1
|
Aguilar-Ramírez E, Rivera-Chávez J, Miranda-Rosas MY, Martínez-Otero D. DMSO enhances the biosynthesis of epoxyquinols in Pestalotiopsis sp. (strain IQ-011) and yields new [4 + 2] cycloaddition dimers. Org Biomol Chem 2025; 23:4525-4536. [PMID: 40232401 DOI: 10.1039/d5ob00115c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Pestalotiopsis sp. (strain IQ-011) produces cuautepestalorin (10), a 7,8-dihydrochromene-oxoisochromane adduct featuring a spiro-polycyclic (6/6/6/6/6/6) ring system. Additionally, it yields its proposed biosynthetic precursors: cytosporin M (1) and oxopestalochromane (11) when cultured under standard conditions (fermentation in solid media). Following an OSMAC approach guided by metabolomic studies (PCA and molecular networks), it was established that the epigenetic modulator DMSO dramatically increases the production of 1 up to 50 times according to feature-based molecular networking (FBMN) analysis, and triggers the production of other derivatives from the epoxyquinol family. Chemo-targeted isolation resulted in the discovery of four new compounds: 19-hydroxycytosporin M (2) and three [4 + 2] cycloaddition products: ent-eutyscoparol J (4), ent-pestaloquinol A (6) and ent-pestaloquinol B (8). The structures of all isolates were established based on spectroscopic, spectrometric, chiroptical, and X-ray diffraction analyses. This study demonstrates the potential of combining metabolomic tools with DMSO as an epigenetic modulator to enhance fungal metabolite diversity and highlights the importance of chiroptical methods for accurate compound identification.
Collapse
Affiliation(s)
- Enrique Aguilar-Ramírez
- Department of Natural Products, Institute of Chemistry, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico.
| | - José Rivera-Chávez
- Department of Natural Products, Institute of Chemistry, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico.
| | - Mario Yair Miranda-Rosas
- Department of Natural Products, Institute of Chemistry, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico.
| | - Diego Martínez-Otero
- Joint Research Center for Sustainable Chemistry UAEM-UNAM, Toluca, 50200, Mexico
| |
Collapse
|
2
|
Kadaník M, Frantsuzova E, Matouš P, Nováková L, Kuneš J, Bonsignore M, Andris E, Růžičková Z, Pour M. Vicinal Bis(methylene) Heterocyclic Diene in Natural Product Synthesis: A Convergent Biomimetic Total Synthesis of Prunolactone A. Org Lett 2024; 26:11080-11084. [PMID: 39644262 DOI: 10.1021/acs.orglett.4c04378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
The first total syntheses of the natural isocoumarin prunolactone A with a 6/6/6/6/6 spiropentacyclic skeleton and its unnatural (3'R)-epimer in 10 and 8 steps, respectively, are reported. The syntheses feature in situ generation of a reactive 3,4-bis(methylene)isocoumarin intermediate, its biomimetic Diels-Alder reactions with the shikimic-acid-derived scytolide and (8R)-scytolide, and a Mitsunobu reaction allowing access to scytolide in a stereochemically pure form. Computational support for the selectivity of the Diels-Alder reaction is provided.
Collapse
Affiliation(s)
- Michal Kadaník
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Ekaterina Frantsuzova
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Petr Matouš
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Lucie Nováková
- Department of Analytical Chemistry, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Jiří Kuneš
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Manola Bonsignore
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic
| | - Erik Andris
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic
| | - Zdeňka Růžičková
- Department of General and Inorganic Chemistry, University of Pardubice, Faculty of Chemical Technology, Studentská 573, 532 10 Pardubice, Czech Republic
| | - Milan Pour
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| |
Collapse
|
3
|
Murrieta-Dionicio U, Calzada F, Barbosa E, Valdés M, Reyes-Trejo B, Zuleta-Prada H, Guerra-Ramírez D, Del Río-Portilla F. Antiprotozoal Activity Against Entamoeba hystolitica and Giardia lamblia of Cyclopeptides Isolated from Annona diversifolia Saff. Molecules 2024; 29:5636. [PMID: 39683795 DOI: 10.3390/molecules29235636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Diseases caused by intestinal parasites such as protozoa represent a worldwide problem mainly for developing countries. From morbidity in different groups of people to cases of mortality in children and/or immunocompromised patients. In addition to the above, there is growing resistance to the drugs used in the treatment of these diseases, as well as undesirable side effects in patients. Therefore, there is an interest in the search for new alternatives for the base and/or development of new drugs with antiparasitic activities without harmful effects. In this sense, natural products offer to be a diverse source of compounds with biological activities. In this work, we describe the isolation and elucidation by 1D and 2D NMR spectroscopy of three cyclopeptides obtained from seeds of A. diversifolia Saff.: cherimolacyclopeptide D (1), squamin D (2), and squamin C (3). The fractions enriched in cyclopeptides, as well as a pure compound (1), showed antiprotozoal activity against E. hystolitica Schaudinn and Giardia lamblia Kunstler in vitro assays, with values of IC50 = 3.49 and 5.39 μg mL-1, respectively. The molecular docking study revealed that 1 has a strong interaction with targets used, including aldose reductase and PFOR enzymes. The antiprotozoal activity of cherimolacyclopeptide D is reported for the first time in this study.
