1
|
Wang L, Wang H, Nie X, Li J, Tang Y, Cai Y. Stereoselective construction of 5-6-5 aza-tricyclic scaffolds via catalytic asymmetric aza-Piancatelli/Diels-Alder reactions. Chem Commun (Camb) 2025. [PMID: 40356499 DOI: 10.1039/d5cc01888a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
A chiral Brønsted acid-catalyzed asymmetric cascade aza-Piancatelli rearrangement/intramolecular Diels-Alder reaction has been developed. This method enables the atom- and step-efficient synthesis of chiral aza-[5,6,5]-tricyclic derivatives with multiple contiguous stereocenters in a highly enantioselective manner from readily available N-pentadienylanilines and 2-furylcarbinols.
Collapse
Affiliation(s)
- Lishu Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China.
| | - Han Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China.
| | - Xukun Nie
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China.
| | - Jun Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, 688 YingbinRoad, 321004 Jinhua, China.
| | - Yurong Tang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China.
| | - Yunfei Cai
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
2
|
Xie K, Nie X, Zhou P, Tang Y, Cai Y. Enantioselective Synthesis of N-Substituted Indoles with α,β-Stereocenters via Sequential Aza-Piancatelli/Cyclization Reactions. Org Lett 2025; 27:4806-4810. [PMID: 40302390 DOI: 10.1021/acs.orglett.5c01381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
A sequence of catalytic asymmetric aza-Piancatelli rearrangement and Pd-catalyzed cyclization has been developed to construct chiral N-substituted indoles featuring α,β-consecutive stereocenters. This indole framework, bearing α,β-chiral centers, is a prevalent structural motif in natural products and biologically active molecules, yet catalytic enantioselective methods for its preparation remain scarce. This protocol offers efficient access to a diverse array of N-substituted indole derivatives with α,β-consecutive stereocenters, achieving high yields and excellent enantioselectivities.
Collapse
Affiliation(s)
- Kaijun Xie
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Xukun Nie
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Pengfei Zhou
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Yurong Tang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Yunfei Cai
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
3
|
Tian Y, Tao H, Yang K, Tang Y, Cai Y. Multicomponent Modular Synthesis of Chiral Bicyclic Bridged Compounds via an Alkenylfuran-Based Acylation/Rearrangement/Cyclization Sequence. Org Lett 2025; 27:1181-1185. [PMID: 39865720 DOI: 10.1021/acs.orglett.4c04709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The catalytic asymmetric multicomponent acylation/rearrangement/cyclization of alkenylfurans with acyl oxime esters/arylamines or acyl oxime esters/arylamines/hydroxylamine has been developed. This method employs synergistic photoredox/Brønsted acid catalysis, enabling the efficient and versatile synthesis of multifunctionalized [3.2.1] and [4.2.1] bicyclic bridged compounds in high yields with excellent diastereo- and enantioselectivities.
Collapse
Affiliation(s)
- Yu Tian
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Hongji Tao
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Kunlong Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Yurong Tang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Yunfei Cai
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
4
|
Campbell JW, Cotnam MJ, Annan FR, Hilborn JW, Thompson A. Synthesis of chiral systems featuring the pyrrole unit: a review. Chem Commun (Camb) 2024; 60:11385-11414. [PMID: 39292192 DOI: 10.1039/d4cc03601h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Synthetic strategies towards pyrroles within chiral frameworks are summarised, focussing on reports published 2010-2023. The synthesis of pyrroles featuring substituents bearing chiral centres are summarised, as are those whereby pyrroles are located within axially chiral systems courtesy of restricted bond rotation.
Collapse
Affiliation(s)
- Jacob W Campbell
- Department of Chemistry, Dalhousie University, P. O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada.
| | - Michael J Cotnam
- Department of Chemistry, Dalhousie University, P. O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada.
| | - Francisca R Annan
- Department of Chemistry, Dalhousie University, P. O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada.
| | - James W Hilborn
- Department of Chemistry, Dalhousie University, P. O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada.
| | - Alison Thompson
- Department of Chemistry, Dalhousie University, P. O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada.
| |
Collapse
|
5
|
Yu L, Tang Y, Nie X, Cai Y. Stereoselective Access to Spiro-isoindolinone Scaffolds via Catalytic Asymmetric aza-Piancatelli Rearrangement. Org Lett 2024; 26:7667-7671. [PMID: 39207091 DOI: 10.1021/acs.orglett.4c02799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
A chiral Brønsted acid catalyzed asymmetric aza-Piancatelli rearrangement of 3-furyl-3-hydroxyisoindolinones with anilines has been developed, enabling the divergent construction of chiral spiro-cyclopentenone-isoindolinones in high yields with excellent diastereo- and enantioselectivities even under a low catalyst loading of 0.5 mol%.
