1
|
Zhang P, Xu S, Wang S, Zhang XJ, Yan M. Solvent-Controlled Rh(III)-Catalyzed Mono- and Dual Functionalization of Quinolyl Aldoximes with Diazo Compounds. J Org Chem 2024; 89:17310-17320. [PMID: 39540686 DOI: 10.1021/acs.joc.4c01896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
A solvent-controlled Rh(III)-catalyzed mono- and dual-C-H bond activation/carbene migratory insertion with diazo compounds as a single coupling partner was demonstrated. The reaction proceeded under mild conditions, yielding products in good to excellent yields. These results are significant for the development of the domino multiple functionalization of C(sp2)-H bonds via a carbenoid insertion approach.
Collapse
Affiliation(s)
- Peng Zhang
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Shan Xu
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - ShihaoZhi Wang
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xue-Jing Zhang
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ming Yan
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
2
|
Olu-Igbiloba OA, Sitzmann H, Manolikakes G. Merging Cobalt-Catalyzed C-H Activation with the Mannich Reaction: A Modular Approach to α-Substituted N-Sulfonyl Amines. J Org Chem 2024; 89:6903-6914. [PMID: 38698761 DOI: 10.1021/acs.joc.4c00271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
A three-component synthesis of α-substituted N-sulfonyl amines from aryl aldehydes, primary sulfonamides, and (hetero)arenes is described. This transformation enables a straightforward and modular synthesis of highly substituted sulfonamide scaffolds in good yields. The direct functionalization of C(sp2)-H bonds via cobalt-catalyzed C-H-activation offers an appealing and atom-economical alternative to classical methods for the synthesis of α-arylated amines such as the Petasis or Mannich-type reactions.
Collapse
Affiliation(s)
| | - Helmut Sitzmann
- Department of Chemistry, RPTU Kaiserslautern-Landau, D-67663 Kaiserslautern, Germany
| | - Georg Manolikakes
- Department of Chemistry, RPTU Kaiserslautern-Landau, D-67663 Kaiserslautern, Germany
| |
Collapse
|
3
|
Mo B, Chen C, Peng J. CuI-catalyzed synthesis of multisubstituted pyrido[1,2- a]pyrimidin-4-ones through tandem Ullmann-type C-N cross-coupling and intramolecular amidation reaction. RSC Adv 2023; 13:24264-24271. [PMID: 37583662 PMCID: PMC10424054 DOI: 10.1039/d3ra04454h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 07/31/2023] [Indexed: 08/17/2023] Open
Abstract
Various multi-substituted pyrido[1,2-a]pyrimidin-4-ones were synthesized via a one-pot tandem CuI-catalyzed C-N bond formation/intramolecular amidation reaction at 130 °C in DMF. This protocol features simple operation, broad substrate scope, good functional group tolerance and gram scale preparation, thus allowing practical and modular synthesis of pyrido[1,2-a]pyrimidin-4-ones from readily available 2-halopyridine and (Z)-3-amino-3-arylacrylate ester in good to excellent yields.
Collapse
Affiliation(s)
- Baichuan Mo
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University No. 26 Hexing Road Harbin 150040 P. R. China
- Material Science and Engineering College, Northeast Forestry University No. 26 Hexing Road Harbin 150040 P. R. China
| | - Chunxia Chen
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University No. 26 Hexing Road Harbin 150040 P. R. China
- Material Science and Engineering College, Northeast Forestry University No. 26 Hexing Road Harbin 150040 P. R. China
| | - Jinsong Peng
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University No. 26 Hexing Road Harbin 150040 P. R. China
| |
Collapse
|
4
|
Shi J, Wang Z, Teng X, Zhang B, Sun K, Wang X. Electro-Oxidative C3-Selenylation of Pyrido[1,2- a]pyrimidin-4-ones. Molecules 2023; 28:molecules28052206. [PMID: 36903450 PMCID: PMC10005275 DOI: 10.3390/molecules28052206] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
In this work, we achieved a C3-selenylation of pyrido[1,2-a]pyrimidin-4-ones using an electrochemically driven external oxidant-free strategy. Various structurally diverse seleno-substituted N-heterocycles were obtained in moderate to excellent yields. Through radical trapping experiments, GC-MS analysis and cyclic voltammetry study, a plausible mechanism for this selenylation was proposed.