Collapse
Affiliation(s)
- Ulises Murrieta-Dionicio
- Laboratorio de Productos Naturales, Área de Química, Departamento de Preparatoria Agrícola, Universidad Autónoma Chapingo, km 38.5 Carretera México-Texcoco, Chapingo 56230, Mexico
| | - Fernando Calzada
- Unidad de Investigación Médica en Farmacología, UMAE Hospital de Especialidades, 2° Piso CORSE Centro Médico Nacional Siglo XXI, IMSS, Av. Cuauhtémoc 330, Col. Doctores, Ciudad de México 06725, Mexico
| | - Elizabeth Barbosa
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Salvador Díaz Mirón esq. Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, Ciudad de México 11340, Mexico
| | - Miguel Valdés
- Unidad de Investigación Médica en Farmacología, UMAE Hospital de Especialidades, 2° Piso CORSE Centro Médico Nacional Siglo XXI, IMSS, Av. Cuauhtémoc 330, Col. Doctores, Ciudad de México 06725, Mexico
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Salvador Díaz Mirón esq. Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, Ciudad de México 11340, Mexico
| | - Benito Reyes-Trejo
- Laboratorio de Productos Naturales, Área de Química, Departamento de Preparatoria Agrícola, Universidad Autónoma Chapingo, km 38.5 Carretera México-Texcoco, Chapingo 56230, Mexico
| | - Holber Zuleta-Prada
- Laboratorio de Productos Naturales, Área de Química, Departamento de Preparatoria Agrícola, Universidad Autónoma Chapingo, km 38.5 Carretera México-Texcoco, Chapingo 56230, Mexico
| | - Diana Guerra-Ramírez
- Laboratorio de Productos Naturales, Área de Química, Departamento de Preparatoria Agrícola, Universidad Autónoma Chapingo, km 38.5 Carretera México-Texcoco, Chapingo 56230, Mexico
| | - Federico Del Río-Portilla
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico
| |
Collapse
|
4
|
Lee SR, Dayras M, Fricke J, Guo H, Balluff S, Schalk F, Yu JS, Jeong SY, Morgenstern B, Slippers B, Beemelmanns C, Kim KH. Molecular networking and computational NMR analyses uncover six polyketide-terpene hybrids from termite-associated Xylaria isolates. Commun Chem 2024; 7:129. [PMID: 38849519 PMCID: PMC11161606 DOI: 10.1038/s42004-024-01210-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 05/24/2024] [Indexed: 06/09/2024] Open
Abstract
Fungi constitute the Earth's second most diverse kingdom, however only a small percentage of these have been thoroughly examined and categorized for their secondary metabolites, which still limits our understanding of the ecological chemical and pharmacological potential of fungi. In this study, we explored members of the co-evolved termite-associated fungal genus Xylaria and identified a family of highly oxygenated polyketide-terpene hybrid natural products using an MS/MS molecular networking-based dereplication approach. Overall, we isolated six no yet reported xylasporin derivatives, of which xylasporin A (1) features a rare cyclic-carbonate moiety. Extensive comparative spectrometric (HRMS2) and spectroscopic (1D and 2D NMR) studies allowed to determine the relative configuration across the xylasporin family, which was supported by chemical shift calculations of more than 50 stereoisomers and DP4+ probability analyses. The absolute configuration of xylasporin A (1) was also proposed based on TDDFT-ECD calculations. Additionally, we were able to revise the relative and absolute configurations of co-secreted xylacremolide B produced by single x-ray crystallography. Comparative genomic and transcriptomic analysis allowed us to deduce the putative biosynthetic assembly line of xylasporins in the producer strain X802, and could guide future engineering efforts of the biosynthetic pathway.
