069), 118 Route de Narbonne, 31062 Toulouse Cedex 09, France.
| | - Arnaud Clerc
- CNRS/Université Paul Sabatier, Laboratoire Hétérochimie Fondamentale et Appliquée (LFA, UMR 5069), 118 Route de Narbonne, 31062 Toulouse Cedex 09, France.
| | - Karinne Miqueu
- CNRS/Université de Pau et des Pays de l'Adour, Institut des Sciences Analytiques et Physico-Chimie pour l'Environnement et les Matériaux (IPREM, UMR 5254) Hélioparc, 2 Avenue du Président Angot, 64053 Pau Cedex 09, France
| | - Julien Monot
- CNRS/Université Paul Sabatier, Laboratoire Hétérochimie Fondamentale et Appliquée (LFA, UMR 5069), 118 Route de Narbonne, 31062 Toulouse Cedex 09, France.
| | - Blanca Martin-Vaca
- CNRS/Université Paul Sabatier, Laboratoire Hétérochimie Fondamentale et Appliquée (LFA, UMR 5069), 118 Route de Narbonne, 31062 Toulouse Cedex 09, France.
| | - Didier Bourissou
- CNRS/Université Paul Sabatier, Laboratoire Hétérochimie Fondamentale et Appliquée (LFA, UMR 5069), 118 Route de Narbonne, 31062 Toulouse Cedex 09, France.
| |
Collapse
|
6
|
Murugesan V, Syam A, Anantharaj GV, Rasappan R. Alkenylation of unactivated alkanes: synthesis of Z-alkenes via dual Co-TBADT catalysis. Chem Commun (Camb) 2024; 60:14049-14052. [PMID: 39526920 DOI: 10.1039/d4cc04651j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Hydroalkylation of terminal alkynes via C-H activation is the most atom-economical and straightforward method for synthesizing alkenes. They remain confined to using C(sp2)-H or activated C(sp3)-H bonds. A chelating group enabled the alkenylation of C(sp3)-H bonds, resulting in E alkenes. Protocols by which alkenylation of unactivated C(sp3)-H bonds occurs without a chelating group via metal-hydride or radical pathways remain unknown. Our cobalt-HAT catalysis achieves the desired Z alkene with excellent regio- and diastereoselectivity via C-H activation.
Collapse
Affiliation(s)
- Vetrivelan Murugesan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India.
| | - Anagha Syam
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India.
| | - Guru Vigknesh Anantharaj
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India.
| | - Ramesh Rasappan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India.
| |
Collapse
|
7
|
Yang L, Yi M, Wu X, Lu Y, Zhang Z. Dirhodium(II)/XantPhos Catalyzed Synthesis of β-(E)-Vinylsilanes via Hydrosilylation and Isomerization from Alkynes. Chemistry 2024; 30:e202402406. [PMID: 39187432 DOI: 10.1002/chem.202402406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 08/28/2024]
Abstract
A concise hydrosilylation of alkynes for synthesizing β-(E)-vinylsilanes catalyzed by dirhodium(II)/XantPhos has been developed. In this reaction, β-(E)-vinylsilanes were generated from the isomerization of β-(Z)-vinylsilanes catalyzed by dirhodium(II) hydride species rather than the direct insertion of triple bond into M-H or M-Si bond (traditional Chalk-Harrod mechanism or modified Chalk-Harrod mechanism). The hydrosilylation displayed a broad substrate scope for alkynes and tertiary silanes, tolerating diverse functional groups including halides, nitriles, amines, esters, and heterocycles.
Collapse
Affiliation(s)
- Liqun Yang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Mingjun Yi
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xiaoyu Wu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yan Lu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Zhaoguo Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
8
|
Wang F, Dong G, Yang S, Ji CL, Liu K, Han J, Xie J. Selective Functionalization of Alkenes and Alkynes by Dinuclear Manganese Catalysts. Acc Chem Res 2024; 57:2985-3006. [PMID: 39356824 DOI: 10.1021/acs.accounts.4c00385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
ConspectusAlkenes and alkynes are fundamental building blocks in organic synthesis due to their commercial availability, bench-stability, and easy preparation. Selective functionalization of alkenes and alkynes is a crucial step for the synthesis of value-added compounds. Precise control over these reactions allows efficient construction of complex molecules with new functionalities. In recent decades, second- and third-row precious transition metal catalysts (palladium, platinum, rhodium, ruthenium) have been pivotal in the development of metal-catalyzed synthetic methodology. These metals exhibit excellent catalytic activity and selectivity, enabling efficient synthesis of functionalized organic molecules. However, recovery and reuse of precious metals have long been a challenge in this field. In recent years, exploration of earth-abundant metal-catalyzed organic reactions has interested both academic and industrial researchers. The development of such catalytic systems offers a promising approach to overcome the limitations of precious metal catalysts. For example, manganese is the third most naturally abundant transition metal with minimal toxicity and excellent biocompatibility. It exhibits good catalytic activity in several organic reactions, including C-H bond functionalization, selective reduction, and radical reactions. This Account outlines our recent progress in dinuclear manganese catalysis for selective functionalization of alkenes and alkynes. We have established the elementary manganese(I)-catalysis in transmetalation with R-B(OH)2. This finding has enabled us to apply the catalyst for the selective 1,2-difunctionalization of structurally diverse alkenes and alkynes. Mechanistic studies suggest a double manganese center synergistic activation model, as superior to Mn(CO)5Br in some cases. In addition, we have developed a ligand-tuned metalloradical strategy of dinuclear manganese catalysts (Mn2(CO)10), bridging the gap between the organometallics and radical chemistry, highlighting the unique radical functionalization of alkenes. Interestingly, using the same starting materials, different ligands can deliver completely different products. Meanwhile, a cooperative catalysis strategy involving manganese and other catalysts (e.g., cobalt, iminium) has also been developed and is briefly discussed. For manganese/iminium synergistic catalysis, a new mechanism for migratory insertion and demetalization-isomerization in synergistic HOMO-LUMO activation was disclosed. This strategy expands the application of low-valent manganese catalysts for enantioselective C-C bond-forming reactions. New reaction discovery is outpacing mechanism studies for dinuclear manganese catalysis, and future studies with time-resolved spectroscopy will improve understanding of the mechanism. Based on these intriguing findings, the precise functionalization of alkenes and alkynes by dinuclear manganese catalysts will expedite a novel activation model to enable late-stage functionalization of complex molecules.