Collapse
Affiliation(s)
- Jianwei Shi
- School of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, China
| | - Zhichuan Wang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Xiaoxu Teng
- School of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, China
| | - Bing Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- Correspondence: (B.Z.); (X.W.)
| | - Kai Sun
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Xin Wang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
- Correspondence: (B.Z.); (X.W.)
| |
Collapse
|
5
|
Zoll AJ, Molas JC, Mercado BQ, Ellman JA. Imine Directed Cp*Rh III -Catalyzed N-H Functionalization and Annulation with Amino Amides, Aldehydes, and Diazo Compounds. Angew Chem Int Ed Engl 2023; 62:e202210822. [PMID: 36331194 PMCID: PMC9805510 DOI: 10.1002/anie.202210822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Indexed: 11/06/2022]
Abstract
A multicomponent annulation that proceeds by imine directed Cp*RhIII -catalyzed N-H functionalization is disclosed. The transformation affords piperazinones displaying a range of functionality and is the first example of transition metal-catalyzed multicomponent N-H functionalization. A broad range of readily available α-amino amides, including those derived from glycine, α-substituted, and α,α-disubstituted amino acids, were effective inputs and enabled the incorporation of a variety of amino acid side chains with minimal racemization. Branched and unbranched alkyl aldehydes and various stabilized diazo compounds were also efficient reactants. The piperazinone products were further modified through efficient transformations. Mechanistic studies, including X-ray crystallographic characterization of a catalytically competent five-membered rhodacycle with imine and amide nitrogen chelation, provide support for the proposed mechanism.
Collapse
Affiliation(s)
| | | | - Brandon Q. Mercado
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, CT 06520 (USA)
| | - Jonathan A. Ellman
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, CT 06520 (USA)
| |
Collapse
|
6
|
Zeng C, He Y, Li Q, Dong L. Ir(III)-Catalyzed Novel Three-Component Cascade Trifluoroethoxylation and One-Pot Method to Construct Complex Amide Compounds. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202210033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
7
|
Motiwala HF, Armaly AM, Cacioppo JG, Coombs TC, Koehn KRK, Norwood VM, Aubé J. HFIP in Organic Synthesis. Chem Rev 2022; 122:12544-12747. [PMID: 35848353 DOI: 10.1021/acs.chemrev.1c00749] [Citation(s) in RCA: 213] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
1,1,1,3,3,3-Hexafluoroisopropanol (HFIP) is a polar, strongly hydrogen bond-donating solvent that has found numerous uses in organic synthesis due to its ability to stabilize ionic species, transfer protons, and engage in a range of other intermolecular interactions. The use of this solvent has exponentially increased in the past decade and has become a solvent of choice in some areas, such as C-H functionalization chemistry. In this review, following a brief history of HFIP in organic synthesis and an overview of its physical properties, literature examples of organic reactions using HFIP as a solvent or an additive are presented, emphasizing the effect of solvent of each reaction.
Collapse
Affiliation(s)
- Hashim F Motiwala
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Ahlam M Armaly
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Jackson G Cacioppo
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Thomas C Coombs
- Department of Chemistry, University of North Carolina Wilmington, Wilmington, North Carolina 28403 United States
| | - Kimberly R K Koehn
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Verrill M Norwood
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Jeffrey Aubé
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| |
Collapse
|
8
|
Li H, Gu H, Lu Y, Xu N, Han N, Li J, Liu J, Liu J. Synthesis of Tetrahydrocarbazol-4-ones via Rh(III)-Catalyzed C-H Activation/Annulation of Arylhydrazines with Iodonium Ylides. J Org Chem 2022; 87:8142-8150. [PMID: 35675060 DOI: 10.1021/acs.joc.2c00852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The rhodium(III)-catalyzed C-H activation followed by intramolecular annulation reactions between arylhydrazines and iodonium ylides under suitable conditions has been described. Tetrahydrocarbazol-4-ones are readily achieved with moderate to excellent yields. The synthetic protocol features a wide range of substrates with high functional group tolerance. The gram-scale reaction and derivatization of the product demonstrate the synthetic practicality and utilization of this method.