Collapse
Affiliation(s)
- Seoung Rak Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Marie Dayras
- Anti-infectives from Microbiota Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) Campus E8.1, 66123, Saarbrücken, Germany
| | - Janis Fricke
- Chemical Biology of Microbe-Host Interactions Leibniz institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Beutenbergstraße 11a, 07745, Jena, Germany
| | - Huijuan Guo
- Chemical Biology of Microbe-Host Interactions Leibniz institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Beutenbergstraße 11a, 07745, Jena, Germany
| | - Sven Balluff
- Anti-infectives from Microbiota Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) Campus E8.1, 66123, Saarbrücken, Germany
| | - Felix Schalk
- Chemical Biology of Microbe-Host Interactions Leibniz institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Beutenbergstraße 11a, 07745, Jena, Germany
| | - Jae Sik Yu
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Integrative Biological Sciences and Industry, Sejong University, Seoul, 05006, Republic of Korea
| | - Se Yun Jeong
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Bernd Morgenstern
- Saarland University, Inorganic Solid-State Chemistry, Campus, Building C4 1, 66123, Saarbrücken, Germany
| | - Bernard Slippers
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Christine Beemelmanns
- Anti-infectives from Microbiota Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) Campus E8.1, 66123, Saarbrücken, Germany.
- Chemical Biology of Microbe-Host Interactions Leibniz institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Beutenbergstraße 11a, 07745, Jena, Germany.
- Saarland University, 66123, Saarbrücken, Germany.
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
5
|
Yu X, Müller WEG, Frank M, Gao Y, Guo Z, Zou K, Proksch P, Liu Z. Caryophyllene-type sesquiterpenes from the endophytic fungus Pestalotiopsis lespedezae through an OSMAC approach. Front Microbiol 2024; 14:1248896. [PMID: 38274753 PMCID: PMC10808731 DOI: 10.3389/fmicb.2023.1248896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Two new caryophyllene-type sesquiterpenes pestalotiopsins U and V (1 and 2) and three known compounds pestalotiopsin B (7), pestaloporinate B (8), and pestalotiopsin C (9) were isolated by the cultivation of the endophytic fungus Pestalotiopsis lespedezae on solid rice medium, while four additional new caryophyllene pestalotiopsins W-Z (3-6) were obtained when 3.5% NaI was added to the fungal culture medium. The structures of the new compounds were determined by HRESIMS and 1D/2D nuclear magnetic resonance data. Compounds 1-9 were tested for cytotoxicity against the mouse lymphoma cell line L5178Y, but only 6 displayed significant activity with an IC50 value of 2.4 μM.
Collapse
Affiliation(s)
- Xiaoqin Yu
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, China
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Werner E. G. Müller
- Institute of Physiological Chemistry, Universitätsmedizin der Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - Marian Frank
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Ying Gao
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Zhiyong Guo
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, China
| | - Kun Zou
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, China
| | - Peter Proksch
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, China
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Zhen Liu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| |
Collapse
|
6
|
Martínez-Aldino IY, Rivera-Chávez J, Morales-Jiménez J. Integrating Taxonomic and Chemical Diversity of Mangrove-Associated Ascomycetes to Discover or Repurpose Bioactive Natural Products. JOURNAL OF NATURAL PRODUCTS 2023; 86:2423-2434. [PMID: 37875020 DOI: 10.1021/acs.jnatprod.3c00490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Natural product reisolation is a bottleneck when discovering new bioactive chemical entities from nature. To overcome this issue, multi-informative approaches integrating several layers of data have been applied with promising results. In this study, integration of taxonomy, nontargeted metabolomics, and bioactivity information resulted in the selection of Scytalidium sp. IQ-074 and Diaporthe sp. IQ-053 to isolate new natural products active against hPTP1B1-400 and repurpose others as antibiotics. Strain IQ-074 was selected based on the hypothesis that investigating poorly studied and highly metabolic taxa could lead to the isolation of new chemical entities. A chemical investigation of IQ-074 resulted in the isolation of papyracillic acid A (14), 7-deoxypapyracillic acid A (15a and 15b), and linear polyketides scytalpolyols A-D (16-19). Compound 17 inhibited hPTP1B1-400 with a half-maximal inhibitory concentration of 27.0 ± 1.7 μM. Diaporthe sp. IQ-053 was selected based on its antibacterial properties against pathogenic strains. Its chemical investigation yielded dothiorelones A (20) and I (21), cytosporones B (22) and C (23), pestalotiopsone B (24), and diaporthalasin (25). Compounds 22 and 25 inhibited the growth of Staphylococcus aureus and Staphylococcus epidermidis 42R and moderately inhibited the growth of Acinetobacter baumannii A564, a pandrug-resistant bacterium.