Collapse
Affiliation(s)
- Fei Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Guichao Dong
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Suqi Yang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Cheng-Long Ji
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Kai Liu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jie Han
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jin Xie
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
9
|
Zhang Y, Zang Z, Gao Y, Li W, Zhu T. Hydrosilylation of Arynes with Silanes and Silicon-Based Polymer. Chemistry 2024; 30:e202401440. [PMID: 38870472 DOI: 10.1002/chem.202401440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/02/2024] [Accepted: 06/11/2024] [Indexed: 06/15/2024]
Abstract
Benzyne derived from hexadehydrogenated Diels Alder (HDDA) reactions was found to be an efficient hydrosilylation acceptors. Various silanes can react smoothly with HDDA-derived benzyne to give the arylation products. Lewis acid such as boron trifluoride etherate can accelerate these hydrosilylation reactions. Polyhydromethylsiloxane (PHMS), a widely used organosilicon polymer, was also successfully modified using our method. About 5 % of Si-H bonds in the polymer were inserted by benzynes, giving a functional PHMS with much more solubility in methanol and with a blue-emitting fluorescence behavior. Mechanism research shows that the insertion of benzyne into the Si-H bond probably undergoes a synergistic pathway, which is quite different from the traditional radical-initiated hydrosilylation or transition-metal-catalyzed hydrosilylation.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Chemistry, IGCME, Sun Yat-sen University, 510275, Guangzhou, Guangdong, China
| | - Zhenming Zang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Chemistry, IGCME, Sun Yat-sen University, 510275, Guangzhou, Guangdong, China
| | - Yuan Gao
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Chemistry, IGCME, Sun Yat-sen University, 510275, Guangzhou, Guangdong, China
| | - Wenchang Li
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Chemistry, IGCME, Sun Yat-sen University, 510275, Guangzhou, Guangdong, China
| | - Tingshun Zhu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Chemistry, IGCME, Sun Yat-sen University, 510275, Guangzhou, Guangdong, China
| |
Collapse
|
10
|
Reboli M, Kassamba S, Durandetti M. Nickel-Catalyzed Intramolecular Hydrosilylation of Alkynes: Embracing Conventional and Electrochemical Routes. Chemistry 2024; 30:e202400440. [PMID: 38668681 DOI: 10.1002/chem.202400440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Indexed: 05/18/2024]
Abstract
Nickel-catalyzed intramolecular hydrosilylation can be efficiently achieved with high regio- and stereoselectivities through two distinct methodologies. The first approach utilizes a conventional method, involving the reduction of nickel salt (NiBr2-2,2'-bipyridine) using manganese metal. The second method employs a one-step electrochemical reaction, utilizing the sacrificial anode process and NiBr2bipy catalysis. Both methods yield silylated heterocycles in good to high yields through a syn-exo-dig cyclization process. Control experiments and molecular electrochemistry (cyclic voltammetry) provided further insights into the reaction mechanism.
Collapse
Affiliation(s)
- Mathias Reboli
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, Rouen, F-76000, France
| | - Seydou Kassamba
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, Rouen, F-76000, France
| | - Muriel Durandetti
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, Rouen, F-76000, France
| |
Collapse
|
11
|
Lu XY, Qian YJ, Sun HL, Su MX, Wang ZZ, Jiang F, Zhou XY, Sun YX, Shi WL, Wan JR. Photoinduced decarboxylative germylation of α-fluoroacrylic acids: access to germylated monofluoroalkenes. Chem Commun (Camb) 2024; 60:6556-6559. [PMID: 38845407 DOI: 10.1039/d4cc02037e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Herein, a novel strategy is presented for the photoinduced decarboxylative and dehydrogenative cross-coupling of a wide range of α-fluoroacrylic acids with hydrogermanes. This methodology provides an efficient and robust approach for producing various germylated monofluoroalkenes with excellent stereoselectivity within a brief photoirradiation period. The feasibility of this reaction has been demonstrated through gram-scale reaction, conversion of germylated monofluoroalkenes, and modification of complex organic molecules.
Collapse
Affiliation(s)
- Xiao-Yu Lu
- School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou, 239000, China.
| | - Yu-Jun Qian
- School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou, 239000, China.
| | - Hai-Lun Sun
- School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou, 239000, China.
| | - Meng-Xue Su
- School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou, 239000, China.
| | - Zi-Zhen Wang
- School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou, 239000, China.
| | - Fan Jiang
- School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou, 239000, China.
| | - Xin-Yue Zhou
- School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou, 239000, China.
| | - Yan-Xi Sun
- School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou, 239000, China.
| | - Wan-Li Shi
- School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou, 239000, China.
| | - Ji-Ru Wan
- School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou, 239000, China.
| |
Collapse
|
12
|
Wang GQ, Zhang Y, Zhou YX, Yang D, Han P, Jing LH, Tang K. Photoredox Synthesis of Silicon-Containing Isoindolin-1-ones and Deuterated Analogues Through Hydrosilylation and Deuterium-silylation. J Org Chem 2024. [PMID: 38728220 DOI: 10.1021/acs.joc.4c00576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
An efficient, practical, and metal-free protocol for the synthesis of silicon-containing isoindolin-1-ones and deuterated analogues via the synergistic combination of an organic photoredox and hydrogen atom transfer process is described. This strategy features mild reaction conditions, high atom economy, and excellent functional group compatibility, delivering a myriad of structurally diverse and valuable products with good to excellent yields.
Collapse
Affiliation(s)
- Guo-Qin Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Yue Zhang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Yuan-Xia Zhou
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Dan Yang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Pan Han
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Lin-Hai Jing
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Kai Tang
- Key Laboratories of Fine Chemicals and Surfactants in Sichuan Provincial Universities, School of Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| |
Collapse
|
13
|
Kumar Jha R, Rohilla K, Jain S, Parganiha D, Kumar S. Blue-Light Irradiated Mn(0)-Catalyzed Hydroxylation and C(sp 3 )-H Functionalization of Unactivated Alkanes with C(sp 2 )-H Bonds of Quinones for Alkylated Hydroxy Quinones and Parvaquone. Chemistry 2024; 30:e202303537. [PMID: 37991931 DOI: 10.1002/chem.202303537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 11/24/2023]
Abstract
Site-selective C(sp3 )-H functionalization of unreactive hydrocarbons is always challenging due to its inherited chemical inertness, slightly different reactivity of various C-H bonds, and intrinsically high bond dissociation energies. Here, a site-selective C-H alkylation of naphthoquinone with unactivated hydrocarbons using Mn2 (CO)10 as a catalyst under blue-light (457 nm) irradiation without any external acid or base and pre-functionalization is presented. The selective C-H functionalization of tertiary over secondary and secondary over primary C(sp3 )-H bonds in abundant chemical feedstocks was achieved, and hydroxylation of quinones was realized in situ by employing the developed methodology. This protocol provides a new catalytic system for the direct construction of high-value-added compounds, namely, parvaquone (a commercially available drug used to treat theileriosis) and its derivatives under ambient reaction conditions. Moreover, this operationally simple protocol applies to various linear-, branched-, and cyclo-alkanes with high degrees of site selectivity under blue-light irradiated conditions and could provide rapid and straightforward access to versatile methodologies for upgrading feedstock chemicals. Mechanistic insight by radical trapping, radical scavenging, EPR, and other controlled experiments well corroborated with DFT studies suggest that the reaction proceeds by a radical pathway.