Collapse
Affiliation(s)
- He Li
- College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Haichun Gu
- College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Ye Lu
- College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China.,Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), Inner Mongolia Minzu University, Tongliao 028000, China
| | - Ning Xu
- College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Narenchaoketu Han
- College of Traditional Mongolian Medicine, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Jiaqi Li
- College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Jinghai Liu
- College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China.,Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), Inner Mongolia Minzu University, Tongliao 028000, China
| | - Jinglin Liu
- College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China.,Inner Mongolia Key Laboratory for the Natural Products Chemistry and Functional Molecular Synthesis, Inner Mongolia Minzu University, Tongliao 028000, China
| |
Collapse
|
9
|
Suleman M, Qi M, Xie J, Lu P, Wang Y. Rh(III)-catalyzed C-H bond activation/annulation reactions of arylacyl ammonium salts with 4-diazoisochroman-3-imines and 4-diazoisoquinolin-3-ones. Org Biomol Chem 2022; 20:1900-1906. [DOI: 10.1039/d1ob02405a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a C-H bond functionalization strategy for the construction of oxo- and aza-spirocyclic compounds from diazo compounds as coupling partners. Our method comprises ortho sp2 C-H bond activation of...
Collapse
|
10
|
He Y, Zheng J, Dong L. Rh(III)-Catalyzed Cascade Annulation to Produce N-acetyl Chain of Spiropyrroloisoquinoline Derivatives. Org Biomol Chem 2022; 20:2293-2299. [PMID: 35234789 DOI: 10.1039/d2ob00137c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new rhodium(III)-catalyzed three-component multistep cascade spirocyclization approach was developed to synthesize nolvel N-acetyl chain of spiropyrroloisoquinoline derivatives using oxadiazoles as the directing group. This one-pot reaction also isolates aryloxadiazole...
Collapse
Affiliation(s)
- Yuan He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Jing Zheng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Lin Dong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
11
|
Bakulina O, Inyutina A, Dar’in D, Krasavin M. Multicomponent Reactions Involving Diazo Reagents: A 5-Year Update. Molecules 2021; 26:6563. [PMID: 34770972 PMCID: PMC8587191 DOI: 10.3390/molecules26216563] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 01/18/2023] Open
Abstract
This review summarizes recent developments in multicomponent reactions of diazo compounds. The role of diazo reagent and the type of interaction between components was analyzed to structure the discussion. In contrast to previous reviews on related topics mostly focused on metal catalyzed transformations, a substantial amount of organocatalytic or catalyst-free methodologies is covered in this work.
Collapse
Affiliation(s)
- Olga Bakulina
- Institute of Chemistry, St. Petersburg State University, 26 Universitetskii Pr., 198504 Peterhof, Russia; (A.I.); (D.D.)
| | | | | | - Mikhail Krasavin
- Institute of Chemistry, St. Petersburg State University, 26 Universitetskii Pr., 198504 Peterhof, Russia; (A.I.); (D.D.)
| |
Collapse
|
12
|
Jha N, Khot NP, Kapur M. Transition-Metal-Catalyzed C-H Bond Functionalization of Arenes/Heteroarenes via Tandem C-H Activation and Subsequent Carbene Migratory Insertion Strategy. CHEM REC 2021; 21:4088-4122. [PMID: 34647679 DOI: 10.1002/tcr.202100193] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/20/2022]
Abstract
The past decade has witnessed tremendous developments in transition-metal-catalyzed C-H bond activation and subsequent carbene migratory insertion reactions, thus assisting in the construction of diverse arene/heteroarene scaffolds. Various transition-metal catalysts serve this purpose and provide efficient pathways for an easy access to substituted heterocycles. A brief introduction to metal-carbenes has been provided along with key mechanistic pathways underlying the coupling reactions. The purpose of this review is to provide a concise knowledge about diverse directing group-assisted coupling of varied arenes/heteroarenes and acceptor-acceptor/donor-acceptor diazo compounds. The review also highlights the synthesis of various carbocycles and fused heterocycles through diazo insertion pathways, via C-C, C-N and C-O bond forming reactions. The mechanism usually involves a C-H activation process, followed by diazo insertion leading to subsequent coupling.