Collapse
Affiliation(s)
- Ingrid Y Martínez-Aldino
- Departamento de Productos Naturales, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 Ciudad de México, Mexico
| | - José Rivera-Chávez
- Departamento de Productos Naturales, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 Ciudad de México, Mexico
| | - Jesús Morales-Jiménez
- CONACYT-Consorcio de Investigación, Innovación y Desarrollo para las Zonas Áridas (CIIDZA), Instituto Potosino de Investigación Científica y Tecnológica A. C., Camino a la Presa San José 2055, Lomas 4a sección, 78216 San Luis Potosí, Mexico
- Departamento El Hombre y su Ambiente, Universidad Autónoma Metropolitana, 04690 Ciudad de México, Mexico
| |
Collapse
|
7
|
Jiang P, Fu X, Niu H, Chen S, Liu F, Luo Y, Zhang D, Lei H. Recent advances on Pestalotiopsis genus: chemistry, biological activities, structure-activity relationship, and biosynthesis. Arch Pharm Res 2023:10.1007/s12272-023-01453-2. [PMID: 37389739 DOI: 10.1007/s12272-023-01453-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 06/21/2023] [Indexed: 07/01/2023]
Abstract
Strains of the fungal genus Pestalotiopsis are reported as large promising sources of structurally varied biologically active metabolites. Many bioactive secondary metabolites with diverse structural features have been derived from Pestalotiopsis. Moreover, some of these compounds can potentially be developed into lead compounds. Herein, we have systematically reviewed the chemical constituents and bioactivities of the fungal genus Pestalotiopsis, covering a period ranging from January 2016 to December 2022. As many as 307 compounds, including terpenoids, coumarins, lactones, polyketides, and alkaloids, were isolated during this period. Furthermore, for the benefit of readers, the biosynthesis and potential medicinal value of these new compounds are also discussed in this review. Finally, the perspectives and directions for future research and the potential applications of the new compounds are summarized in various tables.
Collapse
Affiliation(s)
- Peng Jiang
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Xiujuan Fu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Hong Niu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Siwei Chen
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Feifei Liu
- School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, China
| | - Yu Luo
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Dan Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Hui Lei
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
8
|
Shui L, Liu F, Wang X, Ma C, Qiang Q, Shen M, Fang Y, Ni SF, Rong ZQ. Ligand-Induced chemodivergent nickel-catalyzed annulations via tandem isomerization/esterification and direct O-allylic substitution: Divergent access to 3,4-dihydrocoumarins and 2H-chromenes. J Catal 2023. [DOI: 10.1016/j.jcat.2023.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
9
|
Pestalotiopsis Diversity: Species, Dispositions, Secondary Metabolites, and Bioactivities. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27228088. [PMID: 36432188 PMCID: PMC9695833 DOI: 10.3390/molecules27228088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/23/2022] [Accepted: 10/29/2022] [Indexed: 11/23/2022]
Abstract
Pestalotiopsis species have gained attention thanks to their structurally complex and biologically active secondary metabolites. In past decades, several new secondary metabolites were isolated and identified. Their bioactivities were tested, including anticancer, antifungal, antibacterial, and nematicidal activity. Since the previous review published in 2014, new secondary metabolites were isolated and identified from Pestalotiopsis species and unidentified strains. This review gathered published articles from 2014 to 2021 and focused on 239 new secondary metabolites and their bioactivities. To date, 384 Pestalotiopsis species have been discovered in diverse ecological habitats, with the majority of them unstudied. Some may contain secondary metabolites with unique bioactivities that might benefit pharmacology.