Collapse
Affiliation(s)
- Ling Yu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Yurong Tang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Xukun Nie
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Yunfei Cai
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
6
|
Hsu JH, Leung T, Wu YC, Lai CH, El Bakri Y, Chang CF, Chuang TH. Synthesis of Etrasimod (APD334): Al 2O 3-Promoted Decarboxylative Rearrangements of Cyclopentenones with Stereochemical Inversion. J Org Chem 2024; 89:12524-12532. [PMID: 39150357 DOI: 10.1021/acs.joc.4c01463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
This study presents an efficient synthesis pathway for etrasimod, starting from (+)-cis-4-acetoxy-2-cyclopenten-1-ol, yielding 5.6% overall with 98% enantiomeric excess. The crucial intermediate, (4R)-anilinocyclopent-2-enone, was derived from the (S)-alcohol/isocyanate adduct through a concerted, Al2O3-promoted decarboxylative rearrangement, which inverted the configuration. A tetracyclic fused lactam was formed via a one-pot acylation-Michael addition, followed by keto α-arylation. Subsequent removal of the oxo group facilitated the synthesis of cyclopenta[b]indol-3-ylacetic acid through a series of reactions, including methanolysis, indoline oxidation, and hydrolysis.
Collapse
Affiliation(s)
- Ju-Hsuan Hsu
- School of Pharmacy, China Medical University, Taichung 406040, Taiwan
| | - TszIn Leung
- School of Pharmacy, China Medical University, Taichung 406040, Taiwan
| | - Yang-Chang Wu
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung 404394, Taiwan
| | - Chin-Hung Lai
- Department of Medical Applied Chemistry, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Youness El Bakri
- Department of Theoretical and Applied Chemistry, South Ural State University, Chelyabinsk 454080, Russia Federation
| | - Chi-Fen Chang
- Department of Anatomy, School of Medicine, China Medical University, Taichung 40402, Taiwan
| | - Ta-Hsien Chuang
- School of Pharmacy, China Medical University, Taichung 406040, Taiwan
| |
Collapse
|
7
|
Nie X, Zhong S, Zou J, Tang Y, Xia Y, Cai Y. Asymmetric Construction of Functionalized Cyclopenta[ b]pyrrolines via Cascade Aza-Piancatelli/Hydroamination Reactions. Org Lett 2024; 26:6766-6770. [PMID: 39082870 DOI: 10.1021/acs.orglett.4c02485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
A chiral Brønsted acid/Pd that cooperatively catalyzed the asymmetric cascade aza-Piancatelli rearrangement/hydroamination of readily accessible alkynyl-functionalized tertiary furylcarbinols with anilines has been developed. This protocol provides expedient access to a variety of densely functionalized cyclopenta[b]pyrroline derivatives in high yields with excellent enantioselectivities.
Collapse
Affiliation(s)
- Xukun Nie
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Sishi Zhong
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Jiaming Zou
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Yurong Tang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Yong Xia
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Yunfei Cai
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
8
|
Werner E, Wiegand M, Moran J, Lebœuf D. Rapid Access to Densely Functionalized Cyclopentenyl Sulfoximines through a Sc-Catalyzed Aza-Piancatelli Reaction. Org Lett 2024. [PMID: 38190622 DOI: 10.1021/acs.orglett.3c04095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Sulfoximines make up a class of compounds of growing interest for crop science and medicinal chemistry, but methods for directly incorporating them into complex molecular scaffolds are lacking. Here we report a scandium-catalyzed variant of the aza-Piancatelli cyclization that can directly incorporate sulfoximines as nucleophiles rather than the classical aniline substrates. Starting from 2-furylcarbinols and sulfoximines, the reaction provides direct access to 4-sulfoximinocyclopentenones, a new scaffold bearing cyclopentenone and sulfoximine motifs, both of interest for bioactive compounds.
Collapse
Affiliation(s)
- Emilie Werner
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 8 Allée Gaspard Monge, 67000 Strasbourg, France
| | - Milena Wiegand
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 8 Allée Gaspard Monge, 67000 Strasbourg, France
| | - Joseph Moran
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 8 Allée Gaspard Monge, 67000 Strasbourg, France
- Institut Universitaire de France (IUF), 75005 Paris, France
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - David Lebœuf
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 8 Allée Gaspard Monge, 67000 Strasbourg, France
| |
Collapse
|
9
|
Huang H, Lin YM, Gong L. Recent Advances in Photochemical Asymmetric Three-Component Reactions. CHEM REC 2023:e202300275. [PMID: 37772656 DOI: 10.1002/tcr.202300275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/18/2023] [Indexed: 09/30/2023]
Abstract
Over the past decades, asymmetric photochemical synthesis has garnered significant attention for its sustainability and unique ability to generate enantio-enriched molecules through distinct reaction pathways. Photochemical asymmetric three-component reactions have demonstrated significant potential for the rapid construction of chiral compounds with molecular diversity and complexity. However, noteworthy challenges persist, including the participation of high-energy intermediates such as radical species, difficulties in precise control of stereoselectivity, and the presence of competing background and side reactions. Recent breakthroughs have led to the development of sophisticated strategies in this field. This review explores the intricate mechanisms, synthetic applications, and limitations of these methods. We anticipate that it will contribute towards advancing asymmetric catalysis, photochemical synthesis, and green chemistry.