Collapse
Affiliation(s)
- Raushan Kumar Jha
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| | - Komal Rohilla
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| | - Saket Jain
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| | - Devendra Parganiha
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| | - Sangit Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| |
Collapse
|
14
|
Rogova T, Ahrweiler E, Schoetz MD, Schoenebeck F. Recent Developments with Organogermanes: their Preparation and Application in Synthesis and Catalysis. Angew Chem Int Ed Engl 2024; 63:e202314709. [PMID: 37899306 DOI: 10.1002/anie.202314709] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 10/31/2023]
Abstract
Within the sphere of traditional Pd0 /PdII cross coupling reactions, organogermanes have been historically outperformed both in terms of scope and reactivity by more conventional transmetalating reagents. Subsequently, this class of compounds has been largely underutilized as a coupling partner in bond-forming strategies. Most recent studies, however, have shown that alternative modes of activation of these notoriously robust building blocks transform organogermanes into the most reactive site of the molecule-capable of outcompeting other functional groups (such as boronic acids, esters and silanes) for both C-C and C-heteroatom bond formation. As a result, over the past few years, the literature has increasingly featured methodologies that explore the potential of organogermanes as chemoselective and orthogonal coupling partners. Herein we highlight some of these recent advances in the field of organogermane chemistry both with respect to their synthesis and applications in synthetic and catalytic transformations.
Collapse
Affiliation(s)
- Tatiana Rogova
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Eric Ahrweiler
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Markus D Schoetz
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Franziska Schoenebeck
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| |
Collapse
|
15
|
Xiong J, Yan M, Jin L, Song W, Xiao L, Xu D, Zhai C, Stephan DW, Guo J. B(C 6F 5) 3-catalyzed hydrogermylation of enones: a facile route to germacycles. Org Biomol Chem 2023; 21:8098-8101. [PMID: 37800180 DOI: 10.1039/d3ob01402a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Organogermacycles are important skeletons for medicinal chemistry and materials. Herein, we reported a B(C6F5)3 mediated domino hydrogermylation reaction of enones with dihydrogermanes, affording 21 variants of organogermacycle compounds. These germacyclic compounds were obtained in good to excellent yields (up to 99% yield) under mild reaction conditions.
Collapse
Affiliation(s)
- Jiangkun Xiong
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China.
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Maying Yan
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China.
| | - Lvnan Jin
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China.
| | - Weihong Song
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China.
| | - Lei Xiao
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China.
| | - Dong Xu
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China.
| | - Chunyang Zhai
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Douglas W Stephan
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China.
- Department of Chemistry, University of Toronto, Toronto, 80 St. George Street, Ontario M5S 3H6, Canada.
| | - Jing Guo
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China.
| |
Collapse
|
16
|
Chen C, Mo Q, Wang Y, Zhang L. Cooperative Catalytic Alkyne Hydrosilylation by a Porphyrinic Metal-Organic Framework Composite. Inorg Chem 2023; 62:16882-16889. [PMID: 37796722 DOI: 10.1021/acs.inorgchem.3c02479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Vinylsilanes are valuable building blocks and important structural units in organic chemistry. Herein, catalytic alkyne hydrosilylation was reported to be promoted by a porphyrin metal-organic framework with the incorporation of Pd nanoparticles (Pd@Ir-PCN-222). Catalytic results showed that Pd@Ir-PCN-222 displayed high catalytic efficiency, giving rise to the E isomer vinylsilane with an excellent turnover frequency (TOF) of 2564 h-1. The mechanism studies revealed that the enhancement of the catalytic activity originated from the cooperation between iridium porphyrin and the Pd nanoparticle in confined spaces. The iridium porphyrin was prone to absorb and condense the hydrosilane and alkyne in the inner cavities of Ir-PCN-222, not only accelerating the reaction but also promoting the Pd nanoparticle to activate the Si-H and C≡C bonds of hydrosilane and alkyne, respectively.
Collapse
Affiliation(s)
- Chunying Chen
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Qijie Mo
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yufei Wang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Li Zhang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
17
|
Radzhabov MR, Mankad NP. Activation of robust bonds by carbonyl complexes of Mn, Fe and Co. Chem Commun (Camb) 2023; 59:11932-11946. [PMID: 37727948 DOI: 10.1039/d3cc03078d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Metal carbonyl complexes possess among the most storied histories of any compound class in organometallic chemistry. Nonetheless, these old dogs continue to be taught new tricks. In this Feature, we review the historic discoveries and recent advances in cleaving robust bonds (e.g., C-H, C-O, C-F) using carbonyl complexes of three metals: Mn, Fe, and Co. The use of Mn, Fe, and Co carbonyl catalysts in controlling selectivity during hydrofunctionalization reactions is also discussed. The chemistry of these earth-abundant metals in the field of robust bond functionalization is particularly relevant in the context of sustainability. We expect that an up-to-date perspective on these seemingly simple organometallic species will emphasize the wellspring of reactivity that continues to be available for discovery.
Collapse
Affiliation(s)
- Maxim R Radzhabov
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, USA.
| | - Neal P Mankad
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, USA.
| |
Collapse
|
18
|
Broniarz K, Hreczycho G. Access to Unsaturated Organogermanes via (De)Hydrosilylation Mediated by Cobalt Complexes. Org Lett 2023; 25:6528-6533. [PMID: 37646486 PMCID: PMC10496132 DOI: 10.1021/acs.orglett.3c02326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Indexed: 09/01/2023]
Abstract
The functionalization of alkynylgermanes using hydrosilanes was accomplished by employing cobalt catalysis. Depending on the reactants used, the reaction can proceed via dehydrogenative coupling or hydrosilylation. Importantly, the presented method is characterized by mild reaction conditions, allowing rapid access to a wide range of organogermanes.
Collapse
Affiliation(s)
- Konstancja Broniarz
- Faculty of Chemistry, Adam
Mickiewicz University, Uniwersytetu Poznanskiego St. 8, 61-614 Poznan, Poland
| | - Grzegorz Hreczycho
- Faculty of Chemistry, Adam
Mickiewicz University, Uniwersytetu Poznanskiego St. 8, 61-614 Poznan, Poland
| |
Collapse
|
19
|
Pang Y, Chen S, Han J, Zhu C, Zhao CG, Xie J. Dimeric Manganese-Catalyzed Hydroalkenylation of Alkynes with a Versatile Silicon-Based Directing Group. Angew Chem Int Ed Engl 2023; 62:e202306922. [PMID: 37283307 DOI: 10.1002/anie.202306922] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/07/2023] [Accepted: 06/07/2023] [Indexed: 06/08/2023]
Abstract
Herein, we present a manganese-catalyzed, branched-selective hydroalkenylation of terminal alkynes, under mild conditions through facile installation of a versatile silanol as a removable directing group. With an alkenyl boronic acid as the coupling partner, this reaction produces stereodefined (E,E)-1,3-dienes with high regio-, chemo- and stereoselectivity. The protocol features mild reaction conditions such as room temperature and an air atmosphere, while maintaining excellent functional group compatibility. The resulting 1,3-dienesilanol products serve as versatile building blocks, as the removal of the silanol group allows for the synthesis of both branched terminal 1,3-dienes for downstream coupling reactions, as well as stereoselective construction of linear (E,E)-1,3-dienes and (E,E,E)- or (E,E,Z)-1,3,5-trienes. In addition, a Diels-Alder cycloaddition can smoothly and selectively deliver silicon-containing pentasubstituted cyclohexene derivatives. Mechanistic investigations, in conjunction with DFT calculations, suggest a bimetallic synergistic activation model to account for the observed enhanced catalytic efficiency and good regioselectivity.