Collapse
|
10
|
Jiang P, Luo J, Jiang Y, Zhang L, Jiang L, Teng B, Niu H, Zhang D, Lei H. Anti-Inflammatory Polyketide Derivatives from the Sponge-Derived Fungus Pestalotiopsis sp. SWMU-WZ04-2. Mar Drugs 2022; 20:711. [PMID: 36421989 PMCID: PMC9697532 DOI: 10.3390/md20110711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/05/2022] [Accepted: 11/09/2022] [Indexed: 05/31/2024] Open
Abstract
Five undescribed polyketide derivatives, pestaloketides A-E (1-5), along with eleven known analogues (6-16), were isolated from the sponge-derived fungus Pestalotiopsis sp. Their structures, including absolute configurations, were elucidated by analyses of NMR spectroscopic HRESIMS data and electronic circular dichroism (ECD) calculations. Compounds 5, 6, 9, and 14 exhibited weak cytotoxicities against four human cancer cell lines, with IC50 values ranging from 22.1 to 100 μM. Pestaloketide A (1) is an unusual polyketide, featuring a rare 5/10/5-fused ring system. Pestaloketides A (1) and B (2) exhibited moderately inhibited LPS-induced NO production activity, with IC50 values of 23.6 and 14.5 μM, respectively, without cytotoxicity observed. Preliminary bioactivity evaluations and molecular docking analysis indicated that pestaloketides A (1) and B (2) had the potential to be developed into anti-inflammatory activity drug leads.
Collapse
Affiliation(s)
- Peng Jiang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Jinfeng Luo
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Yao Jiang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Liping Zhang
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Liyuan Jiang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Baorui Teng
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Hong Niu
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Dan Zhang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Hui Lei
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
11
|
Wang YD, Yang J, Li Q, Li YY, Tan XM, Yao SY, Niu SB, Deng H, Guo LP, Ding G. UPLC-Q-TOF-MS/MS Analysis of Seco-Sativene Sesquiterpenoids to Detect New and Bioactive Analogues From Plant Pathogen Bipolaris sorokiniana. Front Microbiol 2022; 13:807014. [PMID: 35356527 PMCID: PMC8959811 DOI: 10.3389/fmicb.2022.807014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/27/2022] [Indexed: 11/13/2022] Open
Abstract
Seco-sativene sesquiterpenoids are an important member of phytotoxins and plant growth regulators isolated from a narrow spectrum of fungi. In this report, eight seco-sativene sesquiterpenoids (1-8) were first analyzed using the UPLC-Q-TOF-MS/MS technique in positive mode, from which their mass fragmentation pathways were suggested. McLafferty rearrangement, 1,3-rearrangement, and neutral losses were considered to be the main fragmentation patterns for the [M+1]+ ions of 1-8. According to the structural features (of different substitutes at C-1, C-2, and C-13) in compounds 1-8, five subtypes (A-E) of seco-sativene were suggested, from which subtypes A, B/D, and E possessed the diagnostic daughter ions at m/z 175, 189, and 203, respectively, whereas subtype C had the characteristic daughter ion at m/z 187 in the UPLC-Q-TOF-MS/MS profiles. Based on the fragmentation patterns of 1-8, several known compounds (1-8) and two new analogues (9 and 10) were detected in the extract of plant pathogen fungus Bipolaris sorokiniana based on UPLC-Q-TOF-MS/MS analysis, of which 1, 2, 9, and 10 were then isolated and elucidated by NMR spectra. The UPLC-Q-TOF-MS/MS spectra of these two new compounds (9 and 10) were consistent with the fragmentation mechanisms of 1-8. Compound 1 displayed moderate antioxidant activities with IC50 of 0.90 and 1.97 mM for DPPH and ABTS+ scavenging capacity, respectively. The results demonstrated that seco-sativene sesquiterpenoids with the same subtypes possessed the same diagnostic daughter ions in the UPLC-Q-TOF-MS/MS profiles, which could contribute to structural characterization of seco-sativene sesquiterpenoids. Our results also further supported that UPLC-Q-TOF-MS/MS is a powerful and sensitive tool for dereplication and detection of new analogues from crude extracts of different biological origins.
