1
|
Pan Y, Qi Z, Li W, Huang J, Huang Y, An Z, Liu Y. Electrooxidation-induced arylsulfonylation of xanthene derivatives with DABSO as an SO 2 surrogate. Org Biomol Chem 2025; 23:5081-5085. [PMID: 40343759 DOI: 10.1039/d5ob00155b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
An electrochemical redox C(sp3)-H arylsulfonylation of xanthenes has been developed using aryl diazonium tetrafluoroborates and DABSO as the arylsulfone source. This radical reaction proceeds via the formation of arylsulfonyl radicals from the reaction between aryl diazonium tetrafluoroborates and DABSO, followed by a radical cross-coupling process. Notably, the reaction occurs in the absence of any catalyst or external oxidant, providing efficient sulfonylation of xanthenes with broad functional group compatibility.
Collapse
Affiliation(s)
- Yi Pan
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China.
| | - Zhenjie Qi
- School of Resource & Environment and Safety Engineering, Jining University, Qufu 273100, Shandong, China
| | - Wenxue Li
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China.
| | - Jingbin Huang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China.
| | - Yu Huang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China.
| | - Zhenyu An
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China.
| | - Yafeng Liu
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750000, Ningxia, China.
| |
Collapse
|
2
|
Yadav MK, Chowdhury S. Recent advances in the electrochemical functionalization of N-heterocycles. Org Biomol Chem 2025; 23:506-545. [PMID: 39564858 DOI: 10.1039/d4ob01187b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Nitrogen-containing heterocyclic cores are of immense importance due to their high abundance in naturally occurring or synthetic molecules having wide applications in different fields of basic and applied sciences. The functionalities introduced in an N-heterocyclic core play an important role in regulating the physiochemical behavior of the particular N-heterocycles to alter their chemical and biological reactivity. Suitably functionalized N-heterocycles demonstrate their widespread applications in pharmaceuticals, agronomy, materials sciences, synthetic chemistry, pigments, etc. During the last decade, electrochemistry has emerged as a sustainable alternative to conventional synthetic approaches by minimizing reagent uses and chemical waste. Synthetic chemists have extensively utilized the tool to functionalize N-heterocycles. This is evidenced by the appearance of more than a hundred methods on the topic over recent years, signifying the importance of the synthetic area. This review is focused on the accumulation of synthetic methods based on the electrochemical functionalization of N-heterocycles developed over the recent decade. Literature reports on the C-/N-H-functionalization and functional modifications of N-heterocycles that are accessible through the available search engines are included in the review. Relevant mechanistic details in support of the reported reactions are discussed to present a clear picture of the reaction pathways. The review aims to provide a clear picture of the possible pathways of electron transfer, the electrochemical behavior of different N-heterocyclic cores, functionalization reagents, and the chemical processes that occur during the electrochemical functionalization/modification of N-heterocycles.
Collapse
Affiliation(s)
- Manoj Kumar Yadav
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India
| | - Sushobhan Chowdhury
- University School of Automation and Robotics, Guru Gobind Singh Indraprastha University, East Delhi Campus, Patel Street, Vishwas Nagar Extension, Shahdara, Delhi-110032, India.
| |
Collapse
|
3
|
Singh P, König B, Shaikh AC. Electro-photochemical Functionalization of C(sp 3)-H bonds: Synthesis toward Sustainability. JACS AU 2024; 4:3340-3357. [PMID: 39328771 PMCID: PMC11423327 DOI: 10.1021/jacsau.4c00496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024]
Abstract
Over the past several decades, there has been a surge of interest in harnessing the functionalization of C(sp3)-H bonds due to their promising applications across various domains. Yet, traditional methodologies have heavily leaned on stoichiometric quantities of costly and often environmentally harmful metal oxidants, posing sustainability challenges for C-H activation chemistry at large. In stark contrast, the emergence of electro-photocatalytic-driven C(sp3)-H bond activation presents a transformative alternative. This approach offers a viable route for forging carbon-carbon and carbon-heteroatom bonds. It stands out by directly engaging inert C(sp3)-H bonds, prevalent in organic compounds, without the necessity for prefunctionalization or harsh reaction conditions. Such methodology simplifies the synthesis of intricate organic compounds and facilitates the creation of novel chemical architectures with remarkable efficiency and precision. This review aims to shed light on the notable strides achieved in recent years in the realm of C(sp3)-H bond functionalization through organic electro-photochemistry.
Collapse
Affiliation(s)
- Puja Singh
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab-140001, India
| | - Burkhard König
- Institute of Organic Chemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Aslam C Shaikh
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab-140001, India
| |
Collapse
|
4
|
Thai JE, Roach MC, Reynolds MM. Continuous flow catalysis with CuBTC improves reaction time for synthesis of xanthene derivatives. Front Chem 2023; 11:1259835. [PMID: 37908233 PMCID: PMC10613637 DOI: 10.3389/fchem.2023.1259835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/04/2023] [Indexed: 11/02/2023] Open
Abstract
The copper-based metal-organic framework (MOF) CuBTC (where H3BTC = benzene-1,3,5-tricarboxylate) has been shown to be an efficient heterogeneous catalyst for the generation of 1,8-dioxo-octa-hydro xanthene derivatives, which are valuable synthetic targets for the pharmaceutical industry. We have applied this catalytic capability of CuBTC to a continuous flow system to produce the open chain form of 3,3,6,6-tetramethyl-9-phenyl-3,4,5,6,7,9-hexahydro-1H-xanthene-1,8(2H)-dione, a xanthene derivative from benzaldehyde and dimedone. An acid work-up after producing the open chain form of the xanthene derivative was used to achieve ring closure and form the final xanthene product. The CuBTC used to catalyze the reaction under continuous flow was confirmed to be stable throughout this process via analysis by SEM, pXRD, and FT-IR spectroscopy, elemental analysis, and XPS. The reaction to produce the open-chain form of the xanthene derivative produced an average yield of 33% ± 14% under the continuous flow (compared to 33% ± 0.12% of performing it under batch conditions). Based on the data obtained from this work, the continuous flow system required 22.5x less time to produce the desired xanthene derivative at comparable yields to batch reaction conditions. These results would allow for the xanthene derivative to be produced much faster, at a lower cost, and require less personal time while also removing the need to perform catalyst remove post reaction.