Collapse
Affiliation(s)
- Yubo Pang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Shuai Chen
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jie Han
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Chengjian Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Chuan-Gang Zhao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jin Xie
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, China
| |
Collapse
|
20
|
Behera RR, Saha R, Kumar AA, Sethi S, Jana NC, Bagh B. Hydrosilylation of Terminal Alkynes Catalyzed by an Air-Stable Manganese-NHC Complex. J Org Chem 2023. [PMID: 37317486 DOI: 10.1021/acs.joc.3c00127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In recent years, catalysis with base metal manganese has received a significant amount of interest. Catalysis with manganese complexes having N-heterocyclic carbenes (NHCs) is relatively underdeveloped in comparison to the extensively investigated manganese catalysts possessing pincer ligands (particularly phosphine-based ligands). Herein, we describe the synthesis of two imidazolium salts decorated with picolyl arms (L1 and L2) as NHC precursors. Facile coordination of L1 and L2 with MnBr(CO)5 in the presence of a base resulted in the formation manganese(I)-NHC complexes (1 and 2) as an air-stable solid in good isolated yield. Single-crystal X-ray analysis revealed the structure of the cationic complexes [Mn(CO)3(NHC)][PF6] with tridentate N,C,N binding of the NHC ligand in a facile fashion. Along with a few known manganese(I) complexes, these Mn(I)-NHC complexes 1 and 2 were tested for the hydrosilylation of terminal alkynes. Complex 1 was proved to be an effective catalyst for the hydrosilylation of terminal alkynes with good selectivity toward the less thermodynamically stable β-(Z)-vinylsilanes. This method provided good regioselectivity (anti-Markovnikov addition) and stereoselectivity (β-(Z)-product). Experimental evidence suggested that the present hydrosilylation pathway involved an organometallic mechanism with manganese(I)-silyl species as a possible reactive intermediate.
Collapse
Affiliation(s)
- Rakesh R Behera
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| | - Ratnakar Saha
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| | - Alamsaty Ashis Kumar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| | - Subrat Sethi
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| | - Narayan Ch Jana
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| | - Bidraha Bagh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| |
Collapse
|
21
|
Xu X, Gao A, Chen W, Xu X, Li J, Cui C. Lanthanum Ate Amide-Catalyzed Regio- and Stereoselective Hydrosilylation of Internal Alkynes. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Xiaoming Xu
- State Key Laboratory of Elemento-Organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Ailin Gao
- State Key Laboratory of Elemento-Organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Wufeng Chen
- State Key Laboratory of Elemento-Organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Xiufang Xu
- State Key Laboratory of Elemento-Organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Jianfeng Li
- State Key Laboratory of Elemento-Organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Chunming Cui
- State Key Laboratory of Elemento-Organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| |
Collapse
|
22
|
Wan Q, Hou ZW, Zhao XR, Xie X, Wang L. Organoelectrophotocatalytic C-H Silylation of Heteroarenes. Org Lett 2023; 25:1008-1013. [PMID: 36735345 DOI: 10.1021/acs.orglett.3c00144] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
An organoelectrophotocatalytic approach for the C-H silylation of heteroarenes through dehydrogenation cross-coupling with H2 evolution has been developed. The organoelectrophotocatalytic strategy is carried out under a simple and efficient monocatalytic system by employing 9,10-phenanthrenequinone both as an organocatalyst and as a hydrogen atom transfer (HAT) reagent, which avoids the need for an external HAT reagent, an oxidant, or a metal reagent. A variety of heteroarenes can be compatible in satisfactory yields with excellent regioselectivity.
Collapse
Affiliation(s)
- Qinhui Wan
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China.,Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Zhong-Wei Hou
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| | - Xin-Ru Zhao
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| | - Xiaoyu Xie
- Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Lei Wang
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China.,Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
23
|
Kustiana BA, Melen RL, Morrill LC. One-Pot Synthesis of Styrene Derivatives from Allyl Silanes via B(C 6F 5) 3-Catalyzed Isomerization–Hiyama Coupling. Org Lett 2022; 24:8694-8697. [DOI: 10.1021/acs.orglett.2c03584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Betty A. Kustiana
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
| | - Rebecca L. Melen
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
| | - Louis C. Morrill
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
| |
Collapse
|
24
|
Lin W, You L, Yuan W, He C. Cu-Catalyzed Enantioselective Hydrogermylation: Asymmetric Synthesis of Unnatural β-Germyl α-Amino Acids. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Weidong Lin
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Lijun You
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Wei Yuan
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Chuan He
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
25
|
Laglera-Gándara C, Ríos P, Fernández-de-Córdova FJ, Barturen M, Fernández I, Conejero S. σ-GeH and Germyl Cationic Pt(II) Complexes. Inorg Chem 2022; 61:20848-20859. [PMID: 36322561 PMCID: PMC9949701 DOI: 10.1021/acs.inorgchem.2c03186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The low electron count Pt(II) complexes [Pt(NHC')(NHC)][BArF] (where NHC is a N-heterocyclic carbene ligand and NHC' its metalated form) react with tertiary hydrogermanes HGeR3 at room temperature to generate the 14-electron platinum(II) germyl derivatives [Pt(GeR3)(NHC)2][BArF]. Low-temperature NMR studies allowed us to detect and characterize spectroscopically some of the σ-GeH intermediates [Pt(η2-HGeR3)(NHC')(NHC)][BArF] that evolve into the platinum-germyl species. One of these compounds has been characterized by X-ray diffraction studies, and the interaction of the H-Ge bond with the platinum center has been analyzed in detail by computational methods, which suggest that the main contribution is the donation of the H-Ge to a σ*(Pt-C) orbital, but backdonation from the platinum to the σ*(Ge-H) orbital is significant. Primary and secondary hydrogermanes also produce the corresponding platinum-germyl complexes, a result that contrasts with the reactivity observed with primary silanes, in which carbon-silicon bond-forming reactions have been reported. According to density functional theory calculations, the formation of Pt-Ge/C-H bonds is both kinetically and thermodynamically preferred over the competitive reaction pathway leading to Pt-H/C-Ge bonds.
Collapse
Affiliation(s)
- Carlos
J. Laglera-Gándara
- Instituto
de Investigaciones Químicas (IIQ), Departamento de Química
Inorgánica, Centro de Innovación en Química Avanzada
(ORFEO-CINQA), CSIC and Universidad de Sevilla, Sevilla 41092, Spain
| | - Pablo Ríos
- Instituto
de Investigaciones Químicas (IIQ), Departamento de Química
Inorgánica, Centro de Innovación en Química Avanzada
(ORFEO-CINQA), CSIC and Universidad de Sevilla, Sevilla 41092, Spain,
| | - Francisco José Fernández-de-Córdova
- Instituto
de Investigaciones Químicas (IIQ), Departamento de Química
Inorgánica, Centro de Innovación en Química Avanzada
(ORFEO-CINQA), CSIC and Universidad de Sevilla, Sevilla 41092, Spain
| | - Marina Barturen
- Instituto
de Investigaciones Químicas (IIQ), Departamento de Química
Inorgánica, Centro de Innovación en Química Avanzada
(ORFEO-CINQA), CSIC and Universidad de Sevilla, Sevilla 41092, Spain
| | - Israel Fernández
- Departamento
de Química Orgánica I y Centro de Innovación
en Química Avanzada (ORFEO-CINQA), facultad de Químicas, Universidad Complutense de Madrid, Madrid 28040, Spain,
| | - Salvador Conejero
- Instituto
de Investigaciones Químicas (IIQ), Departamento de Química
Inorgánica, Centro de Innovación en Química Avanzada
(ORFEO-CINQA), CSIC and Universidad de Sevilla, Sevilla 41092, Spain,
| |
Collapse
|
26
|
Torres-Calis A, García JJ. Homogeneous Manganese-Catalyzed Hydrofunctionalizations of Alkenes and Alkynes: Catalytic and Mechanistic Tendencies. ACS OMEGA 2022; 7:37008-37038. [PMID: 36312376 PMCID: PMC9608411 DOI: 10.1021/acsomega.2c05109] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
In recent years, many manganese-based homogeneous catalytic precursors have been developed as powerful alternatives in organic synthesis. Among these, the hydrofunctionalizations of unsaturated C-C bonds correspond to outstanding ways to afford compounds with more versatile functional groups, which are commonly used as building blocks in the production of fine chemicals and feedstock for the industrial field. Herein, we present an account of the Mn-catalyzed homogeneous hydrofunctionalizations of alkenes and alkynes with the main objective of finding catalytic and mechanistic tendencies that could serve as a platform for the works to come.