Collapse
Affiliation(s)
- Yan-Duo Wang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian Yang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qi Li
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan-Yuan Li
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiang-Mei Tan
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Si-Yang Yao
- Department of Pharmacy, Beijing City University, Beijing, China
| | - Shu-Bin Niu
- Department of Pharmacy, Beijing City University, Beijing, China
| | - Hui Deng
- Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lan-Ping Guo
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Gang Ding
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
12
|
Martínez-Aldino IY, Villaseca-Murillo M, Morales-Jiménez J, Rivera-Chávez J. Absolute configuration and protein tyrosine phosphatase 1B inhibitory activity of xanthoepocin, a dimeric naphtopyrone from Penicillium sp. IQ-429. Bioorg Chem 2021; 115:105166. [PMID: 34384957 DOI: 10.1016/j.bioorg.2021.105166] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/27/2021] [Accepted: 07/08/2021] [Indexed: 12/19/2022]
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is an active target for developing drugs to treat type II diabetes, obesity, and cancer. However, in the past, research programs targeting this enzyme focused on discovering inhibitors of truncated models (hPTP1B1-282, hPTP1B1-298, or hPTP1B1-321), losing valuable information about the ligands' mechanism of inhibition and selectivity. Nevertheless, finding an allosteric site in hPTP1B1-321, and the full-length (hPTP1B1-400) protein expression, have shifted the strategies to discover new PTP1B inhibitors. Accordingly, as part of a research program directed at finding non-competitive inhibitors of hPTP1B1-400 from Pezizomycotina, the extract of Penicillium sp. (IQ-429) was chemically investigated. This study led to xanthoepocin (1) isolation, which was elucidated by means of spectroscopic and spectrometric data. The absolute configuration of 1 was determined to be 7R8S9R7'R8'S9'R by comparing the theoretical and experimental ECD spectra and by GIAO-NMR DP4 + statistical analysis. Xanthoepocin (1) inhibited the phosphatase activity of hPTP1B1-400 (IC50 value of 8.8 ± 1.0 µM) in a mixed type fashion, with ki and αki values of 5.5 and 6.6 μM, respectively. Docking xanthoepocin (1) with a homologated model of hPTP1B1-400 indicated that it binds in a pocket different from the catalytic triad at the interface of the N and C-terminal domains. Molecular dynamics (MD) simulations showed that 1 locks the WPD loop of hPTP1B1-400 in a closed conformation, avoiding substrate binding, products release, and catalysis, suggesting an allosteric modulation triggered by large-scale conformational and dynamics changes. Intrinsic quenching fluorescence experiments indicated that 1 behaves like a static quencher of hPTP1B1-400 (KSV = 1.1 × 105 M-1), and corroborated that it binds to the enzyme with an affinity constant (ka) of 3.7 × 105 M-1. Finally, the drug-likeness and medicinal chemistry friendliness of 1 were predicted with SwissADME.
Collapse
Affiliation(s)
- Ingrid Y Martínez-Aldino
- Departamento de Productos Naturales, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria 04510, Ciudad de México, Mexico
| | - Martha Villaseca-Murillo
- Departamento de Productos Naturales, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria 04510, Ciudad de México, Mexico
| | - Jesús Morales-Jiménez
- CONACYT-Consorcio de Investigación, Innovación y Desarrollo para las Zonas Áridas (CIIDZA), Instituto Potosino de Investigación Científica y Tecnológica A. C., Camino a la Presa San José 2055, Lomas 4a sección, 78216 San Luis Potosí, Mexico.
| | - José Rivera-Chávez
- Departamento de Productos Naturales, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria 04510, Ciudad de México, Mexico.
| |
Collapse
|
13
|
Zhang XQ, Lu ZH, Xia GR, Song WM, Guo ZY, Proksch P. (+)-/(−)-Prunomarin A and (+)-pestalactone B, three new isocoumarin derivatives from the endophytic fungus Phomopsis prunorum. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022]
|
14
|
Jiménez-Arreola BS, Aguilar-Ramírez E, Cano-Sánchez P, Morales-Jiménez J, González-Andrade M, Medina-Franco JL, Rivera-Chávez J. Dimeric phenalenones from Talaromyces sp. (IQ-313) inhibit hPTP1B1-400: Insights into mechanistic kinetics from in vitro and in silico studies. Bioorg Chem 2020; 101:103893. [DOI: 10.1016/j.bioorg.2020.103893] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/13/2020] [Accepted: 04/27/2020] [Indexed: 12/27/2022]
|
15
|
Rivera-Chávez J, Bustos-Brito C, Aguilar-Ramírez E, Martínez-Otero D, Rosales-Vázquez LD, Dorazco-González A, Cano-Sánchez P. Hydroxy- neo-Clerodanes and 5,10- seco- neo-Clerodanes from Salvia decora. JOURNAL OF NATURAL PRODUCTS 2020; 83:2212-2220. [PMID: 32597650 DOI: 10.1021/acs.jnatprod.0c00313] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Preliminary analysis of the mass spectrometric (MS) and NMR spectroscopic data of the primary fractions from the biologically active extract of Salvia decora revealed spectra that are characteristic for neo-clerodane-type diterpenoids. MS-guided isolation of the bioactive fractions led to the isolation of three new chemical entities, including two hydroxy-neo-clerodanes (1 and 2) and one acylated 5,10-seco-neo-clerodane (3), along with three known diterpenoids (4-6), ursolic acid (7), and eupatorin (8). The structures of the new compounds were established by analysis of the 1D and 2D NMR and MS data, whereas their absolute configuration was deduced using a combination of experimental and theoretical ECD data and confirmed by X-ray crystallography (1 and 4). Furthermore, compounds 1, 3, 4, and 6-8 were evaluated as hPTP1B1-400 (human protein tyrosine phosphatase) inhibitors, where 7 showed the best activity, with an IC50 value in the lower μM range. Additionally, compound 7 was evaluated as an α-glucosidase inhibitor. The affinity constant of the 7-hPTP1B1-400 complex was determined by quenching fluorescence experiments (ka = 1.3 × 104 M-1), while the stoichiometry ratio (1:1 protein-ligand) was determined by a continuous variation method.