Collapse
Affiliation(s)
- Jonathan E. Thai
- Department of Chemistry, Colorado State University, Fort Collins, CO, United States
| | - Madeline C. Roach
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, United States
| | - Melissa M. Reynolds
- Department of Chemistry, Colorado State University, Fort Collins, CO, United States
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, United States
- Dapartment of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
5
|
Wang C, Yang N, Li C, He J, Li H. Tuning Benzylic C-H Functionalization of (Thio)xanthenes with Electrochemistry. Molecules 2023; 28:6139. [PMID: 37630392 PMCID: PMC10459638 DOI: 10.3390/molecules28166139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Here, we report a tunable electrochemical benzylic C-H functionalization of (thio)xanthenes with terminal alkynes and nitriles in the absence of any catalyst or external chemical oxidant. The benzylic C-H functionalization can be well controlled by varying the electrochemical conditions, affording the specific coupling products via C-C and C-N bond formation.
Collapse
Affiliation(s)
- Changji Wang
- School of Chemical Engineering, Anhui University of Science and Technology, 168 Taifeng Road, Huainan 232001, China
| | - Na Yang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, China; (N.Y.); (C.L.)
| | - Chao Li
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, China; (N.Y.); (C.L.)
| | - Jian He
- Hefei New Online Technology Co., Ltd., Hefei 235000, China;
| | - Hongji Li
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, China; (N.Y.); (C.L.)
| |
Collapse
|
6
|
Liu M, Zhu J, Jiang X, Yang X, Chen Q. Visible light irradiated photocatalytic C(sp 3)-H phosphorylation of xanthenes and 9,10-dihydroacridines with P(O)-H compounds. Org Biomol Chem 2023; 21:6488-6492. [PMID: 37526567 DOI: 10.1039/d3ob01053h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Photocatalytic C(sp3)-H phosphorylation of xanthenes and 9,10-dihydroacridines with P(O)-H compounds under the irradiation of 18 W blue LEDs at room temperature using fluorescein as the photocatalyst and molecular oxygen (O2) as the sole oxidant has been achieved. The newly developed reaction provides direct access to 9-phosphorylated xanthene derivatives with good functional group compatibility.
Collapse
Affiliation(s)
- Mingjun Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| | - Jiarui Zhu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| | - Xuming Jiang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| | - Xiangyun Yang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| | - Qian Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
7
|
Das M, Zamani L, Bratcher C, Musacchio PZ. Azolation of Benzylic C-H Bonds via Photoredox-Catalyzed Carbocation Generation. J Am Chem Soc 2023; 145:10.1021/jacs.2c12850. [PMID: 36757817 PMCID: PMC10409882 DOI: 10.1021/jacs.2c12850] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
A visible-light photoredox-catalyzed method is reported that enables the coupling between benzylic C-H substrates and N-H azoles. Classically, medicinally relevant N-benzyl azoles are produced via harsh substitution conditions between the azole and a benzyl electrophile in the presence of strong bases at high temperatures. Use of C-H bonds as the alkylating partner streamlines the preparation of these important motifs. In this work, we report the use of N-alkoxypyridinium salts as a critically enabling reagent for the development of a general C(sp3)-H azolation. The platform enables the alkylation of electron-deficient, -neutral, and -rich azoles with a range of C-H bonds, most notably secondary and tertiary partners. Moreover, the protocol is mild enough to tolerate benzyl electrophiles, thus offering an orthogonal approach to existing SN2 and cross-coupling methods.
Collapse
Affiliation(s)
- Mrinmoy Das
- Department of Chemistry, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, USA
| | - Leila Zamani
- Department of Chemistry, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, USA
| | - Christopher Bratcher
- Department of Chemistry, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, USA
| | - Patricia Z Musacchio
- Department of Chemistry, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, USA
| |
Collapse
|
8
|
Wei B, Zhou Z, Qin J, Yan Z, Guo J, Lei S, Xie Y, Ouyang X, Song R. Electrochemical Oxidative C(sp 3)—H Sulfonylation of Xanthenes with Sodium Sulfinates. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202207012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
9
|
Tong Z, Peng X, Tang Z, Yang W, Deng W, Yin SF, Kambe N, Qiu R. DTBP-mediated cross-dehydrogenative coupling of 3-aryl benzofuran-2(3 H)-ones with toluenes/phenols for all-carbon quaternary centers. RSC Adv 2022; 12:35215-35220. [PMID: 36540229 PMCID: PMC9732748 DOI: 10.1039/d2ra06231c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/02/2022] [Indexed: 12/28/2024] Open
Abstract
We have developed a transition-metal free protocol for efficient cross-dehydrogenative coupling of 3-aryl benzofuran-2(3H)-ones and toluenes/phenols using DTBP as an oxidant. A diverse range of 3-aryl benzofuran-2(3H)-ones, toluenes, and phenols undergo C-H bond cleavage to generate all-carbon quaternary centers in good yields, making this protocol useful for the synthesis of complex molecules. A gram scale experiment was performed in good yield.