Collapse
|
27
|
Luo Y, Lv L, Li Z. Copper-Catalyzed Germyl-Azidation of Alkenes with Germanium Hydrides and Trimethylsilyl Azide. Org Lett 2022; 24:8052-8056. [DOI: 10.1021/acs.orglett.2c03302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yani Luo
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Leiyang Lv
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Zhiping Li
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China
| |
Collapse
|
28
|
Gregori BJ, Schmotz MWS, Jacobi von Wangelin A. Stereoselective Semi-Hydrogenations of Alkynes by First-Row (3d) Transition Metal Catalysts. ChemCatChem 2022; 14:e202200886. [PMID: 36632425 PMCID: PMC9825939 DOI: 10.1002/cctc.202200886] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/25/2022] [Indexed: 01/14/2023]
Abstract
The chemo- and stereoselective semi-hydrogenation of alkynes to alkenes is a fundamental transformation in synthetic chemistry, for which the use of precious 4d or 5d metal catalysts is well-established. In mankind's unwavering quest for sustainability, research focus has considerably veered towards the 3d metals. Given their high abundancy and availability as well as lower toxicity and noxiousness, they are undoubtedly attractive from both an economic and an environmental perspective. Herein, we wish to present noteworthy and groundbreaking examples for the use of 3d metal catalysts for diastereoselective alkyne semi-hydrogenation as we embark on a journey through the first-row transition metals.
Collapse
Affiliation(s)
- Bernhard J. Gregori
- Dept. of ChemistryUniversity of HamburgMartin Luther King Pl 620146HamburgGermany
| | | | | |
Collapse
|
29
|
Mourão H, Gomes CSB, Realista S, Royo B. Visible Light‐Induced Catalytic Hydrosilylation of Ketones Mediated by Manganese NHC Complexes. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Henrique Mourão
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República Oeiras Portugal
| | - Clara S. B. Gomes
- LAQV‐REQUIMTE and UCIBIO‐Applied Molecular Biosciences Unit, Department of Chemistry, Campus de Caparica NOVA School of Science and Technology, NOVA University of Lisbon Caparica Portugal
- Associated Laboratory i4HB‐Institute for Health and Bioeconomy School of Science and Technology, NOVA University of Lisbon Caparica Portugal
| | - Sara Realista
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República Oeiras Portugal
- Centro de Química Estrutural Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Ed. C8 Lisboa Portugal
| | - Beatriz Royo
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República Oeiras Portugal
| |
Collapse
|
30
|
Charge-regulated regioselective mechanism of bicobalt-catalyzed hydrogermylation of alkynes: DFT investigation. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Das K, Waiba S, Jana A, Maji B. Manganese-catalyzed hydrogenation, dehydrogenation, and hydroelementation reactions. Chem Soc Rev 2022; 51:4386-4464. [PMID: 35583150 DOI: 10.1039/d2cs00093h] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The emerging field of organometallic catalysis has shifted towards research on Earth-abundant transition metals due to their ready availability, economic advantage, and novel properties. In this case, manganese, the third most abundant transition-metal in the Earth's crust, has emerged as one of the leading competitors. Accordingly, a large number of molecularly-defined Mn-complexes has been synthesized and employed for hydrogenation, dehydrogenation, and hydroelementation reactions. In this regard, catalyst design is based on three pillars, namely, metal-ligand bifunctionality, ligand hemilability, and redox activity. Indeed, the developed catalysts not only differ in the number of chelating atoms they possess but also their working principles, thereby leading to different turnover numbers for product molecules. Hence, the critical assessment of molecularly defined manganese catalysts in terms of chelating atoms, reaction conditions, mechanistic pathway, and product turnover number is significant. Herein, we analyze manganese complexes for their catalytic activity, versatility to allow multiple transformations and their routes to convert substrates to target molecules. This article will also be helpful to get significant insight into ligand design, thereby aiding catalysis design.
Collapse
Affiliation(s)
- Kuhali Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.
| | - Satyadeep Waiba
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.
| | - Akash Jana
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.
| | - Biplab Maji
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.
| |
Collapse
|
32
|
Towards ligand simplification in manganese-catalyzed hydrogenation and hydrosilylation processes. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
33
|
Chen F, Zheng Y, Yang H, Yang Q, Wu L, Zhou N. Iron‐Catalyzed Silylation and Spirocyclization of Biaryl‐Ynones: A Radical Cascade Process toward Silylated Spiro[5.5]trienones. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Fei Chen
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs Anyang Key Laboratory of New Functional Complex Materials College of Chemistry and Chemical Engineering Anyang Normal University Anyang 455000 People's Republic of China
| | - Yang Zheng
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs Anyang Key Laboratory of New Functional Complex Materials College of Chemistry and Chemical Engineering Anyang Normal University Anyang 455000 People's Republic of China
| | - Hao Yang
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs Anyang Key Laboratory of New Functional Complex Materials College of Chemistry and Chemical Engineering Anyang Normal University Anyang 455000 People's Republic of China
| | - Qing‐Yun Yang
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs Anyang Key Laboratory of New Functional Complex Materials College of Chemistry and Chemical Engineering Anyang Normal University Anyang 455000 People's Republic of China
| | - Lu‐Yan Wu
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs Anyang Key Laboratory of New Functional Complex Materials College of Chemistry and Chemical Engineering Anyang Normal University Anyang 455000 People's Republic of China
| | - Nengneng Zhou
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education Anhui Key Laboratory of Molecule-Based Materials College of Chemistry and Materials Science Anhui Normal University Wuhu 241000 People's Republic of China
| |
Collapse
|
34
|
Kassamba S, Perez-Luna A, Ferreira F, Durandetti M. Modular access to substituted germoles by intramolecular germylzincation. Chem Commun (Camb) 2022; 58:3901-3904. [PMID: 35234232 DOI: 10.1039/d1cc07163g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Intramolecular alkyne germylzincation giving access to a wide range of germoles is achieved from triarylhydrogermanes in the presence of diethylzinc and AIBN as radical initiator. The reaction proceeds through activation of the Ge-H bond, leading to a heteroarylzinc intermediate after cyclisation, which can then be involved in a post-functionalisation reaction. Our results show that only 5-endo-dig cyclizations occur, with benzogermoles being exclusively obtained.