Collapse
Affiliation(s)
- José Rivera-Chávez
- Departamento de Productos Naturales, Instituto de Quı́mica, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, Mexico
| | - Celia Bustos-Brito
- Departamento de Productos Naturales, Instituto de Quı́mica, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, Mexico
| | - Enrique Aguilar-Ramírez
- Departamento de Productos Naturales, Instituto de Quı́mica, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, Mexico
| | - Diego Martínez-Otero
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Carretera Toluca-Atlacomulco, Toluca, 50200, Mexico
| | - Luis D Rosales-Vázquez
- Departamento de Quı́mica Inorgánica, Instituto de Quı́mica, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, Mexico
| | - Alejandro Dorazco-González
- Departamento de Quı́mica Inorgánica, Instituto de Quı́mica, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, Mexico
| | - Patricia Cano-Sánchez
- Departamento de Quı́mica de Biomacromoléculas, Instituto de Quı́mica, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, Mexico
| |
Collapse
|
16
|
Bustos-Brito C, Nieto-Camacho A, Hernandez-Ortega S, Rivera-Chávez J, Quijano L, Esquivel B. Structural Elucidation of Malonylcommunol and 6β-Hydroxy- trans-communic Acid, Two Undescribed Diterpenes from Salvia cinnabarina. First Examples of Labdane Diterpenoids from a Mexican Salvia Species. Molecules 2020; 25:molecules25081808. [PMID: 32326502 PMCID: PMC7222005 DOI: 10.3390/molecules25081808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/05/2020] [Accepted: 04/08/2020] [Indexed: 01/24/2023] Open
Abstract
The aerial parts of Salvia cinnabarina afforded two undescribed labdane diterpenoids 1 and 2 (malonylcommunol and 6β-hydroxy-trans-communic acid) along with two known labdane diterpenoids, trans-communic acid (3) and trans-communol (4). Additionally, seven known metabolites were also isolated; two isopimarane diterpenoids 5 and 6, two sesquiterpenoids identified as β-eudesmol (7) and cryptomeridiol (8), and three aromatic compounds identified as phthalic acid (9), a mixture of tyrosol fatty acid esters (10) and the flavone salvigenine (11). While compounds compounds 1-3 showed significant inhibition of yeast α-glucosidase, compounds 2, 3 and 7 had no anti-inflammatory activity in the edema model induced by TPA. This paper is not only the first report on a wild population of Salvia cinnabarina, but also of the presence of labdane-type diterpenoids in a Mexican Salvia sp.