Collapse
Affiliation(s)
- Haichao Huang
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Yu-Mei Lin
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Lei Gong
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|
10
|
Guan P, Ma R, Liu M, Kong L, Han Y, Wang C. AlCl 3-catalyzed chemoselective cascade reactions of 4-anilinocoumarins with 2-furylcarbinols: access to densely functionalized chromeno[4,3- b]pyrrol-4(1 H)-one derivatives. Org Biomol Chem 2023; 21:1379-1383. [PMID: 36649081 DOI: 10.1039/d2ob02248f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
An unprecedented protocol has been developed for the preparation of highly functionalized chromeno[4,3-b]pyrrol-4(1H)-ones, which are not only valuable architectures of many biologically active molecules but also key building blocks for rich photophysical properties. The transformation proceeded through chemoselective intermolecular α-carbon nucleophilic attacking/ring-opening/Michael addition/deprotonation aromatization processes from 4-aminocoumarins and 2-furylcarbinols.
Collapse
Affiliation(s)
- Pengcheng Guan
- School of Chemistry and Chemical Engineering, Linyi University, The middle of Shuangling Road, Linyi, Shandong, 276000, People's Republic of China.
| | - Rong Ma
- School of Chemistry and Chemical Engineering, Linyi University, The middle of Shuangling Road, Linyi, Shandong, 276000, People's Republic of China.
| | - Minghui Liu
- School of Chemistry and Chemical Engineering, Linyi University, The middle of Shuangling Road, Linyi, Shandong, 276000, People's Republic of China.
| | - Lingkai Kong
- School of Chemistry and Chemical Engineering, Linyi University, The middle of Shuangling Road, Linyi, Shandong, 276000, People's Republic of China.
| | - Yu Han
- School of Chemistry and Chemical Engineering, Linyi University, The middle of Shuangling Road, Linyi, Shandong, 276000, People's Republic of China. .,College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China.
| | - Chengyu Wang
- School of Chemistry and Chemical Engineering, Linyi University, The middle of Shuangling Road, Linyi, Shandong, 276000, People's Republic of China.
| |
Collapse
|
11
|
Li H, Yang Q, Xu L, Wei J, Tang Y, Cai Y. Cu(I)/Chiral Vanadium Complex Cooperatively Catalyzed Asymmetric Sulfonation/Rearrangement of Alkenylfurans. Org Lett 2022; 24:8202-8207. [DOI: 10.1021/acs.orglett.2c03304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hongxiang Li
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Qian Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Lei Xu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Jie Wei
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Yurong Tang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Yunfei Cai
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
12
|
Wei J, Tang Y, Yang Q, Li H, He D, Cai Y. Asymmetric Ketoalkylation/Rearrangement of Alkyenlfurans via Synergistic Photoredox/Brønsted Acid Catalysis. Org Lett 2022; 24:7928-7933. [PMID: 36269030 DOI: 10.1021/acs.orglett.2c03040] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An enantioselective three-component rearrangement of alkenylfurans with various cycloalkyl silyl peroxides and anilines has been developed by merging photoredox catalysis with chiral Brønsted acid catalysis. This protocol provides expedient access to a broad spectrum of ketoalkyl-functionalized 4-aminocyclopentenones in high yields with excellent enantio- and diastereoselectivities. Diverse functional groups can be introduced via facile product derivations.
Collapse
Affiliation(s)
- Jie Wei
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Yurong Tang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Qian Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Hongxiang Li
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Dongxian He
- Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
| | - Yunfei Cai
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
13
|
Zou J, Xu L, Tang Y, Wang W, Cai Y. Organocatalytic Asymmetric Synthesis of Bridged Tetrahydrobenzo[ b]azepines/oxepines. Org Lett 2022; 24:7140-7144. [PMID: 36169238 DOI: 10.1021/acs.orglett.2c02833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The asymmetric synthesis of bridged tetrahydrobenzo[b]azepine and oxepine derivatives through chiral Brønsted acid catalyzed asymmetric aza-Piancatelli rearrangement/Michael addition sequence has been developed. The reaction proceeds under mild reaction conditions to afford the final bridged cyclic products in good yields with excellent enantio- and diastereoselectivities.