Collapse
Affiliation(s)
- Zhou Tong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China
| | - Xinju Peng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China
| | - Zhi Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China
| | - Weijun Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China
| | - Wei Deng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China
| | - Shuang-Feng Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China
| | - Nobuaki Kambe
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China
| | - Renhua Qiu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China
| |
Collapse
|
10
|
Ravindar L, Hasbullah SA, Hassan NI, Qin HL. Cross‐Coupling of C‐H and N‐H Bonds: a Hydrogen Evolution Strategy for the Construction of C‐N Bonds. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lekkala Ravindar
- Universiti Kebangsaan Malaysia Fakulti Teknologi dan Sains Maklumat Chemical Sciences Faculty of Science & Technology 43600 Bandar Baru Bangi MALAYSIA
| | - Siti Aishah Hasbullah
- Universiti Kebangsaan Malaysia Fakulti Sains dan Teknologi Chemical Sciences Faculty of Science & Technology 43600 Bandar Baru Bangi MALAYSIA
| | - Nurul Izzaty Hassan
- Universiti Kebangsaan Malaysia Fakulti Sains dan Teknologi Chemical Sciences Faculty of Science & Technology 43600 Bandar Baru Bangi MALAYSIA
| | - Hua-Li Qin
- Wuhan University of Technology School of Chemistry 430070 Hubei CHINA
| |
Collapse
|
11
|
Ritter-type amination of C(sp 3)-H bonds enabled by electrochemistry with SO 42. Nat Commun 2022; 13:4138. [PMID: 35842447 PMCID: PMC9288499 DOI: 10.1038/s41467-022-31813-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 06/30/2022] [Indexed: 11/09/2022] Open
Abstract
By merging electricity with sulfate, the Ritter-type amination of C(sp3)-H bonds is developed in an undivided cell under room temperature. This method features broad substrate generality (71 examples, up to 93% yields), high functional-group compatibility, facile scalability, excellent site-selectivity and mild conditions. Common alkanes and electron-deficient alkylbenzenes are viable substrates. It also provides a straightforward protocol for incorporating C-deuterated acetylamino group into C(sp3)-H sites. Application in the synthesis or modification of pharmaceuticals or their derivatives and gram-scale synthesis demonstrate the practicability of this method. Mechanistic experiments show that sulfate radical anion, formed by electrolysis of sulfate, served as hydrogen atom transfer agent to provide alkyl radical intermediate. This method paves a convenient and flexible pathway for realizing various synthetically useful transformations of C(sp3)-H bonds mediated by sulfate radical anion generated via electrochemistry. The amination of C(sp3)–H bonds is an appealing and challenging task in organic synthesis. Here, by using an electrogenerated sulfate radical an HAT agent, the authors report a practical Ritter-type amination of C(sp3)–H bonds.
Collapse
|
12
|
Nguyen QH, Hwang HS, Cho EJ, Shin S. Energy Transfer Photolysis of N-Enoxybenzotriazoles into Benzotriazolyl and α-Carbonyl Radicals. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Quynh H. Nguyen
- Department of Chemistry, Research Institute for Natural Sciences and Center for New Directions in Organic Synthesis (CNOS), Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea
| | - Ho Seong Hwang
- Department of Chemistry, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Eun Jin Cho
- Department of Chemistry, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Seunghoon Shin
- Department of Chemistry, Research Institute for Natural Sciences and Center for New Directions in Organic Synthesis (CNOS), Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea
| |
Collapse
|
13
|
Liang Y, Niu L, Liang X, Wang S, Wang P, Lei A. Electrooxidation‐Induced
C(sp
3
)‐H/ C(sp
2
)‐H
Radical‐Radical
Cross‐coupling between Xanthanes and Electron‐rich Arenes. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yuwei Liang
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University Wuhan Hubei 430072 China
| | - Linbin Niu
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University Wuhan Hubei 430072 China
| | - Xing‐An Liang
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University Wuhan Hubei 430072 China
| | - Shengchun Wang
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University Wuhan Hubei 430072 China
| | - Pengjie Wang
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University Wuhan Hubei 430072 China
| | - Aiwen Lei
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University Wuhan Hubei 430072 China
| |
Collapse
|
14
|
Das S, Roy S, Bhowmik A, Sarkar W, Mondal I, Mishra A, Saha SJ, Karmakar S, Deb I. A radical-radical cross-coupling reaction of xanthene with sulfonyl hydrazides: facile access to xanthen-9-sulfone derivatives. Chem Commun (Camb) 2022; 58:2902-2905. [PMID: 35137745 DOI: 10.1039/d1cc07143b] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A straightforward strategy for direct incorporation of sulfonyl units into a xanthene moiety for accessing xanthen-9-sulfone derivatives in good to excellent yields has been established via metal-free radical-radical cross-coupling reaction of xanthenes and sulfonyl hydrazides. Using easily accessible starting materials, this methodology proceeds efficiently with a high degree of functional group compatibility and with a wide scope of both xanthenes and sulfonyl hydrazides under operationally simple reaction conditions. Mechanistic investigations revealed that sulfonyl radicals could be generated from sulfonyl hydrazides in the presence of TBHP under an oxygen atmosphere.
Collapse
Affiliation(s)
- Sumit Das
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4-Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Shantonu Roy
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4-Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
| | - Arup Bhowmik
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4-Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
| | - Writhabrata Sarkar
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4-Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
| | - Imtiaj Mondal
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4-Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
| | - Aniket Mishra
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4-Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
| | - Shubhra Jyoti Saha
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4-Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
| | - Sudip Karmakar
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4-Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
| | - Indubhusan Deb
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4-Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
15
|
Murray PD, Cox JH, Chiappini ND, Roos CB, McLoughlin EA, Hejna BG, Nguyen ST, Ripberger HH, Ganley JM, Tsui E, Shin NY, Koronkiewicz B, Qiu G, Knowles RR. Photochemical and Electrochemical Applications of Proton-Coupled Electron Transfer in Organic Synthesis. Chem Rev 2022; 122:2017-2291. [PMID: 34813277 PMCID: PMC8796287 DOI: 10.1021/acs.chemrev.1c00374] [Citation(s) in RCA: 221] [Impact Index Per Article: 73.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Indexed: 12/16/2022]
Abstract
We present here a review of the photochemical and electrochemical applications of multi-site proton-coupled electron transfer (MS-PCET) in organic synthesis. MS-PCETs are redox mechanisms in which both an electron and a proton are exchanged together, often in a concerted elementary step. As such, MS-PCET can function as a non-classical mechanism for homolytic bond activation, providing opportunities to generate synthetically useful free radical intermediates directly from a wide variety of common organic functional groups. We present an introduction to MS-PCET and a practitioner's guide to reaction design, with an emphasis on the unique energetic and selectivity features that are characteristic of this reaction class. We then present chapters on oxidative N-H, O-H, S-H, and C-H bond homolysis methods, for the generation of the corresponding neutral radical species. Then, chapters for reductive PCET activations involving carbonyl, imine, other X═Y π-systems, and heteroarenes, where neutral ketyl, α-amino, and heteroarene-derived radicals can be generated. Finally, we present chapters on the applications of MS-PCET in asymmetric catalysis and in materials and device applications. Within each chapter, we subdivide by the functional group undergoing homolysis, and thereafter by the type of transformation being promoted. Methods published prior to the end of December 2020 are presented.