Collapse
Affiliation(s)
- Seydou Kassamba
- Normandie Univ., UNIROUEN, INSA Rouen, CNRS, Laboratoire COBRA (UMR 6014 & FR 3038), 76000 Rouen, France.
| | - Alejandro Perez-Luna
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, F-75005 Paris, France
| | - Franck Ferreira
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, F-75005 Paris, France
| | - Muriel Durandetti
- Normandie Univ., UNIROUEN, INSA Rouen, CNRS, Laboratoire COBRA (UMR 6014 & FR 3038), 76000 Rouen, France.
| |
Collapse
|
35
|
Abstract
The concurrent incorporation of a germyl fragment and another functional group (beyond the hydrogen atom) across the C═C double bond is a highly appealing yet challenging task. Herein we demonstrate the efficient germyl peroxidation of alkenes with germanium hydrides and tert-butyl hydroperoxide via a copper-catalyzed three-component radical relay strategy. This protocol exhibits excellent functional group tolerance and exquisite chemo- and regioselectivity under mild conditions and represents a rare example of constructing synthetically challenging metal-embedded organic peroxides.
Collapse
Affiliation(s)
- Yani Luo
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Boxia Xu
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Leiyang Lv
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Zhiping Li
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China
| |
Collapse
|
36
|
Vivien A, Veyre L, Mirgalet R, Camp C, Thieuleux C. Mn 2(CO) 10 and UV light: a promising combination for regioselective alkene hydrosilylation at low temperature. Chem Commun (Camb) 2022; 58:4091-4094. [PMID: 35266478 DOI: 10.1039/d2cc00377e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The low temperature regioselective hydrosilylation of various alkenes with (1,1,1,3,5,5,5-heptamethyltrisiloxane) MDHM is described using Mn2(CO)10 under UV irradiation with Mn loadings as low as 1 mol%, in the absence of additives and with excellent selectivity and yields. The generation of a manganese radical allowed the anti-Markovnikov hydrosilylation products to be selectively obtained in yields up to 99%.
Collapse
Affiliation(s)
- Anthony Vivien
- Université de Lyon, Institut de Chimie de Lyon, Laboratory of Catalysis, Polymerization, Processes and Materials, CP2M UMR 5128 CNRS-UCB Lyon 1-CPE Lyon, CPE Lyon 43 Bd du 11 Novembre 1918, 69616 Villeurbanne, France.
| | - Laurent Veyre
- Université de Lyon, Institut de Chimie de Lyon, Laboratory of Catalysis, Polymerization, Processes and Materials, CP2M UMR 5128 CNRS-UCB Lyon 1-CPE Lyon, CPE Lyon 43 Bd du 11 Novembre 1918, 69616 Villeurbanne, France.
| | - Raphaël Mirgalet
- Elkem Silicones, R&I Chemistry, 9 Rue Specia, 69190 Saint Fons, France
| | - Clément Camp
- Université de Lyon, Institut de Chimie de Lyon, Laboratory of Catalysis, Polymerization, Processes and Materials, CP2M UMR 5128 CNRS-UCB Lyon 1-CPE Lyon, CPE Lyon 43 Bd du 11 Novembre 1918, 69616 Villeurbanne, France.
| | - Chloé Thieuleux
- Université de Lyon, Institut de Chimie de Lyon, Laboratory of Catalysis, Polymerization, Processes and Materials, CP2M UMR 5128 CNRS-UCB Lyon 1-CPE Lyon, CPE Lyon 43 Bd du 11 Novembre 1918, 69616 Villeurbanne, France.
| |
Collapse
|
37
|
Bano K, Kisan DA, Panda TK. Facile Synthesis of Benzimidazole and Benzothiazole Compounds Mediated by Zinc Precatalyst Supported by Iminopyrrole‐Morpholine Ligand. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kulsum Bano
- IITH: Indian Institute of Technology Hyderabad Chemistry KandiSangareddy 502285 INDIA
| | - Devadkar Ajitrao Kisan
- IITH: Indian Institute of Technology Hyderabad Chemistry KandiSangareddy 502285 Hyderabad INDIA
| | - Tarun K. Panda
- IITH: Indian Institute of Technology Hyderabad Chemistry KandiSangareddy 502285 Hyderabad INDIA
| |
Collapse
|
38
|
Abstract
Herein, the electrochemical hydrosilylation of alkynes is reported. In the presence of the Suginome reagent (PhMe2Si-Bpin), a large panel of terminal alkynes and internal alkynes was successfully converted into the hydrosilylated product in good to excellent yields and good selectivity in favor of the linear product. Preliminary mechanistic study supported the involvement of a silyl radical, which reacted on the alkyne.
Collapse
Affiliation(s)
- Tony Biremond
- Normandie
Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| | - Philippe Jubault
- Normandie
Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| | - Thomas Poisson
- Normandie
Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France,Institut
Universitaire de France, 1 rue Descartes, 75231 Paris, France,
| |
Collapse
|
39
|
Abstract
AbstractRecent developments in manganese-catalyzed reducing transformations—hydrosilylation, hydroboration, hydrogenation, and transfer hydrogenation—are reviewed herein. Over the past half a decade (i.e., 2016 to the present), more than 115 research publications have been reported in these fields. Novel organometallic compounds and new reduction transformations have been discovered and further developed. Significant challenges that had historically acted as barriers for the use of manganese catalysts in reduction reactions are slowly being broken down. This review will hopefully assist in developing this research area, by presenting a clear and concise overview of the catalyst structures and substrate transformations published so far.1 Introduction2 Hydrosilylation3 Hydroboration4 Hydrogenation5 Transfer Hydrogenation6 Conclusion and Perspective
Collapse
Affiliation(s)
- Christophe Werlé
- Max Planck Institute for Chemical Energy Conversion
- Ruhr University Bochum
| | - Peter Schlichter
- Max Planck Institute for Chemical Energy Conversion
- Institut für Technische und Makromolekulare Chemie (ITMC), RWTH Aachen University
| |
Collapse
|
40
|
Abstract
In recent years, visible light-induced transition metal catalysis has emerged as a new paradigm in organic photocatalysis, which has led to the discovery of unprecedented transformations as well as the improvement of known reactions. In this subfield of photocatalysis, a transition metal complex serves a double duty by harvesting photon energy and then enabling bond forming/breaking events mostly via a single catalytic cycle, thus contrasting the established dual photocatalysis in which an exogenous photosensitizer is employed. In addition, this approach often synergistically combines catalyst-substrate interaction with photoinduced process, a feature that is uncommon in conventional photoredox chemistry. This Review describes the early development and recent advances of this emerging field.
Collapse
Affiliation(s)
- Kelvin Pak Shing Cheung
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Sumon Sarkar
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Vladimir Gevorgyan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
41
|
Yang X, Gao H, Yan J, Shi L. Recent Progress in Radical-Mediated Si—H Functionalization of Silanes: An Effective Strategy for the Synthesis of Organosilanes Containing C—Si Bond. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202207047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
42
|
Zaranek M, Nowicki M, Andruszak P, Hoffmann M, Pawluć P. Hydrogermylation initiated by trialkylborohydrides: a living anionic mechanism. Chem Commun (Camb) 2022; 58:13979-13982. [DOI: 10.1039/d2cc05567h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
A trialkylborohydide-initiated hydrogermylation of aromatic alkenes is reported along with a DFT-supported mechanism following the course of a ‘living’ process.