Collapse
Affiliation(s)
- Jiaming Zou
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Lei Xu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Yurong Tang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Wentao Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Yunfei Cai
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
14
|
Cai Y, Zhong S, Xu L. Recent Advances on Piancatelli Reactions and Related Cascade Processes. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/s-0041-1737125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
AbstractThe Piancatelli reaction, which is the rearrangement of 2-furylcarbinol to cyclopentenone, involves a key furanoxonium ion intermediate and a furan ring opening-4π electrocyclization process. In recent years, the original oxa-Piancatelli reaction has been extended to a large family of aza- and carbo-Piancatelli reactions and related cascade processes, providing a powerful platform for the construction of diverse functionalized cyclopentenones and polycyclic cyclopentanones. Meanwhile, chiral Brønsted/Lewis acid based catalytic asymmetric approaches to Piancatelli reactions have also been achieved for the assembly of highly valued chiral cyclopentenone scaffolds. In this short review, we present an overview of the recent developments in these areas and focus primarily on reports published in the last five years.1 Introduction2 Diastereoselective Oxa-, Aza- and Carbo-Piancatelli Reactions3 Diastereoselective Cascade Piancatelli Reactions4 Asymmetric Piancatelli Reactions and Related Cascade Processes5 Miscellaneous Furanoxonium Ion-Based Rearrangements6 Conclusion
Collapse
|
15
|
Mondal B, Jagadeesh C, Das D, Saha J. An acid-promoted pseudocine substitution manifold of γ-aminocyclopentenone enables divergent access to polycyclic indole derivatives. Chem Commun (Camb) 2022; 58:2504-2507. [PMID: 35089294 DOI: 10.1039/d1cc06883k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We demonstrated γ-aminocyclopentenones to be a suitable surrogate for reactive cyclopentadienone via a pseudocine-substitution manifold. This approach enabled its orchestrated annulation with "tailored" bis-nucleophiles and to furnish complex β,γ-annulated cyclopentanoids or indole-based polycyclic architectures. This strategy represents a generalized means for direct, regioselective and stereoselective β,γ-functionalization of monosubstituted or unsubstituted aminocyclopentenones.
Collapse
Affiliation(s)
- Biplab Mondal
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research (CBMR), SGPGIMS Campus. Raebareli Road, Lucknow 226014, Uttar Pradesh, India.
| | - Chenna Jagadeesh
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research (CBMR), SGPGIMS Campus. Raebareli Road, Lucknow 226014, Uttar Pradesh, India.
| | - Dinabandhu Das
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| | - Jaideep Saha
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research (CBMR), SGPGIMS Campus. Raebareli Road, Lucknow 226014, Uttar Pradesh, India.
| |
Collapse
|
16
|
Xu L, Li H, Xing L, Yang Q, Tang Y, Cai Y. Retro-Aza-Piancatelli Rearrangement Triggered Cascade Reaction of Methyl Furylacrylates with Anilines to Access Cyclopenta[ b]pyrrolidinones. J Org Chem 2021; 87:855-865. [PMID: 34905369 DOI: 10.1021/acs.joc.1c02546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A novel aza-Piancatelli rearrangement triggered cascade reaction has been developed by utilizing methyl furylacrylates as a new type of functionalized furanoxonium ion precursor, permitting rapid and flexible construction of diverse cyclopenta[b]pyrrolidinone derivatives. The unprecedented and highly efficient bicyclic γ-lactam product formation is originated from an unusual retro-aza-Piancatelli rearrangement of the major cis-fused multifunctionalized cyclopentenone to the minor trans-fused one followed by a lactamization reaction.
Collapse
Affiliation(s)
- Lei Xu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Hongxiang Li
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Liuzhuang Xing
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Qian Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Yurong Tang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Yunfei Cai
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
17
|
Caballero-García G, Goodman JM. N-Triflylphosphoramides: highly acidic catalysts for asymmetric transformations. Org Biomol Chem 2021; 19:9565-9618. [PMID: 34723293 DOI: 10.1039/d1ob01708j] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
N-Triflylphosphoramides (NTPA), have become increasingly popular catalysts in the development of enantioselective transformations as they are stronger Brønsted acids than the corresponding phosphoric acids (PA). Their highly acidic, asymmetric active site can activate difficult, unreactive substrates. In this review, we present an account of asymmetric transformations using this type of catalyst that have been reported in the past ten years and we classify these reactions using the enantio-determining step as the key criterion. This compendium of NTPA-catalysed reactions is organised into the following categories: (1) cycloadditions, (2) electrocyclisations, polyene and related cyclisations, (3) addition reactions to imines, (4) electrophilic aromatic substitutions, (5) addition reactions to carbocations, (6) aldol and related reactions, (7) addition reactions to double bonds, and (8) rearrangements and desymmetrisations. We highlight the use of NTPA in total synthesis and suggest mnemonics which account for their enantioselectivity.
Collapse
Affiliation(s)
| | - Jonathan M Goodman
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK.
| |
Collapse
|
18
|
Zhang J, Gao Z, Qian J, Yang H, He M, Jiang G. Enantioselective Construction of Axially Chiral Azepine-Containing P,N-Ligands from l-Alanine. Org Lett 2021; 23:7814-7818. [PMID: 34595919 DOI: 10.1021/acs.orglett.1c02834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A family of axially chiral azepine-containing seven-membered cyclic P,N-ligands (named Indole-azepinap) have been prepared by using l-alanine as an original chirality source. The direct chromatographic separation of two diastereomeric phosphine oxides on silica gel enabled these ligands to be easy available, allowing further structural and electronic modifications. Preliminary application of these Indole-azepinaps has been demonstrated in a Pd-catalyzed asymmetric allylic alkylation with high yields and moderate enantioselectivities.