Collapse
Affiliation(s)
- Philip
R. D. Murray
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - James H. Cox
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Nicholas D. Chiappini
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Casey B. Roos
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | | | - Benjamin G. Hejna
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Suong T. Nguyen
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Hunter H. Ripberger
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Jacob M. Ganley
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Elaine Tsui
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Nick Y. Shin
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Brian Koronkiewicz
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Guanqi Qiu
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Robert R. Knowles
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| |
Collapse
|
16
|
Bugaenko DI, Karchava AV, Yurovskaya MA. Transition metal-free cross-coupling reactions with the formation of carbon-heteroatom bonds. RUSSIAN CHEMICAL REVIEWS 2022. [DOI: 10.1070/rcr5022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
17
|
Li F, Liang Y, Zhan X, Zhang S, Li MB. Electricity-driven redox-neutral C(sp 3)–H amidation with N-alkoxyamide as an amidating reagent. Org Chem Front 2022. [DOI: 10.1039/d2qo01108e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An electrochemical redox-neutral C(sp3)–H amidation was developed with N-alkoxyamide as an amidating reagent. Under sequential paired electrolysis, N-alkoxyamides showed higher reactivity compared to the direct reaction of primary amides.
Collapse
Affiliation(s)
- Fengyi Li
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Yating Liang
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Xuan Zhan
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Sheng Zhang
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Man-Bo Li
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
18
|
Xu L, Yi Y, Hu S, Ye J, Hu A. Unraveling two pathways for NHPI-mediated electrocatalytic oxidation reaction. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
19
|
Gao H, Chen X, Wang PL, Shi MM, Shang LL, Guo HY, Li H, Li P. Electrochemical benzylic C-H arylation of xanthenes and thioxanthenes without catalyst and oxidant. Org Chem Front 2022. [DOI: 10.1039/d1qo01925b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A catalyst-free and oxidant-free C-H arylation of xanthenes and thioxanthenes using electrochemistry has been developed, which affords a number of cross-coupling products in moderate to good yields. This method is...
Collapse
|
20
|
Liu Y, Wang Z, Meng J, Li C, Sun K. Research Progress of Photoelectric Co-catalysis. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202106051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Wei B, Qin JH, Yang YZ, Xie YX, Ouyang XH, Song RJ. Electrochemical radical C(sp3)–H arylation of xanthenes with electron-rich arenes. Org Chem Front 2022. [DOI: 10.1039/d1qo01714d] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
An efficient electrochemical C(sp3)–H arylation of xanthenes using a carbon anode and platinum cathode as the electrodes is disclosed.
Collapse
Affiliation(s)
- Bin Wei
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Jing-Hao Qin
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Yong-Zheng Yang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Ye-Xiang Xie
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Xuan-Hui Ouyang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Ren-Jie Song
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| |
Collapse
|
22
|
Chen X, Liu H, Gao H, Li P, Miao T, Li H. Electrochemical Regioselective Cross-Dehydrogenative Coupling of Indoles with Xanthenes. J Org Chem 2021; 87:1056-1064. [PMID: 34964353 DOI: 10.1021/acs.joc.1c02346] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
An electrochemical cross-dehydrogenative coupling of indoles with xanthenes has been established at room temperature. This coupling reaction could proceed in the absence of any catalyst or external oxidant, and generate the indole derivatives in moderate yields. Mechanistic experiments support that a radical pathway maybe involved in this reaction system.
Collapse
Affiliation(s)
- Xinyu Chen
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Hongqiang Liu
- China Synchem Technology Co., Ltd., Bengbu, Anhui 233000, P. R. China
| | - Hui Gao
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.,Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
| | - Pinhua Li
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Tao Miao
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Hongji Li
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| |
Collapse
|
23
|
Song Q, Zhao H, Sun Y, Jiang H, Zhang M. Direct C(sp
3
)–H Sulfonylation of Xanthene Derivatives with Sodium Sulfinates by Oxidative Copper Catalysis. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100767] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Qinghao Song
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou Guangdong 510640 China
| | - He Zhao
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou Guangdong 510640 China
| | - Yanping Sun
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou Guangdong 510640 China
| | - Huanfeng Jiang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou Guangdong 510640 China
| | - Min Zhang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou Guangdong 510640 China
| |
Collapse
|
24
|
Zheng YN, Zheng H, Li T, Wei WT. Recent Advances in Copper-Catalyzed C-N Bond Formation Involving N-Centered Radicals. CHEMSUSCHEM 2021; 14:5340-5358. [PMID: 34750973 DOI: 10.1002/cssc.202102243] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/09/2021] [Indexed: 06/13/2023]
Abstract
C-N bonds are pervasive throughout organic-based materials, natural products, pharmaceutical compounds, and agricultural chemicals. Considering the widespread importance of C-N bonds, the development of greener and more convenient ways to form C-N bonds, especially in late-stage synthesis, has become one of the hottest research goals in synthetic chemistry. Copper-catalyzed radical reactions involving N-centered radicals have emerged as a sustainable and promising approach to build C-N bonds. As a chemically popular and diverse radical species, N-centered radicals have been used for all kinds of reactions for C-N bond formation by taking advantage of their inherently incredible reactive flexibility. Copper is also the most abundant and economic catalyst with the most relevant activity for facilitating the synthesis of valuable compounds. Therefore, the aim of the present Review was to illustrate recent and significant advances in C-N bond formation methods and to understand the unique advantages of copper catalysis in the generation of N-centered radicals since 2016. To provide an ease of understanding for the readers, this Review was organized based on the types of nitrogen sources (amines, amides, sulfonamides, oximes, hydrazones, azides, and tert-butyl nitrite).
Collapse
Affiliation(s)
- Yan-Nan Zheng
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Hongxing Zheng
- Institution of Functional Organic Molecules and Materials, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252059, P. R. China
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, Henan, 473061, P. R. China
| | - Ting Li
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, Henan, 473061, P. R. China
| | - Wen-Ting Wei
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| |
Collapse
|
25
|
Buglioni L, Beslać M, Noël T. Dehydrogenative Azolation of Arenes in a Microflow Electrochemical Reactor. J Org Chem 2021; 86:16195-16203. [PMID: 34455793 PMCID: PMC8609577 DOI: 10.1021/acs.joc.1c01409] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The electrochemical
synthesis of aryl azoles was performed for
the first time in a microflow reactor. The reaction relies on the
anodic oxidation of the arene partners making these substrates susceptible
for C–H functionalization with azoles, thus requiring no homogeneous
transition-metal-based catalysts. The synthetic protocol benefits
from the implementation of a microflow setup, leading to shorter residence
times (10 min), compared to previously reported batch systems. Various
azolated compounds (22 examples) are obtained in good to excellent
yields.