Collapse
Affiliation(s)
| | | | | | | | - Leovigildo Quijano
- Correspondence: (L.Q.); (B.E.); Tel.: +52-55-5622-4411 (L.Q.); +52-55-5622-4448 (B.E.)
| | - Baldomero Esquivel
- Correspondence: (L.Q.); (B.E.); Tel.: +52-55-5622-4411 (L.Q.); +52-55-5622-4448 (B.E.)
| |
Collapse
|
17
|
Yu X, Müller WEG, Meier D, Kalscheuer R, Guo Z, Zou K, Umeokoli BO, Liu Z, Proksch P. Polyketide Derivatives from Mangrove Derived Endophytic Fungus Pseudopestalotiopsis theae. Mar Drugs 2020; 18:129. [PMID: 32102178 PMCID: PMC7073511 DOI: 10.3390/md18020129] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 11/30/2022] Open
Abstract
Chemical investigation of secondary metabolites from the endophytic fungus Pseudopestalotiopsis theae led to the isolation of eighteen new polyketide derivatives, pestalotheols I-Q (1-9) and cytosporins O-W (15-23), together with eight known analogs (10-14 and 24-26). The structures of the new compounds were elucidated by HRMS and 1D and 2D NMR data, as well as by comparison with literature data. Modified Mosher's method was applied to determine the absolute configuration of some compounds. Compound 23 showed significant cytotoxicity against the mouse lymphoma cell line L5178Y with an IC50 value of 3.0 μM. Furthermore, compounds 22 and 23 showed moderate antibacterial activity against drug-resistant Acinetobacter baumannii (ATCC BAA-1605) in combination with sublethal colistin concentrations.
Collapse
Affiliation(s)
- Xiaoqin Yu
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany; (X.Y.); (D.M.); (R.K.)
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China; (Z.G.); (K.Z.)
| | - Werner E. G. Müller
- Institute of Physiological Chemistry, Universitätsmedizin der Johannes Gutenberg-Universität Mainz, 55128 Mainz, Germany;
| | - Dieter Meier
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany; (X.Y.); (D.M.); (R.K.)
| | - Rainer Kalscheuer
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany; (X.Y.); (D.M.); (R.K.)
| | - Zhiyong Guo
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China; (Z.G.); (K.Z.)
| | - Kun Zou
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China; (Z.G.); (K.Z.)
| | - Blessing O. Umeokoli
- Department of Pharmaceutical and Medicinal Chemistry, Nnamdi Azikiwe University, 420281 Awka, Nigeria;
| | - Zhen Liu
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany; (X.Y.); (D.M.); (R.K.)
| | - Peter Proksch
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany; (X.Y.); (D.M.); (R.K.)
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China; (Z.G.); (K.Z.)
| |
Collapse
|
18
|
Wang W, Park C, Oh E, Sung Y, Lee J, Park KH, Kang H. Benzophenone Compounds, from a Marine-Derived Strain of the Fungus Pestalotiopsis neglecta, Inhibit Proliferation of Pancreatic Cancer Cells by Targeting the MEK/ERK Pathway. JOURNAL OF NATURAL PRODUCTS 2019; 82:3357-3365. [PMID: 31829592 DOI: 10.1021/acs.jnatprod.9b00646] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Pancreatic cancer, which has an extremely poor prognosis, is one of the most fatal human cancers. Chemotherapy is the main palliative treatment for advanced cancer patients and also plays an indispensable role in postoperative treatments for surgical patients. Therefore, there is an urgent need to develop more innovative anticancer drugs to fight against this fatal disease. Here, we investigate the potential of benzophenone derivatives, obtained from a marine-derived strain of the fungus Pestalotiopsis neglecta, as antiproliferative lead compounds for the treatment of pancreatic cancer. The compounds, seven new (1-7) and two known (8 and 9) halogenated benzophenone derivatives, were obtained by bioactivity-guided fractionation from the cultures of Pestalotiopsis neglecta. The structures were defined by spectroscopic methods including X-ray crystallographic analysis. Using the commonly used pancreatic cancer cell line PANC-1, 2 and 4 were found to suppress cell proliferation and induce apoptosis in the low micromolar range of 7.6 and 7.2 μM, respectively. Mechanistically, benzophenone derivatives not only inhibit MEK activity in the cytoplasm but also suppress ERK activity in the cytoplasm and nucleus. An in silico study suggests that benzophenone derivatives could potentially inhibit MEK activity by binding to the allosteric pocket in MEK. Benzophenones could serve as new lead compounds for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Weihong Wang
- Research Institute of Oceanography , Seoul National University , NS-80 , 08826 , Seoul , Korea
| | | | | | | | | | | | - Heonjoong Kang
- Research Institute of Oceanography , Seoul National University , NS-80 , 08826 , Seoul , Korea
| |
Collapse
|
19
|
Hill RA, Sutherland A. Hot off the Press. Nat Prod Rep 2019. [DOI: 10.1039/c9np90031d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A personal selection of 32 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as peyssonnoside A from a Peyssonnelia species.
Collapse
|