Collapse
Affiliation(s)
- Jinlong Zhang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zeng Gao
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China
| | - Jinlong Qian
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China
| | - Huameng Yang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China
| | - Maosheng He
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China
| | - Gaoxi Jiang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
19
|
Borah B, Dwivedi KD, Chowhan LR. Recent Advances in Metal‐ and Organocatalyzed Asymmetric Functionalization of Pyrroles. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100427] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Biplob Borah
- School of Applied Material Sciences Centre for Applied Chemistry Central University of Gujarat Sector-30 Gandhinagar 382030 India
| | - Kartikey Dhar Dwivedi
- School of Applied Material Sciences Centre for Applied Chemistry Central University of Gujarat Sector-30 Gandhinagar 382030 India
| | - L. Raju Chowhan
- School of Applied Material Sciences Centre for Applied Chemistry Central University of Gujarat Sector-30 Gandhinagar 382030 India
| |
Collapse
|
20
|
Xu L, Zhong S, Yang Q, Wei J, Zou J, Li H, Cai Y. Catalytic Asymmetric Radical-Mediated Three-Component Piancatelli-Type Rearrangement of Furylalkenes. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Lei Xu
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
| | - Sishi Zhong
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
| | - Qian Yang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
| | - Jie Wei
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
| | - Jiaming Zou
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
| | - Hongxiang Li
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
| | - Yunfei Cai
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
| |
Collapse
|
21
|
Marin L, Jerhaoui S, Kolodziej E, Guillot R, Gandon V, Colobert F, Schulz E, Wencel‐Delord J, Lebœuf D. Sulfoxide‐Controlled Stereoselective Aza‐Piancatelli Reaction. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100848] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Lucile Marin
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) CNRS UMR 8182 Université Paris-Saclay 91405 Orsay France
| | - Soufyan Jerhaoui
- Laboratoire d'Innovation Moléculaire et Applications (LIMA) CNRS UMR 7042 Université de Strasbourg/Université de Haute-Alsace, ECPM 67087 Strasbourg France
| | - Emilie Kolodziej
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) CNRS UMR 8182 Université Paris-Saclay 91405 Orsay France
| | - Régis Guillot
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) CNRS UMR 8182 Université Paris-Saclay 91405 Orsay France
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) CNRS UMR 8182 Université Paris-Saclay 91405 Orsay France
- Laboratoire de Chimie Moléculaire (LCM) CNRS UMR 9168 Ecole Polytechnique Institut Polytechnique de Paris 91128 Palaiseau France
| | - Françoise Colobert
- Laboratoire d'Innovation Moléculaire et Applications (LIMA) CNRS UMR 7042 Université de Strasbourg/Université de Haute-Alsace, ECPM 67087 Strasbourg France
| | - Emmanuelle Schulz
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) CNRS UMR 8182 Université Paris-Saclay 91405 Orsay France
| | - Joanna Wencel‐Delord
- Laboratoire d'Innovation Moléculaire et Applications (LIMA) CNRS UMR 7042 Université de Strasbourg/Université de Haute-Alsace, ECPM 67087 Strasbourg France
| | - David Lebœuf
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS) CNRS UMR 7006 Université de Strasbourg 67000 Strasbourg France
| |
Collapse
|
22
|
Zhang Z, Han H, Wang L, Bu Z, Xie Y, Wang Q. Construction of bridged polycycles through dearomatization strategies. Org Biomol Chem 2021; 19:3960-3982. [PMID: 33978039 DOI: 10.1039/d1ob00096a] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Bridged polycycles are privileged molecular skeletons with wide occurrence in bioactive natural products and pharmaceuticals. Therefore, they have been the pursing target molecules of numerous chemists. The rapid and convenient generation of sp3-rich complex three-dimensional molecular skeletons from simple and easily available aromatics has made dearomatization a highly valuable synthetic tool for the construction of rigid and challenging bridged rings. This review summarizes the-state-of-the-art advances of dearomatization strategies in the application of bridged ring formation, discusses their advantages and limitations and the in-depth mechanism, and highlights their synthetic value in the total synthesis of natural products. We wish this review will provide an important reference for medicinal and synthetic chemists and will inspire further development in this intriguing research area.