Collapse
Affiliation(s)
- Laura Buglioni
- Department of Chemical Engineering and Chemistry, Micro Flow Chemistry & Synthetic Methodology, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Marko Beslać
- Department of Chemical Engineering and Chemistry, Micro Flow Chemistry & Synthetic Methodology, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Timothy Noël
- Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park, 904 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
26
|
Zou Z, Cai G, Chen W, Zou C, Li Y, Wu H, Chen L, Hu J, Li Y, Huang Y. Metal-Free Cascade Formation of Intermolecular C-N Bonds Accessing Substituted Isoindolinones under Cathodic Reduction. J Org Chem 2021; 86:15777-15784. [PMID: 34699211 DOI: 10.1021/acs.joc.1c01845] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
An electrochemical protocol for the construction of substituted isoindolinones via reduction/amidation of 2-carboxybenzaldehydes and amines has been realized. Under metal-free and external-reductant-free electrolytic conditions, the reaction achieves the cascade formation of intermolecular C-N bonds and provides a series of isoindolinones in moderate to good yields. The deuterium-labeling experiment proves that the hydrogen in the methylene of the product is mainly provided by H2O in the system.
Collapse
Affiliation(s)
- Zirong Zou
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529090, P. R. China
| | - Genuo Cai
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529090, P. R. China
| | - Weihao Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529090, P. R. China
| | - Canlin Zou
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529090, P. R. China
| | - Yamei Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529090, P. R. China
| | - Hongting Wu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529090, P. R. China
| | - Lu Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529090, P. R. China
| | - Jinhui Hu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529090, P. R. China
| | - Yibiao Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529090, P. R. China
| | - Yubing Huang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529090, P. R. China
| |
Collapse
|
27
|
Ghosh D, Ghosh S, Hajra A. Electrochemical Functionalization of Imidazopyridine and Indazole: An Overview. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100981] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Debashis Ghosh
- Department of Chemistry St. Joseph's College (Autonomous) Bangalore 560027 Karnataka India
| | - Sumit Ghosh
- Department of Chemistry Visva-Bharati (A Central University) Santiniketan 731235 India
| | - Alakananda Hajra
- Department of Chemistry Visva-Bharati (A Central University) Santiniketan 731235 India
| |
Collapse
|
28
|
Chen SJ, Golden DL, Krska SW, Stahl SS. Copper-Catalyzed Cross-Coupling of Benzylic C-H Bonds and Azoles with Controlled N-Site Selectivity. J Am Chem Soc 2021; 143:14438-14444. [PMID: 34464528 PMCID: PMC8487258 DOI: 10.1021/jacs.1c07117] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Azoles are important motifs in medicinal chemistry, and elaboration of their structures via direct N-H/C-H coupling could have broad utility in drug discovery. The ambident reactivity of many azoles, however, presents significant selectivity challenges. Here, we report a copper-catalyzed method that achieves site-selective cross-coupling of pyrazoles and other N-H heterocycles with substrates bearing (hetero)benzylic C-H bonds. Excellent N-site selectivity is achieved, with the preferred site controlled by the identity of co-catalytic additives. This cross-coupling strategy features broad scope for both the N-H heterocycle and benzylic C-H coupling partners, enabling application of this method to complex molecule synthesis and medicinal chemistry.
Collapse
Affiliation(s)
- Si-Jie Chen
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Dung L. Golden
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Shane W. Krska
- High-Throughput Experimentation and Lead Discovery Capabilities, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Shannon S. Stahl
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
29
|
Chen JY, Wu HY, Gui QW, Yan SS, Deng J, Lin YW, Cao Z, He WM. Sustainable electrochemical cross-dehydrogenative coupling of 4-quinolones and diorganyl diselenides. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63750-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Fan T, Liu Y, Jiang C, Xu Y, Chen Y. A metal-free radical cascade reaction of phosphine oxides with 2-aryloxy phenylacetylenes to synthesize diphosphonyl xanthene derivatives. Org Biomol Chem 2021; 19:6609-6612. [PMID: 34263284 DOI: 10.1039/d1ob01045j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A radical cascade reaction of 2-aryloxy phenylacetylenes with phosphine oxides promoted by K2S2O8 was developed, which provided diphosphonyl xanthenes as products. This reaction proceeds under transition metal-free and mild conditions with simple operation and good yields. The mechanistic study indicated that phosphine oxide was induced into a phosphonyl radical, and then the following double radical addition/cyclization with 2-aryloxy phenylacetylenes generated bisphosphonyl xanthenes.
Collapse
Affiliation(s)
- Tao Fan
- College of Pharmacy, Guilin Medical University, Guilin 541004, People's Republic of China.
| | - Yan Liu
- College of Pharmacy, Guilin Medical University, Guilin 541004, People's Republic of China.
| | - Caina Jiang
- College of Pharmacy, Guilin Medical University, Guilin 541004, People's Republic of China.
| | - Yanli Xu
- College of Pharmacy, Guilin Medical University, Guilin 541004, People's Republic of China.
| | - Yanyan Chen
- College of Pharmacy, Guilin Medical University, Guilin 541004, People's Republic of China.
| |
Collapse
|
31
|
Li W, Xu H, Zhou L. Acid-catalyzed oxidative cross-coupling of acridans with silyl diazoenolates and a Rh-catalyzed rearrangement: two-step synthesis of γ-(9-acridanylidene)-β-keto esters. Org Biomol Chem 2021; 19:5649-5657. [PMID: 34105567 DOI: 10.1039/d1ob00691f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A MsOH-catalyzed oxidative cross-coupling of acridans and silyl diazoenolates and a Rh2(OAc)4-catalyzed rearrangement of the resultant diazo products are described. The reactions provide various γ-(9-acridanylidene)-β-keto esters in good yields, which bear an active α-methylene unit for further functionalization.