Collapse
Affiliation(s)
- Maciej Zaranek
- Centre for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego st. 10, 61-614, Poznań, Poland
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego st. 8, 61-614, Poznań, Poland
| | - Mateusz Nowicki
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego st. 8, 61-614, Poznań, Poland
| | - Piotr Andruszak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego st. 8, 61-614, Poznań, Poland
| | - Marcin Hoffmann
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego st. 8, 61-614, Poznań, Poland
| | - Piotr Pawluć
- Centre for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego st. 10, 61-614, Poznań, Poland
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego st. 8, 61-614, Poznań, Poland
| |
Collapse
|
43
|
Song X, Meng S, Zhang H, Jiang Y, Chan ASC, Zou Y. Dibrominated addition and substitution of alkenes catalyzed by Mn 2(CO) 10. Chem Commun (Camb) 2021; 57:13385-13388. [PMID: 34823257 DOI: 10.1039/d1cc04534b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A practical method for the dibromination of alkenes without using molecular bromine is consistently appealing in organic synthesis. Herein, we report Mn-catalyzed dibrominated addition and substitution of alkenes only with N-bromosuccinimide, producing a variety of synthetically valuable dibrominated compounds in moderate to high yields.
Collapse
Affiliation(s)
- Xianheng Song
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Shanshui Meng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China. .,Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangzhou 510006, China
| | - Hong Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Yi Jiang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Albert S C Chan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China. .,Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangzhou 510006, China
| | - Yong Zou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China. .,Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangzhou 510006, China
| |
Collapse
|
44
|
Panyam PKR, Atwi B, Ziegler F, Frey W, Nowakowski M, Bauer M, Buchmeiser MR. Rh(I)/(III)-N-Heterocyclic Carbene Complexes: Effect of Steric Confinement Upon Immobilization on Regio- and Stereoselectivity in the Hydrosilylation of Alkynes. Chemistry 2021; 27:17220-17229. [PMID: 34672398 PMCID: PMC9299010 DOI: 10.1002/chem.202103099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Indexed: 12/14/2022]
Abstract
Rh(I) NHC and Rh(III) Cp* NHC complexes (Cp*=pentamethylcyclopentadienyl, NHC=N-heterocyclic carbene=pyrid-2-ylimidazol-2-ylidene (Py-Im), thiophen-2-ylimidazol-2-ylidene) are presented. Selected catalysts were selectively immobilized inside the mesopores of SBA-15 with average pore diameters of 5.0 and 6.2 nm. Together with their homogenous progenitors, the immobilized catalysts were used in the hydrosilylation of terminal alkynes. For aromatic alkynes, both the neutral and cationic Rh(I) complexes showed excellent reactivity with exclusive formation of the β(E)-isomer. For aliphatic alkynes, however, selectivity of the Rh(I) complexes was low. By contrast, the neutral and cationic Rh(III) Cp* NHC complexes proved to be highly regio- and stereoselective catalysts, allowing for the formation of the thermodynamically less stable β-(Z)-vinylsilane isomers at room temperature. Notably, the SBA-15 immobilized Rh(I) catalysts, in which the pore walls provide an additional confinement, showed excellent β-(Z)-selectivity in the hydrosilylation of aliphatic alkynes, too. Also, in the case of 4-aminophenylacetylene, selective formation of the β(Z)-isomer was observed with a neutral SBA-15 supported Rh(III) Cp* NHC complex but not with its homogenous counterpart. These are the first examples of high β(Z)-selectivity in the hydrosilylation of alkynes by confinement generated upon immobilization inside mesoporous silica.
Collapse
Affiliation(s)
- Pradeep K. R. Panyam
- Institute of Polymer ChemistryUniversity of StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Boshra Atwi
- Institute of Polymer ChemistryUniversity of StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Felix Ziegler
- Institute of Polymer ChemistryUniversity of StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Wolfgang Frey
- Institute of Organic ChemistryUniversity of StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Michal Nowakowski
- Chemistry DepartmentPaderborn UniversityWarburger Str. 10033098PaderbornGermany
| | - Matthias Bauer
- Chemistry DepartmentPaderborn UniversityWarburger Str. 10033098PaderbornGermany
| | - Michael R. Buchmeiser
- Institute of Polymer ChemistryUniversity of StuttgartPfaffenwaldring 5570569StuttgartGermany
- German Institutes of Textile and Fiber ResearchKörschtalstr. 2673770DenkendorfGermany
| |
Collapse
|
45
|
Chan AY, Perry IB, Bissonnette NB, Buksh BF, Edwards GA, Frye LI, Garry OL, Lavagnino MN, Li BX, Liang Y, Mao E, Millet A, Oakley JV, Reed NL, Sakai HA, Seath CP, MacMillan DWC. Metallaphotoredox: The Merger of Photoredox and Transition Metal Catalysis. Chem Rev 2021; 122:1485-1542. [PMID: 34793128 DOI: 10.1021/acs.chemrev.1c00383] [Citation(s) in RCA: 666] [Impact Index Per Article: 166.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The merger of photoredox catalysis with transition metal catalysis, termed metallaphotoredox catalysis, has become a mainstay in synthetic methodology over the past decade. Metallaphotoredox catalysis has combined the unparalleled capacity of transition metal catalysis for bond formation with the broad utility of photoinduced electron- and energy-transfer processes. Photocatalytic substrate activation has allowed the engagement of simple starting materials in metal-mediated bond-forming processes. Moreover, electron or energy transfer directly with key organometallic intermediates has provided novel activation modes entirely complementary to traditional catalytic platforms. This Review details and contextualizes the advancements in molecule construction brought forth by metallaphotocatalysis.
Collapse
Affiliation(s)
- Amy Y Chan
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Ian B Perry
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Noah B Bissonnette
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Benito F Buksh
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Grant A Edwards
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Lucas I Frye
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Olivia L Garry
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Marissa N Lavagnino
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Beryl X Li
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Yufan Liang
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Edna Mao
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Agustin Millet
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - James V Oakley
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Nicholas L Reed
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Holt A Sakai
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Ciaran P Seath
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - David W C MacMillan
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
46
|
Luo Y, Tian T, Nishihara Y, Lv L, Li Z. Iron-catalysed radical cyclization to synthesize germanium-substituted indolo[2,1- a]isoquinolin-6(5 H)-ones and indolin-2-ones. Chem Commun (Camb) 2021; 57:9276-9279. [PMID: 34519301 DOI: 10.1039/d1cc03907e] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A simple and efficient strategy for iron-catalysed cascade radical cyclization was developed, by which an array of germanium-substituted indolo[2,1-a]isoquinolin-6(5H)-ones and indolin-2-ones were obtained in one pot with germanium hydrides as radical precursors. A rapid intramolecular radical trapping mode enabled the selective arylgermylation of alkenes over the prevalent hydrogermylation reaction.