Collapse
Affiliation(s)
- Ziying Zhang
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Huabin Han
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Lele Wang
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Zhanwei Bu
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Yan Xie
- College of Chemistry and Materials Engineering, Quzhou University, Quzhou 324000, China.
| | - Qilin Wang
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| |
Collapse
|
23
|
Gaviña D, Escolano M, Torres J, Alzuet‐Piña G, Sánchez‐Roselló M, Pozo C. Organocatalytic Enantioselective Friedel‐Crafts Alkylation Reactions of Pyrroles. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100313] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Daniel Gaviña
- Department of Organic Chemistry University of Valencia E-46100 Burjassot Spain
| | - Marcos Escolano
- Department of Organic Chemistry University of Valencia E-46100 Burjassot Spain
| | - Javier Torres
- Department of Organic Chemistry University of Valencia E-46100 Burjassot Spain
| | - Gloria Alzuet‐Piña
- Department of Inorganic Chemistry University of Valencia E-46100 Burjassot Spain
| | | | - Carlos Pozo
- Department of Organic Chemistry University of Valencia E-46100 Burjassot Spain
| |
Collapse
|
24
|
Jagadeesh C, Mondal B, Pramanik S, Das D, Saha J. Unprecedented Reactivity of γ‐Amino Cyclopentenone Enables Diversity‐Oriented Access to Functionalized Indoles and Indole‐Annulated Ring Structures. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Chenna Jagadeesh
- Division of Molecular Synthesis & Drug Discovery Centre of Biomedical Research (CBMR) SGPGIMS Campus Raebareli Road, Lucknow 226014 Uttar Pradesh India
| | - Biplab Mondal
- Division of Molecular Synthesis & Drug Discovery Centre of Biomedical Research (CBMR) SGPGIMS Campus Raebareli Road, Lucknow 226014 Uttar Pradesh India
| | - Sourav Pramanik
- Division of Molecular Synthesis & Drug Discovery Centre of Biomedical Research (CBMR) SGPGIMS Campus Raebareli Road, Lucknow 226014 Uttar Pradesh India
| | - Dinabandhu Das
- School of Physical Sciences Jawaharlal Nehru University New Delhi India
| | - Jaideep Saha
- Division of Molecular Synthesis & Drug Discovery Centre of Biomedical Research (CBMR) SGPGIMS Campus Raebareli Road, Lucknow 226014 Uttar Pradesh India
| |
Collapse
|
25
|
Jagadeesh C, Mondal B, Pramanik S, Das D, Saha J. Unprecedented Reactivity of γ-Amino Cyclopentenone Enables Diversity-Oriented Access to Functionalized Indoles and Indole-Annulated Ring Structures. Angew Chem Int Ed Engl 2021; 60:8808-8812. [PMID: 33527571 DOI: 10.1002/anie.202016015] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/28/2021] [Indexed: 12/13/2022]
Abstract
Observation of an unexpected, Lewis acid promoted displacement of latent reactive γ-amino group on cyclopentenone presented unparalleled opportunity for enone functionalization and annulations with indole derivatives, which is developed in the current study. Herein, a vast range of C3/N-indolyl enones and indole alkaloid-like compound were accessed in excellent yields (up to 99 %) and selectivity through a one-pot operation. The mechanism most likely involves an unprecedented trait of Piancatelli-type rearrangement where influence of the gem-diaryl group appeared crucial.
Collapse
Affiliation(s)
- Chenna Jagadeesh
- Division of Molecular Synthesis & Drug Discovery, Centre of Biomedical Research (CBMR), SGPGIMS Campus, Raebareli Road, Lucknow, 226014, Uttar Pradesh, India
| | - Biplab Mondal
- Division of Molecular Synthesis & Drug Discovery, Centre of Biomedical Research (CBMR), SGPGIMS Campus, Raebareli Road, Lucknow, 226014, Uttar Pradesh, India
| | - Sourav Pramanik
- Division of Molecular Synthesis & Drug Discovery, Centre of Biomedical Research (CBMR), SGPGIMS Campus, Raebareli Road, Lucknow, 226014, Uttar Pradesh, India
| | - Dinabandhu Das
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Jaideep Saha
- Division of Molecular Synthesis & Drug Discovery, Centre of Biomedical Research (CBMR), SGPGIMS Campus, Raebareli Road, Lucknow, 226014, Uttar Pradesh, India
| |
Collapse
|
26
|
Gao Z, Wang F, Qian J, Yang H, Xia C, Zhang J, Jiang G. Enantioselective Construction of Quinoxaline-Based Heterobiaryls and P,N-Ligands via Chirality Transfer Strategy. Org Lett 2021; 23:1181-1187. [PMID: 33539703 DOI: 10.1021/acs.orglett.0c03827] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Central-to-axial chirality transfer via C-N single bond oxidation was first achieved as a versatile and conceptually distinct strategy to prepare a new family of axially chiral heteroaromatic biaryl backbones and P,N-ligands (named as Quinoxalinaps) in gram scale. Two atropisomers of Quinoxalinaps (ee >99%) were readily accessed from the same precursor enantiomer by a simple dehydrogenative oxidation with MnO2 and t-BuOOH under mild conditions. Phosphine could be introduced into the ligands before or after the chirality control process. Moreover, these Quinoxalinap P,N-ligands performed well for both asymmetric reactions of the CuBr-catalyzed alkyne conjugate addition with up to -94% ee and AgOAc-catalyzed glycinate imine [3 + 2] annulation with 90% ee, respectively.