Collapse
Affiliation(s)
- Weiyu Li
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China.
| | - Hao Xu
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China.
| | - Lei Zhou
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China.
| |
Collapse
|
32
|
Wang Y, Lin Z, Oliveira JCA, Ackermann L. Electro-oxidative Intermolecular Allylic C(sp 3)-H Aminations. J Org Chem 2021; 86:15935-15945. [PMID: 34077219 DOI: 10.1021/acs.joc.1c00682] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The oxidative intermolecular nitrogenation of C(sp3)-H bonds represents one of the most straightforward strategies to construct nitrogen-containing molecules. However, a sacrificial chemical oxidant is generally required. Herein, we describe electrochemical oxidative intermolecular allylic C(sp3)-H aminations in an undivided cell by electric current. The cross-dehydrogenative amination proceeded efficiently with ample scope under metal- and chemical oxidant-free reaction conditions, giving molecular H2 as the only byproduct.
Collapse
Affiliation(s)
- Yulei Wang
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany
| | - Zhipeng Lin
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany
| | - João C A Oliveira
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany
| |
Collapse
|
33
|
Chicas-Baños DF, Frontana-Uribe BA. Electrochemical Generation and Use in Organic Synthesis of C-, O-, and N-Centered Radicals. CHEM REC 2021; 21:2538-2573. [PMID: 34047059 DOI: 10.1002/tcr.202100056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/28/2021] [Accepted: 05/03/2021] [Indexed: 12/23/2022]
Abstract
During the last decade several research groups have been developing electrochemical procedures to access highly functionalized organic molecules. Among the most exciting advances, the possibility of using free radical chemistry has attracted the attention of the most important synthetic groups. Nowadays, electrochemical strategies based on these species with a synthetic purpose are published continuously in scientific journals, increasing the alternatives for the synthetic organic chemistry laboratories. Free radicals can be obtained in organic electrochemical reactions; thus, this review reassembles the last decade's (2010-2020) efforts of the electrosynthetic community to generate and take advantage of the C-, O-, and N-centered radicals' reactivity. The electrochemical reactions that occur, as well as the proposed mechanism, are discussed, trying to give clear information about the used conditions and reactivity of these reactive intermediate species.
Collapse
Affiliation(s)
- Diego Francisco Chicas-Baños
- Centro Conjunto Química Sustentable UAEMéx-UNAM, Km 14.5 Carretera Toluca-Ixtlahuaca, Toluca, 50200, Estado de México, Mexico
| | - Bernardo A Frontana-Uribe
- Centro Conjunto Química Sustentable UAEMéx-UNAM, Km 14.5 Carretera Toluca-Ixtlahuaca, Toluca, 50200, Estado de México, Mexico.,Universidad Nacional Autónoma de México, Instituto de Química, Ciudad Universitaria, Ciudad de México, 04510, Mexico
| |
Collapse
|
34
|
Vemuri P, Patureau FW. Cross-Dehydrogenative N-N Coupling of Aromatic and Aliphatic Methoxyamides with Benzotriazoles. Org Lett 2021; 23:3902-3907. [PMID: 33974802 PMCID: PMC8155566 DOI: 10.1021/acs.orglett.1c01034] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Indexed: 01/12/2023]
Abstract
Nitrogen-nitrogen bond containing motifs are ubiquitous in bioactive compounds and organic materials. However, intermolecular hetero-selective N-H/N-H oxidative coupling reactions remain very challenging and largely unexplored. Here, we report an unprecedented, simple and hetero-selective cross-dehydrogenative N-N coupling of amides and benzotriazoles, utilizing only a hypervalent iodine species as the terminal oxidant. The scope and mechanistic investigations are discussed.
Collapse
Affiliation(s)
- Pooja
Y. Vemuri
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Frederic W. Patureau
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
35
|
Jokar M, Naeimi H, Nabi Bidhendi G. Preparation and characterization of cellulose sulfate/Pd nanocatalsysts with remarkable efficiency for Suzuki–Miyaura reaction. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Mitra Jokar
- Department of Organic Chemistry, Faculty of Chemistry University of Kashan Kashan Iran
| | - Hossein Naeimi
- Department of Organic Chemistry, Faculty of Chemistry University of Kashan Kashan Iran
| | | |
Collapse
|
36
|
Guo J, Zhang L, Du X, Zhang L, Cai Y, Xia Q. Metal‐Free Direct Oxidative C−N Bond Coupling of Quinoxalin‐2(1
H
)‐ones with Azoles under Mild Conditions. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100269] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jingwen Guo
- School of Pharmaceutical Sciences Wenzhou Medical University Wenzhou 325035 P. R. China
| | - Lina Zhang
- School of Pharmaceutical Sciences Wenzhou Medical University Wenzhou 325035 P. R. China
| | - Xinyue Du
- School of Pharmaceutical Sciences Wenzhou Medical University Wenzhou 325035 P. R. China
| | - Liting Zhang
- School of Pharmaceutical Sciences Wenzhou Medical University Wenzhou 325035 P. R. China
| | - Yuepiao Cai
- School of Pharmaceutical Sciences Wenzhou Medical University Wenzhou 325035 P. R. China
| | - Qinqin Xia
- School of Pharmaceutical Sciences Wenzhou Medical University Wenzhou 325035 P. R. China
| |
Collapse
|
37
|
Zhao HB, Zhuang JL, Xu HC. Electrochemical Synthesis of Benzimidazoles via Dehydrogenative Cyclization of Amidines. CHEMSUSCHEM 2021; 14:1692-1695. [PMID: 33605037 DOI: 10.1002/cssc.202100254] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/12/2021] [Indexed: 06/12/2023]
Abstract
The development of efficient and sustainable methodologies for the synthesis of N-heterocycles is a constant focus of organic synthesis. Herein an electrochemical method is reported for the synthesis of benzimidazoles through dehydrogenative cyclization of easily available N-aryl amidines. The reactions were conducted under simple constant current conditions in an undivided cell without need for catalysts, chemical oxidants, or additives, and produced H2 as the only theoretical byproduct.