Collapse
Affiliation(s)
- Yani Luo
- Department of Chemistry, Renmin University of China, Beijing 100872, China.
| | - Tian Tian
- Department of Chemistry, Renmin University of China, Beijing 100872, China. .,Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Yasushi Nishihara
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Leiyang Lv
- Department of Chemistry, Renmin University of China, Beijing 100872, China.
| | - Zhiping Li
- Department of Chemistry, Renmin University of China, Beijing 100872, China.
| |
Collapse
|
47
|
Wang D, Lai Y, Wang P, Leng X, Xiao J, Deng L. Markovnikov Hydrosilylation of Alkynes with Tertiary Silanes Catalyzed by Dinuclear Cobalt Carbonyl Complexes with NHC Ligation. J Am Chem Soc 2021; 143:12847-12856. [PMID: 34347477 DOI: 10.1021/jacs.1c06583] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Metal-catalyzed hydrosilylation of alkynes is an ideal atom-economic method to prepare vinylsilanes that are useful reagents in the organic synthesis and silicone industry. Although great success has been made in the preparation of β-vinylsilanes by metal-catalyzed hydrosilylation reactions of alkynes, reported metal-catalyzed reactions for the synthesis of α-vinylsilanes suffer from narrow substrate scope and/or poor selectivity. Herein, we present selective Markovnikov hydrosilylation reactions of terminal alkynes with tertiary silanes using a dicobalt carbonyl N-heterocyclic carbene (NHC) complex [(IPr)2Co2(CO)6] (IPr = 1,3-di(2,6-diisopropylphenyl)imidazol-2-ylidene) as catalyst. This cobalt catalyst effects the hydrosilylation of both alkyl- and aryl-substituted terminal alkynes with a variety of tertiary silanes with good functional group compatibility, furnishing α-vinylsilanes with high yields and high α/β selectivity. Mechanistic study revealed that the stoichiometric reactions of [(IPr)2Co2(CO)6] with PhC≡CH and HSiEt3 can furnish the dinuclear cobalt alkyne and mononuclear cobalt silyl complexes [(IPr)(CO)2Co(μ-η2:η2-HCCPh)Co(CO)3], [(IPr)(CO)2Co(μ-η2:η2-HCCPh)Co(CO)2(IPr)], and [(IPr)Co(CO)3(SiEt3)], respectively. Both dicobalt bridging alkyne complexes can react with HSiEt3 to yield α-triethylsilyl styrene and effect the catalytic Markovnikov hydrosilylation reaction. However, the mono(NHC) dicobalt complex [(IPr)(CO)2Co(μ-η2:η2-HCCPh)Co(CO)3] exhibits higher catalytic activity over the di(NHC)-dicobalt complexes. The cobalt silyl complex [(IPr)Co(CO)3(SiEt3)] is ineffective in catalyzing the hydrosilylation reaction. Deuterium labeling experiments with PhC≡CD and DSiEt3 indicates the syn-addition nature of the hydrosilylation reaction. The absence of deuterium scrambling in the hydrosilylation products formed from the catalytic reaction of PhC≡CH with a mixture of DSiEt3 and HSi(OEt)3 hints that mononuclear cobalt species are less likely the in-cycle species. These observations, in addition to the evident of nonsymmetric Co2C2-butterfly core in the structure of [(IPr)(CO)2Co(μ-η2:η2-HCCPh)Co(CO)3], point out that mono(IPr)-dicobalt species are the genuine catalysts for the cobalt-catalyzed hydrosilylation reaction and that the high α selectivity of the catalytic system originates from the joint play of the dicobalt carbonyl species to coordinate alkynes in the Co(μ-η2:η2-HCCR')Co mode and the steric demanding nature of IPr ligand.
Collapse
Affiliation(s)
- Dongyang Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuhang Lai
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Peng Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xuebing Leng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jie Xiao
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Liang Deng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
48
|
Zhong M, Pannecoucke X, Jubault P, Poisson T. Copper-Photocatalyzed Hydrosilylation of Alkynes and Alkenes under Continuous Flow. Chemistry 2021; 27:11818-11822. [PMID: 34075660 DOI: 10.1002/chem.202101753] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Indexed: 01/27/2023]
Abstract
Herein, the photocatalytic hydrosilylation of alkynes and alkenes under continuous flow conditions is described. By using 0.2 mol % of the developed [Cu(dmp)(XantphosTEPD)]PF6 under blue LEDs irradiation, a large panel of alkenes and alkynes was hydrosilylated in good to excellent yields with a large functional group tolerance. The mechanism of the reaction was studied, and a plausible scenario was suggested.
Collapse
Affiliation(s)
- Mingbing Zhong
- Normandie Univ., INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000, Rouen, France
| | - Xavier Pannecoucke
- Normandie Univ., INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000, Rouen, France
| | - Philippe Jubault
- Normandie Univ., INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000, Rouen, France
| | - Thomas Poisson
- Normandie Univ., INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000, Rouen, France.,Institut Universitaire de France, 1 rue Descartes, 75231, Paris, France
| |
Collapse
|
49
|
Sahoo AK, Dahiya A, Das B, Behera A, Patel BK. Visible-Light-Mediated Difunctionalization of Alkynes: Synthesis of β-Substituted Vinylsulfones Using O- and S-Centered Nucleophiles. J Org Chem 2021; 86:11968-11986. [PMID: 34346693 DOI: 10.1021/acs.joc.1c01350] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
An inimitable illustration of a green-light-induced, regioselective difunctionalization of terminal alkynes has been disclosed using sodium arylsulfinates and carboxylic acids in the presence of eosin Y as the photocatalyst. The present methodology is further demonstrated by employing NH4SCN as an S-centered nucleophile instead of carboxylic acid. The mechanistic investigation reveals a radical-induced iodosulfonylation followed by a base-mediated nucleophilic substitution. The mechanism is supported by various studies, viz., radical-trapping experiment, fluorescence quenching, and CV studies. In this protocol, (Z)-β-substituted vinylsulfones are obtained, exclusively covering a broad range of alkynes and nucleophiles, which are often unaddressed. The present strategy can tolerate structurally discrete substrates with steric bulk and different electronic properties, which provides a straightforward and practical pathway for the synthesis of highly functionalized (Z)-β-substituted vinylsulfones. Herein, C-O and C-S bonds are assembled simultaneously with the concomitant introduction of important functional groups, viz., ester, thiocyanate, and sulfone.
Collapse
Affiliation(s)
- Ashish Kumar Sahoo
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Anjali Dahiya
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Bubul Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Ahalya Behera
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Bhisma K Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
50
|
Gao W, Ding H, Yu T, Wang Z, Ding S. Iridium-catalyzed regioselective hydrosilylation of internal alkynes facilitated by directing and steric effects. Org Biomol Chem 2021; 19:6216-6220. [PMID: 34195740 DOI: 10.1039/d1ob00910a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here we reported the iridium-catalyzed hydrosilylation of internal alkynes under simple and mild conditions. The intrinsic functional groups of alkyne substrates were disclosed to be crucial in facilitating both the hydrosilylation process and related regioselectivity owing to their coordination capability towards the iridium catalyst. Utilization of the steric trimethylsilyl-protected trihydroxysilane proved to be another critical factor in ensuring the efficient proceeding of this process.
Collapse
Affiliation(s)
- Weiwei Gao
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Huan Ding
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Tian Yu
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Zhen Wang
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Shengtao Ding
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|