Collapse
Affiliation(s)
- Zeng Gao
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Fang Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China
| | - Jinlong Qian
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China
| | - Huameng Yang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China
| | - Chungu Xia
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China
| | - Jinlong Zhang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China
| | - Gaoxi Jiang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
27
|
Xu L, Yang Q, Zhong S, Li H, Tang Y, Cai Y. Ln(III)/Chiral Brønsted Acid Catalyzed Asymmetric Cascade Ring Opening/Aza-Piancatelli Rearrangement of D–A Cyclopropanes. Org Lett 2020; 22:9016-9021. [DOI: 10.1021/acs.orglett.0c03413] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Lei Xu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Qian Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Sishi Zhong
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Hongxiang Li
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Yurong Tang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Yunfei Cai
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
28
|
Vonteddu NR, Solanke PR, Nayani K, Chandrasekhar S. Cation Triggered Domino Aza-Piancatelli Rearrangement/Friedel-Crafts Alkylation of Indole-Tethered Furfuyl Alcohols to Access Cycloocta[ b]indole Core of Alkaloids. Org Lett 2020; 22:8555-8560. [PMID: 33079545 DOI: 10.1021/acs.orglett.0c03155] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A domino approach to bridged cycloocta[b]indolone through a cascade of aza-Piancatelli rearrangement/Friedel-Crafts alkylation is developed. This transformation has been realized by reaction of an indole-tethered 2-furylcarbinol and substituted aniline in the presence of a Lewis acid to initiate aza-Piancatelli rearrangement followed by an in situ intramolecular Friedel-Crafts alkylation to access bridged tetracyclic frameworks in one pot.
Collapse
Affiliation(s)
- Nagarjuna Reddy Vonteddu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Cipla Ltd, MIDC Patalganga, Rasayani, Maharashtra 410220, India
| | - Pooja R Solanke
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kiranmai Nayani
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Srivari Chandrasekhar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
29
|
Schober L, Sako M, Takizawa S, Gröger H, Sasai H. Catalytic and enantioselective oxa-Piancatelli reaction using a chiral vanadium complex. Chem Commun (Camb) 2020; 56:10151-10154. [PMID: 32735309 DOI: 10.1039/d0cc02621b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
An enantioselective oxa-Piancatelli reaction was established for the first time using a chiral vanadium(v) catalyst. The dual Brønsted and Lewis acid properties of the vanadium catalyst afforded 4-hydroxycyclopent-2-enone derivatives in up to 90% yields and with 93 : 7 enantiomeric ratios, as well as >20 : 1 diastereomeric ratios.
Collapse
Affiliation(s)
- Lukas Schober
- Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany.
| | | | | | | | | |
Collapse
|
30
|
Marin L, Force G, Gandon V, Schulz E, Lebœuf D. Aza‐Piancatelli Cyclization as a Platform for the Preparation of Scaffolds of Natural Compounds: Application to the Total Synthesis of Bruceolline D. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000849] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Lucile Marin
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) CNRS UMR 8182 Université Paris‐Saclay Bâtiment 420 91405 Orsay France
| | - Guillaume Force
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) CNRS UMR 8182 Université Paris‐Saclay Bâtiment 420 91405 Orsay France
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) CNRS UMR 8182 Université Paris‐Saclay Bâtiment 420 91405 Orsay France
| | - Emmanuelle Schulz
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) CNRS UMR 8182 Université Paris‐Saclay Bâtiment 420 91405 Orsay France
| | - David Lebœuf
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS) CNRS UMR 7006 Université de Strasbourg 8 allée Gaspard Monge 67000 Strasbourg France
| |
Collapse
|
31
|
Shen B, He Q, Dong S, Liu X, Feng X. A chiral cobalt(ii) complex catalyzed enantioselective aza-Piancatelli rearrangement/Diels-Alder cascade reaction. Chem Sci 2020; 11:3862-3867. [PMID: 34122854 PMCID: PMC8152720 DOI: 10.1039/d0sc00542h] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A chiral N,N′-dioxide/cobalt(ii) complex catalyzed highly diastereoselective and enantioselective tandem aza-Piancatelli rearrangement/intramolecular Diels–Alder reaction has been disclosed. Various valuable hexahydro-2a,5-epoxycyclopenta[cd]isoindoles bearing six contiguous stereocenters have been obtained in good yields with excellent diastereo- and enantio-selectivities from a wide range of both readily available 2-furylcarbinols and N-(furan-2-ylmethyl)anilines. An asymmetric aza-Piancatelli rearrangement/Diels–Alder cascade reaction between 2-furylcarbinols and N-(furan-2-ylmethyl)anilines was realized by using a chiral N,N′-dioxide/cobalt(ii) complex catalyst.![]()
Collapse
Affiliation(s)
- Bin Shen
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Qianwen He
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Shunxi Dong
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| |
Collapse
|
32
|
|
33
|
Wang S, Guillot R, Carpentier J, Sarazin Y, Bour C, Gandon V, Lebœuf D. Synthesis of Bridged Tetrahydrobenzo[
b