Collapse
Affiliation(s)
- Neha Jha
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhauri, Bhopal, 462066, Madhya Pradesh, India
| | - Nandkishor Prakash Khot
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhauri, Bhopal, 462066, Madhya Pradesh, India
| | - Manmohan Kapur
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhauri, Bhopal, 462066, Madhya Pradesh, India
| |
Collapse
|
13
|
Chen L, Huang R, Yun XH, Hao TH, Yan SJ. Multi-component cascade reaction of 3-formylchromones: highly selective synthesis of 4,5-dihydro-[4,5'-bipyrimidin]-6(1 H)-one derivatives. Chem Commun (Camb) 2021; 57:7657-7660. [PMID: 34254066 DOI: 10.1039/d1cc02437j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A novel protocol for the construction of highly functionalized bipyrimidine derivatives 4 and 5 from 3-formyl-chromones, ethyl 2-(pyridine-2-yl)acetate derivatives, and amidine hydrochlorides via an interesting and considerably complex multi-component cascade reaction was developed. The cascade reaction was manifested by refluxing a mixture of the three substrates in acetonitrile or DMF along with Cs2CO3. A series of 4,5-dihydro-[4,5'-bipyrimidin]-6(1H)-ones (DBPMOs) 4 was constructed regioselectively in suitable to excellent yields. Moreover, intermediates 4 then underwent a novel, metal- and oxidant-free cascade reaction to produce a series of [4,5'-bipyrimidin]-6(1H)-ones (BPMOs) 5. The formation of the bipyrimidine derivatives 4-5 was enabled by the formation of five bonds and the cleavage of one bond in one pot. This protocol can be used in the synthesis of functionalized bipyrimidine derivatives via a multi-component one-pot cascade reaction rather than multi-step reactions, which is suitable for both combinatorial and parallel syntheses of bipyrimidine derivatives.
Collapse
Affiliation(s)
- Li Chen
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China.
| | - Rong Huang
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China.
| | - Xing-Han Yun
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China.
| | - Tian-Hui Hao
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China.
| | - Sheng-Jiao Yan
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China.
| |
Collapse
|
14
|
Kumar S, Nunewar S, Oluguttula S, Nanduri S, Kanchupalli V. Recent advances in Rh(iii)/Ir(iii)-catalyzed C–H functionalization/annulation via carbene migratory insertion. Org Biomol Chem 2021; 19:1438-1458. [DOI: 10.1039/d0ob02309d] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The review highlighted diverse annulations, including nitrogen, oxygen, sulfur heterocycles and carbocylizations via Rh(iii)/Ir(iii)-catalyzed C–H functionalization/annulation with various arene and carbene precursors.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Department of Process Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- Hyderabad 500 037
- India
| | - Saiprasad Nunewar
- Department of Process Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- Hyderabad 500 037
- India
| | - Srilekha Oluguttula
- Department of Process Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- Hyderabad 500 037
- India
| | - Srinivas Nanduri
- Department of Process Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- Hyderabad 500 037
- India
| | - Vinaykumar Kanchupalli
- Department of Process Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- Hyderabad 500 037
- India
| |
Collapse
|
15
|
Chen Q, Chen S, Wu H, Zeng X, Chen W, Sun G, Wang Z. Application of 2-Aminopyridines in the Synthesis of Five- and Six-Membered Azaheterocycles. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202104011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Liu H, Lin ML, Chen YJ, Huang YH, Dong L. Rh( iii)-Catalyzed one-pot three-component cyclization reaction: rapid selective synthesis of monohydroxy polycyclic BINOL derivatives. Org Chem Front 2021. [DOI: 10.1039/d1qo00779c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Rh(iii)-catalyzed three-component C–H bond functionalization protocol has been successfully applied to access complex polycyclic BINOL derivatives in which the formation of intermediate amides occurred in situ from aldehydes and amines.
Collapse
Affiliation(s)
- Hao Liu
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Meng-Ling Lin
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yin-Jun Chen
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yin-Hui Huang
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Lin Dong
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
17
|
Confair DN, Greenwood NS, Mercado BQ, Ellman JA. Rh(III)-Catalyzed Imidoyl C-H Carbamylation and Cyclization to Bicyclic [1,3,5]Triazinones. Org Lett 2020; 22:8993-8997. [PMID: 33172274 DOI: 10.1021/acs.orglett.0c03393] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A Rh(III)-catalyzed synthesis of bicyclic [1,3,5]triazinones from a diverse array of imines coupled with ethyl (pivaloyloxy)carbamate is reported. The preparation of [5,6]- and [6,6]-bicyclic heterocycles substituted with aryl, alkyl, and alkoxy groups demonstrated a broad reaction scope. The efficiency of this approach was further enhanced with the development of a three-component variant featuring in situ imine formation. X-ray crystallographic characterization of a rhodacycle formed by imidoyl C-H activation provides support for the proposed mechanism.