Collapse
Affiliation(s)
- Huai-Bo Zhao
- School of Chemistry and Materials Science, Key Lab for Functional Materials Chemistry of Guizhou Province, Guizhou Normal University, 116 Baoshan Road North, Guiyang, 550001, P. R. China
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Jin-Liang Zhuang
- School of Chemistry and Materials Science, Key Lab for Functional Materials Chemistry of Guizhou Province, Guizhou Normal University, 116 Baoshan Road North, Guiyang, 550001, P. R. China
| | - Hai-Chao Xu
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
38
|
|
39
|
Oliva M, Coppola GA, Van der Eycken EV, Sharma UK. Photochemical and Electrochemical Strategies towards Benzylic C−H Functionalization: A Recent Update. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001581] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Monica Oliva
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC) Department of Chemistry University of Leuven (KU Leuven) Celestijnenlaan 200F B-3001 Leuven Belgium
| | - Guglielmo A. Coppola
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC) Department of Chemistry University of Leuven (KU Leuven) Celestijnenlaan 200F B-3001 Leuven Belgium
| | - Erik V. Van der Eycken
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC) Department of Chemistry University of Leuven (KU Leuven) Celestijnenlaan 200F B-3001 Leuven Belgium
- Peoples' Friendship University of Russia (RUDN University) 6 Miklukho-Maklaya street RU-117198 Moscow Russia
| | - Upendra K. Sharma
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC) Department of Chemistry University of Leuven (KU Leuven) Celestijnenlaan 200F B-3001 Leuven Belgium
| |
Collapse
|
40
|
Aslam M, Mohandoss S, Subramanian P, You S, Yang WG, Kim SH, Lee YR. Indium-Catalyzed Aromative Spiro Coupling of Quinones with Oxindoles for Highly Functionalized Xanthenes as Efficient Fluorophores. Org Lett 2021; 23:1383-1387. [PMID: 33529042 DOI: 10.1021/acs.orglett.1c00042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A convenient and an efficient protocol for the assembly of diverse xanthenes bearing a biologically interesting oxindole nucleus is developed by utilizing the In(III)-catalyzed spiro coupling of 1,4-benzoquinones or 1,4-naphthoquinones with oxindoles. This novel protocol proceeds via a cascade of double Michael additions and intramolecular cyclization. The synthesized compounds have potential use as fluorophores for the selective imaging of heavy metals in living cells.
Collapse
Affiliation(s)
- Mohammad Aslam
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Sonaimuthu Mohandoss
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Palanisamy Subramanian
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120 Gangneungdaehangno, Gangneung, Gangwon 25457, Republic of Korea
| | - SangGuan You
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120 Gangneungdaehangno, Gangneung, Gangwon 25457, Republic of Korea
| | - Won-Guen Yang
- Analysis Research Division, Daegu Center, Korea Basic Science Institute, Daegu 41566, Republic of Korea
| | - Sung Hong Kim
- Analysis Research Division, Daegu Center, Korea Basic Science Institute, Daegu 41566, Republic of Korea
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
41
|
Abstract
An organocatalytic site-selective electrochemical method for the benzylic C–H amination of alkylarenes with azoles through hydrogen evolution has been developed.
Collapse
Affiliation(s)
- Zhong-Wei Hou
- Advanced Research Institute and Department of Chemistry, Taizhou University, Taizhou, Zhejiang, 318000, People's Republic of China
| | - Laiqiang Li
- Advanced Research Institute and Department of Chemistry, Taizhou University, Taizhou, Zhejiang, 318000, People's Republic of China
| | - Lei Wang
- Advanced Research Institute and Department of Chemistry, Taizhou University, Taizhou, Zhejiang, 318000, People's Republic of China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
42
|
Chen JY, Zhong CT, Gui QW, Zhou YM, Fang YY, Liu KJ, Lin YW, Cao Z, He WM. Practical and sustainable approach for clean preparation of 5-organylselanyl uracils. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.09.034] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
43
|
He M, Cheng S, Pan Y, Tang H, Pan Y. Electrochemically Mediated S—N Bond Formation: Synthesis of Sulfenamides. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202101017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
44
|
Maia M, Resende DISP, Durães F, Pinto MMM, Sousa E. Xanthenes in Medicinal Chemistry - Synthetic strategies and biological activities. Eur J Med Chem 2020; 210:113085. [PMID: 33310284 DOI: 10.1016/j.ejmech.2020.113085] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/30/2020] [Accepted: 11/30/2020] [Indexed: 01/10/2023]
Abstract
BACKGROUND Xanthenes are a special class of oxygen-incorporating tricyclic compounds. Structurally related to xanthones, the presence of different substituents in position 9 strongly influences their physical and chemical properties, as well as their biological applications. This review explores the synthetic methodologies developed to obtain 9H-xanthene, 9-hydroxyxanthene and xanthene-9-carboxylic acid, as well as respective derivatives, from simple starting materials or through modification of related structures. Azaxanthenes, bioisosteres of xanthenes, are also explored. Efficiency, safety, ecological impact and applicability of the described synthetic methodologies are discussed. Synthesis of multi-functionalized derivatives with drug-likeness properties are also reported and their activities explored. Synthetic methodologies for obtaining (aza)xanthenes from simple building blocks are available, and electrochemical and/or metal free procedures recently developed arise as greener and efficient methodologies. Nonetheless, the synthesis of xanthenes through the modification of the carbonyl in position 9 of xanthones represents the most straightforward procedure to easily obtain a variety of (aza)xanthenes. (Aza)xanthene derivatives displayed biological activity as neuroprotector, antitumor, antimicrobial, among others, proving the versatility of this nucleus for different biological applications. However, in some cases their chemical structures suggest a lack of pharmacokinetic properties being associated with safety concerns, which should be overcome if intended for clinical evaluation.