]azepines and Derivatives through an Aza‐Piancatelli Cyclization/Michael Addition Sequence. Angew Chem Int Ed Engl 2019; 59:1134-1138. [DOI: 10.1002/anie.201911761] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/29/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Shengdong Wang
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) CNRS UMR 8182 Université Paris-Sud Université Paris-Saclay Bâtiment 420 91405 Orsay France
| | - Régis Guillot
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) CNRS UMR 8182 Université Paris-Sud Université Paris-Saclay Bâtiment 420 91405 Orsay France
| | | | - Yann Sarazin
- Univ Rennes CNRS UMR 6226 ISCR (Institut des Sciences Chimiques de Rennes) 35000 Rennes France
| | - Christophe Bour
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) CNRS UMR 8182 Université Paris-Sud Université Paris-Saclay Bâtiment 420 91405 Orsay France
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) CNRS UMR 8182 Université Paris-Sud Université Paris-Saclay Bâtiment 420 91405 Orsay France
| | - David Lebœuf
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) CNRS UMR 8182 Université Paris-Sud Université Paris-Saclay Bâtiment 420 91405 Orsay France
| |
Collapse
|
34
|
Wang S, Guillot R, Carpentier J, Sarazin Y, Bour C, Gandon V, Lebœuf D. Synthesis of Bridged Tetrahydrobenzo[
b
]azepines and Derivatives through an Aza‐Piancatelli Cyclization/Michael Addition Sequence. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201911761] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Shengdong Wang
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) CNRS UMR 8182 Université Paris-Sud Université Paris-Saclay Bâtiment 420 91405 Orsay France
| | - Régis Guillot
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) CNRS UMR 8182 Université Paris-Sud Université Paris-Saclay Bâtiment 420 91405 Orsay France
| | | | - Yann Sarazin
- Univ Rennes CNRS UMR 6226 ISCR (Institut des Sciences Chimiques de Rennes) 35000 Rennes France
| | - Christophe Bour
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) CNRS UMR 8182 Université Paris-Sud Université Paris-Saclay Bâtiment 420 91405 Orsay France
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) CNRS UMR 8182 Université Paris-Sud Université Paris-Saclay Bâtiment 420 91405 Orsay France
| | - David Lebœuf
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) CNRS UMR 8182 Université Paris-Sud Université Paris-Saclay Bâtiment 420 91405 Orsay France
| |
Collapse
|
35
|
Rabasa-Alcañiz F, Sánchez-Roselló M, Fustero S, Del Pozo C. Tandem Organocatalytic Cycloaromatization/Intramolecular Friedel-Crafts Alkylation Sequence for the Synthesis of Indolizinones and Pyrrolo-azepinone Derivatives. J Org Chem 2019; 84:10785-10795. [PMID: 31329441 DOI: 10.1021/acs.joc.9b01314] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The organocatalytic synthesis of indolizinones and pyrrolo-azepinones has been accomplished in a tandem fashion through a sequence that comprises initial cycloaromatization followed by intramolecular Friedel-Crafts alkylation. The process takes place under Brønsted acid catalysis, giving rise to final products in moderate to good yields. Attempts to carry out the tandem protocol in an enantioselective fashion were performed with chiral (R)-BINOL-derived N-triflyl phosphoramides. After initial optimization, the tandem process took place with moderate levels of enantioselectivity.
Collapse
Affiliation(s)
| | - María Sánchez-Roselló
- Departamento de Química Orgánica , Universidad de Valencia , 46100 Burjassot , Spain
| | - Santos Fustero
- Departamento de Química Orgánica , Universidad de Valencia , 46100 Burjassot , Spain.,Laboratorio de Moléculas Orgánicas , Centro de Investigación Príncipe Felipe , 46012 Valencia , Spain
| | - Carlos Del Pozo
- Departamento de Química Orgánica , Universidad de Valencia , 46100 Burjassot , Spain
| |
Collapse
|
36
|
Wei Z, Zhang J, Yang H, Jiang G. Brønsted Acid‐Catalyzed Asymmetric Ring‐Closing Alkylation of Inert N‐substituted Pyrroles with α, β‐Unsaturated Ketones. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900546] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zhao Wei
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Su-zhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP)Chinese Academy of Sciences Lan-zhou 730000 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Jinlong Zhang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Su-zhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP)Chinese Academy of Sciences Lan-zhou 730000 People's Republic of China
| | - Huameng Yang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Su-zhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP)Chinese Academy of Sciences Lan-zhou 730000 People's Republic of China
| | - Gaoxi Jiang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Su-zhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP)Chinese Academy of Sciences Lan-zhou 730000 People's Republic of China
| |
Collapse
|
37
|
Gouse S, Reddy NR, Baskaran S. A Domino Aza-Piancatelli Rearrangement/Intramolecular Diels–Alder Reaction: Stereoselective Synthesis of Octahydro-1H-cyclopenta[cd]isoindole. Org Lett 2019; 21:3822-3827. [DOI: 10.1021/acs.orglett.9b01267] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Shaik Gouse
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Narra Rajashekar Reddy
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Sundarababu Baskaran
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|