Collapse
Affiliation(s)
- Danielle N Confair
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Nathaniel S Greenwood
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Brandon Q Mercado
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Jonathan A Ellman
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
18
|
Ning Y, He X, Zuo Y, Wang J, Tang Q, Xie M, Li R, Shang Y. Rh-Catalyzed C-H activation/intramolecular condensation for the construction of benzo[f]pyrazolo[1,5-a][1,3]diazepines. Org Biomol Chem 2020; 18:2893-2901. [PMID: 32236225 DOI: 10.1039/d0ob00382d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A novel and mild Rh(iii)-catalyzed C-H activation/intramolecular condensation of 1-aryl-1H-pyrazol-5-amines with cyclic 2-diazo-1,3-diketones was developed, giving access to various important benzo[f]pyrazolo[1,5-a][1,3]diazepine scaffolds through sequential C-C/C-N bond formation in a one-pot procedure under additive- and oxidant-free conditions. Furthermore, 3-([1,1'-biphenyl]-2-ylamino)-2-ethoxycyclohex-2-enones can be obtained in good yields by constructing C-O and C-N bonds through 1,1'-insertion, dehydration, and isomerization processes.
Collapse
Affiliation(s)
- Yi Ning
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| | - Xinwei He
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| | - Youpeng Zuo
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| | - Jian Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| | - Qiang Tang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| | - Mengqing Xie
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| | - Ruxue Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| |
Collapse
|
19
|
Pal K, Adak S, Dey A, Volla CMR. Rh(III)‐Catalyzed Denitrogenative [4+2] Annulation of Benzamides and 3‐Diazoindolin‐2‐imines: Expedient Access to Indolo[2,3‐
c
] isoquinolin‐5‐ones. Chem Asian J 2020; 15:1052-1056. [DOI: 10.1002/asia.202000096] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/20/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Kuntal Pal
- Department of ChemistryIndian Institute of Technology Bombay Powai, Mumbai 400076 India
| | - Souvik Adak
- Department of ChemistryIndian Institute of Technology Bombay Powai, Mumbai 400076 India
| | - Arnab Dey
- Department of ChemistryIndian Institute of Technology Bombay Powai, Mumbai 400076 India
| | - Chandra M. R. Volla
- Department of ChemistryIndian Institute of Technology Bombay Powai, Mumbai 400076 India
| |
Collapse
|
20
|
Streit AD, Zoll AJ, Hoang GL, Ellman JA. Annulation of Hydrazones and Alkynes via Rhodium(III)-Catalyzed Dual C-H Activation: Synthesis of Pyrrolopyridazines and Azolopyridazines. Org Lett 2020; 22:1217-1221. [PMID: 31977232 DOI: 10.1021/acs.orglett.0c00186] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hydrazones readily synthesized from N-aminopyrroles or N-aminoazoles and aldehydes undergo Rh(III)-catalyzed dual C-H activation and coupling with aryl- and alkyl-substituted alkynes to give pyrrolopyridazines or azolopyridazines, respectively. This transformation represents a rare example of hydrazoyl C-H activation and proceeds without heteroatom functionality to direct C-H activation. Hydrazones derived from aromatic, alkenyl, and aliphatic aldehydes were effective inputs, and tethering the alkyne to the hydrazone enabled annulations to more complex, tricyclic products.