Collapse
Affiliation(s)
- Miguel Maia
- CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros Do Porto de Leixões, 4450-208, Matosinhos, Portugal; Laboratório de Química Orgânica e Farmacêutica, Faculdade de Farmácia, Universidade Do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Diana I S P Resende
- CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros Do Porto de Leixões, 4450-208, Matosinhos, Portugal; Laboratório de Química Orgânica e Farmacêutica, Faculdade de Farmácia, Universidade Do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Fernando Durães
- CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros Do Porto de Leixões, 4450-208, Matosinhos, Portugal; Laboratório de Química Orgânica e Farmacêutica, Faculdade de Farmácia, Universidade Do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Madalena M M Pinto
- CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros Do Porto de Leixões, 4450-208, Matosinhos, Portugal; Laboratório de Química Orgânica e Farmacêutica, Faculdade de Farmácia, Universidade Do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Emília Sousa
- CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros Do Porto de Leixões, 4450-208, Matosinhos, Portugal; Laboratório de Química Orgânica e Farmacêutica, Faculdade de Farmácia, Universidade Do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| |
Collapse
|
45
|
Verma SK, Prajapati A, Saini MK, Basak AK. Lewis Acid Catalyzed Reductive Cyclization of 2‐Aryloxybenzaldehydes and 2‐(Arylthio)benzaldehydes to Unsubstituted 9
H
‐Xanthenes and Thioxanthenes in Diisopropyl Ether. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000836] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Shashi Kant Verma
- Department of Chemistry Institute of Science Banaras Hindu University Varanasi 221005 India
| | | | - Manoj Kumar Saini
- Department of Chemistry Institute of Science Banaras Hindu University Varanasi 221005 India
| | - Ashok K. Basak
- Department of Chemistry Institute of Science Banaras Hindu University Varanasi 221005 India
| |
Collapse
|
46
|
Zou Y, Ni H, Dong H, Yang X, Chen L. A HClO
4
‐Catalyzed Substitutive Phosphorylation of Anthracene‐9‐ols with P(O)−H Compounds to Phosphorylated 9,10‐Dihydroanthracenes. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000385] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yun‐Xiang Zou
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics Chengdu University 168 Hua Guan Road Chengdu 610052 P. R. China
| | - Hai‐Liang Ni
- College of Chemistry and Materials Science Sichuan Normal University 5 Jing An Road Chengdu 610066 P. R. China
| | - Hong‐Bo Dong
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics Chengdu University 168 Hua Guan Road Chengdu 610052 P. R. China
| | - Xin‐Yue Yang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics Chengdu University 168 Hua Guan Road Chengdu 610052 P. R. China
| | - Long Chen
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics Chengdu University 168 Hua Guan Road Chengdu 610052 P. R. China
| |
Collapse
|
47
|
Niu L, Jiang C, Liang Y, Liu D, Bu F, Shi R, Chen H, Chowdhury AD, Lei A. Manganese-Catalyzed Oxidative Azidation of C(sp 3)-H Bonds under Electrophotocatalytic Conditions. J Am Chem Soc 2020; 142:17693-17702. [PMID: 32941025 DOI: 10.1021/jacs.0c08437] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The selective installation of azide groups into C(sp3)-H bonds is a priority research topic in organic synthesis, particularly in pharmaceutical discovery and late-stage diversification. Herein, we demonstrate a generalized manganese-catalyzed oxidative azidation methodology of C(sp3)-H bonds using nucleophilic NaN3 as an azide source under electrophotocatalytic conditions. This approach allows us to perform the reaction without the necessity of adding an excess of the substrate and successfully avoiding the use of stoichiometric chemical oxidants such as iodine(III) reagent or NFSI. A series of tertiary and secondary benzylic C(sp3)-H, aliphatic C(sp3)-H, and drug-molecule-based C(sp3)-H bonds in substrates are well tolerated under our protocol. The simultaneous gram-scale synthesis and the ease of transformation of azide to amine collectively advocate for the potential application in the preparative synthesis. Good reactivity of the tertiary benzylic C(sp3)-H bond and selectivity of the tertiary aliphatic C(sp3)-H bond in substrates to incorporate nitrogen-based functionality at the tertiary alkyl group also provide opportunities to manipulate numerous potential medicinal candidates. We anticipate our synthetic protocol, consisting of metal catalysis, electrochemistry, and photochemistry, would provide a new sustainable option to execute challenging organic synthetic transformations.
Collapse
Affiliation(s)
- Linbin Niu
- College of Chemistry and Molecular Sciences, the Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, People's Republic of China
| | - Chongyu Jiang
- College of Chemistry and Molecular Sciences, the Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, People's Republic of China
| | - Yuwei Liang
- College of Chemistry and Molecular Sciences, the Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, People's Republic of China
| | - Dingdong Liu
- College of Chemistry and Molecular Sciences, the Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, People's Republic of China
| | - Faxiang Bu
- College of Chemistry and Molecular Sciences, the Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, People's Republic of China
| | - Renyi Shi
- College of Chemistry and Molecular Sciences, the Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, People's Republic of China
| | - Hong Chen
- College of Chemistry and Molecular Sciences, the Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, People's Republic of China
| | - Abhishek Dutta Chowdhury
- College of Chemistry and Molecular Sciences, the Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, People's Republic of China
| | - Aiwen Lei
- College of Chemistry and Molecular Sciences, the Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, People's Republic of China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| |
Collapse
|
48
|
Stereoselective synthesis of 9-vinyl substituted unsymmetrical xanthenes and thioxanthenes. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Yang Z, Zhang J, Hu L, Li A, Li L, Liu K, Yang T, Zhou C. Electrochemical HI-mediated Intermolecular C–N Bond Formation to Synthesize Imidazoles from Aryl Ketones and Benzylamines. J Org Chem 2020; 85:5952-5958. [DOI: 10.1021/acs.joc.0c00316] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zan Yang
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Jiaqi Zhang
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Liping Hu
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - An Li
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Lijun Li
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Kun Liu
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Tao Yang
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Congshan Zhou
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| |
Collapse
|
50
|
Yue X, He X, Wu Y, Hu M, Wu S, Xie Y, Li J. Metal‐Free Oxidative Decarboxylative Heteroannulation of Alkynyl Carboxylic Acids with Sulfinates and
tert
‐Butyl Nitrite toward 2,2‐Disulfonyl‐2
H
‐Azirines. ChemCatChem 2020. [DOI: 10.1002/cctc.201902400] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Xin Yue
- State Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle Nanchang Hangkong University Nanchang 330063 P.R. China
| | - Xingyi He
- State Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle Nanchang Hangkong University Nanchang 330063 P.R. China
| | - Yan‐Chen Wu
- State Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle Nanchang Hangkong University Nanchang 330063 P.R. China
| | - Ming Hu
- State Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle Nanchang Hangkong University Nanchang 330063 P.R. China
| | - Shuang Wu
- State Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle Nanchang Hangkong University Nanchang 330063 P.R. China
| | - Ye‐Xiang Xie
- State Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle Nanchang Hangkong University Nanchang 330063 P.R. China
| | - Jin‐Heng Li
- State Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle Nanchang Hangkong University Nanchang 330063 P.R. China
- Key Laboratory of Chemo/Biosensing and Chemometrics Hunan University Changsha 410082 P.R. China
| |
Collapse
|