Collapse
Affiliation(s)
- Andrew D Streit
- Department of Chemistry , Yale University , 225 Prospect Street , New Haven , Connecticut 06520 , United States
| | - Adam J Zoll
- Department of Chemistry , Yale University , 225 Prospect Street , New Haven , Connecticut 06520 , United States
| | - Gia L Hoang
- Department of Chemistry , Yale University , 225 Prospect Street , New Haven , Connecticut 06520 , United States
| | - Jonathan A Ellman
- Department of Chemistry , Yale University , 225 Prospect Street , New Haven , Connecticut 06520 , United States
| |
Collapse
|
21
|
Shilpa T, Dhanya R, Saranya S, Anilkumar G. An Overview of Rhodium‐Catalysed Multi‐Component Reactions. ChemistrySelect 2020. [DOI: 10.1002/slct.201904441] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Thomas Shilpa
- School of Chemical Sciences Mahatma Gandhi University, Priyadarsini Hills P O, Kottayam Kerala INDIA 686560
| | - Raju Dhanya
- School of Chemical Sciences Mahatma Gandhi University, Priyadarsini Hills P O, Kottayam Kerala INDIA 686560
| | - Salim Saranya
- School of Chemical Sciences Mahatma Gandhi University, Priyadarsini Hills P O, Kottayam Kerala INDIA 686560
| | - Gopinathan Anilkumar
- School of Chemical Sciences Mahatma Gandhi University, Priyadarsini Hills P O, Kottayam Kerala INDIA 686560
- Advanced Molecular Materials Research Centre (AMMRC), Mahatma Gandhi University, Priyadarsini Hills P O, Kottayam Kerala INDIA 686560
| |
Collapse
|
22
|
Xavier T, Rayapin C, Le Gall E, Presset M. Multicomponent Aromatic and Benzylic Mannich Reactions through C-H Bond Activation. Chemistry 2019; 25:13824-13828. [PMID: 31411357 DOI: 10.1002/chem.201903414] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/13/2019] [Indexed: 12/19/2022]
Abstract
Multicomponent Mannich reactions through C-H bond activation are described. These transformations allowed for the straightforward generation of densely substituted benzylic and homo-benzylic amines in good yields. The reaction involves a reaction between two transient species: an organometallic species, generated by transition-metal-catalyzed sp2 or sp3 C-H bond activation and an in situ generated imine. The use of an acetal as an aldehyde surrogate was found essential for the reaction to proceed. The process could be successfully applied to RhIII -catalyzed sp2 C-H bond functionalization and extended to CuII -catalyzed sp3 C-H bond functionalization.
Collapse
Affiliation(s)
- Tania Xavier
- Électrochimie et Synthèse Organique, Université Paris Est, ICMPE (UMR 7182), CNRS, UPEC, 2-8 rue Henri Dunant, 94320, Thiais, France
| | - Corinne Rayapin
- Électrochimie et Synthèse Organique, Université Paris Est, ICMPE (UMR 7182), CNRS, UPEC, 2-8 rue Henri Dunant, 94320, Thiais, France
| | - Erwan Le Gall
- Électrochimie et Synthèse Organique, Université Paris Est, ICMPE (UMR 7182), CNRS, UPEC, 2-8 rue Henri Dunant, 94320, Thiais, France
| | - Marc Presset
- Électrochimie et Synthèse Organique, Université Paris Est, ICMPE (UMR 7182), CNRS, UPEC, 2-8 rue Henri Dunant, 94320, Thiais, France
| |
Collapse
|
23
|
Liu Z, Zhang W, Guo S, Zhu J. Spiro[indene-1,4'-oxa-zolidinones] Synthesis via Rh(III)-Catalyzed Coupling of 4-Phenyl-1,3-oxazol-2(3 H)-ones with Alkynes: A Redox-Neutral Approach. J Org Chem 2019; 84:11945-11957. [PMID: 31436097 DOI: 10.1021/acs.joc.9b01804] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Transition-metal-catalyzed C-H activation synthesis of heterocyclic spiro[4,4]nonanes has persistently witnessed the use of additional stoichiometric transition-metal oxidant when employing C═C bond as the spiro ring closure site. Herein, we have addressed the issue by reporting a redox-neutral strategy for spiro[indene-1,4'-oxa-zolidinones] synthesis via Rh(III)-catalyzed coupling of 4-phenyl-1,3-oxazol-2(3H)-ones with alkynes. The synthesis features a broad substrate scope and high regiospecificity.
Collapse
Affiliation(s)
- Zhongsu Liu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures , Nanjing University , Nanjing 210023 , China
| | - Wenjing Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures , Nanjing University , Nanjing 210023 , China
| | - Shan Guo
- School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures , Nanjing University , Nanjing 210023 , China
| | - Jin Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures , Nanjing University , Nanjing 210023 , China
| |
Collapse
|
24
|
Zhou C, Jiang J, Wang J. Three-Component Synthesis of Isoquinoline Derivatives by a Relay Catalysis with a Single Rhodium(III) Catalyst. Org Lett 2019; 21:4971-4975. [DOI: 10.1021/acs.orglett.9b01456] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chao Zhou
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Jijun Jiang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Jun Wang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| |
Collapse
|