1
|
Dahalia M, Majid H, Khan MJ, Rathi A, Khan MA, Khan IA, Samim M, Rehman SU, Noorani MS, Vohora D, Nidhi. In vitro and in-vivo exploration of physostigmine analogues to understand the mechanistic crosstalk between Klotho and targets for epilepsy. Front Pharmacol 2025; 16:1580943. [PMID: 40351444 PMCID: PMC12062037 DOI: 10.3389/fphar.2025.1580943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 03/20/2025] [Indexed: 05/14/2025] Open
Abstract
Background Epilepsy and seizures are characterized by neuronal hyperexcitability and damage, influenced by metabolic dysregulation, neuroinflammation, and oxidative stress. Despite available treatments, many patients remain resistant to therapy, necessitating novel therapeutic strategies. Klotho, a neuroprotective, anti-inflammatory, and antioxidative protein has emerged as a potential modulator of epilepsy-related pathways. Objective This study investigates the therapeutic potential of novel physostigmine analogues in regulating Klotho expression and its downstream targets in epilepsy. Methods An integrative in vitro and in vivo approach was employed in PTZ-induced kindled mice. Behavioral assessments, including the Morris Water Maze (MWM), Rota Rod, Black and White Box, and Tail Suspension tests were conducted. Biochemical analyses quantified serum glucose, lipid profiles, pro-inflammatory cytokines (TNF-α, FOXO1), and apoptotic proteins (caspase-3). Quantitative real-time PCR (qRT-PCR) was performed to assess Klotho and epilepsy-associated gene expression (STAT3, Bax, Bcl2). Results The synthesized physostigmine analogues exhibited varying inhibitory effects on Klotho transcriptional activators, with Compound C (1,8-bis(phenylsulfonyl)-1,8-dihydropyrrolo [2,3-b] indole) showing the weakest inhibition (IC50 = 1.31 µM). In vivo, Compound C demonstrated anticonvulsant (p < 0.05), neuroprotective (5 mg/kg, p < 0.05, 10 mg/kg, p < 0.01, 20 mg/kg p < 0.0001), antidepressant (p < 0.05), and anti-inflammatory (p < 0.05) effects in PTZ-induced seizure models, improving motor function (p < 0.001), cognitive performance (p < 0.01), and reducing neuroinflammatory/metabolic markers (p < 0.05), while modulating STAT3 (p < 0.001), BAX (p < 0.001), Bcl2 (p < 0.05), and Klotho (p < 0.05) gene expression. Conclusion The therapeutic potential of 1,8-bis(phenylsulfonyl)-1,8-dihydropyrrolo [2,3-b] indole in epilepsy via Klotho modulation was observed. Targeting metabolic, inflammatory, and apoptotic pathways presents a promising strategy for epilepsy management. Further research is required to optimize clinical translation and ensure long-term efficacy and safety.
Collapse
Affiliation(s)
- Mansi Dahalia
- Department of Translational and Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Haya Majid
- Department of Translational and Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Mohd Junaid Khan
- Department of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Akshat Rathi
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Mohd Ashif Khan
- Department of Translational and Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Imran Ahmd Khan
- Department of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Mohammed Samim
- Department of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Sayeed Ur Rehman
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Md Salik Noorani
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Divya Vohora
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Nidhi
- Department of Translational and Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| |
Collapse
|
2
|
Koyama A, Kuranaga T, Suo T, Morimoto R, Matsumoto T, Kakeya H. Twisted Amide-Mediated Peptide Synthesis. Chemistry 2024; 30:e202403288. [PMID: 39333757 DOI: 10.1002/chem.202403288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 09/30/2024]
Abstract
A robust, practical, and sustainable isomerization-suppressed peptide bond formation via acyl sulfonamide, a twisted amide, is disclosed. Tosyl isocyanate and pentafluorobenzyl bromide were applied in combination to activate the peptide C-terminus, which then reacted with an amine to yield an elongated peptide with high stereochemical purity. Careful analysis of NMR spectra of the active intermediate revealed the presence of an intramolecular hydrogen bond, suggesting that the hydrogen bond suppressed Cα-epimerization during amidation. The isomerization suppression by the intramolecular hydrogen bond is expected to be effective even under high dilution conditions, making the present method a powerful tool for the synthesis of complex macrocyclic peptides. In addition to peptide synthesis, the developed synthetic entry to twisted amides can be applied to the investigation of transition metal-catalyzed N-C bond activation. Moreover, the application to the N-C bond activation returned insight into peptide synthesis, leading to the use of sulfonamide as a protecting group of carboxylic acid that can be orthogonally removed in the presence of other conventional protecting groups.
Collapse
Grants
- 17H06401, 19H02840, 22H04901, 23H04882, 24H00493 Ministry of Education, Culture, Sports, Science, and Technology, Japan
- 22K05112 Ministry of Education, Culture, Sports, Science, and Technology, Japan
- 24ama221540h0001, 24ama121034j0003 Japan Agency for Medical Research and Development
Collapse
Affiliation(s)
- Ai Koyama
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Takefumi Kuranaga
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Taiki Suo
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Ryota Morimoto
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Takumi Matsumoto
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hideaki Kakeya
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
3
|
Pankov RO, Tarabrin IR, Son AG, Minyaev ME, Prima DO, Ananikov VP. Synthesis and comparative study of (NHC F)PdCl 2Py and (NHC F)Ni(Cp)Cl complexes: investigation of the electronic properties of NHC ligands and complex characteristics. Dalton Trans 2024; 53:12503-12518. [PMID: 39011843 DOI: 10.1039/d4dt01304b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The electron-donating and electron-accepting properties of N-heterocyclic carbene (NHC) ligands play a pivotal role in governing their interactions with transition metals, thereby influencing the selectivity and reactivity in catalytic processes. Herein, we report the synthesis of Pd/NHCF and Ni/NHCF complexes, wherein the electronic parameters of the NHC ligands were systematically varied. By performing a series of controlled structure modifications, we elucidated the influence of the σ-donor and π-acceptor properties of NHC ligands on interactions with the transition metals Pd and Ni and, consequently, the catalytic behavior of Pd and Ni complexes. The present study deepens our understanding of NHC-metal interactions and provides novel information for the rational design of efficient catalysts for organic synthesis.
Collapse
Affiliation(s)
- Roman O Pankov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia.
| | - Ignatii R Tarabrin
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia.
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Alexandra G Son
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991, Russia
| | - Mikhail E Minyaev
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia.
| | - Darya O Prima
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia.
| | - Valentine P Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia.
| |
Collapse
|
4
|
Singh V, Rajput K, Mishra A, Singh S, Srivastava V. Microwave-assisted chemoselective transamidation of secondary amides by selective N-C(O) bond cleavage under catalyst, additive and solvent-free conditions. Chem Commun (Camb) 2023; 59:14009-14012. [PMID: 37941417 DOI: 10.1039/d3cc04128j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
A microwave-assisted, highly chemoselective protocol has been developed for the transamidation of tert-butyloxycarbonyl (Boc) activated secondary carboxamides with amines. Under non-conventional microwave techniques, the reactions were achieved under catalyst, additive, promoter and solvent-free conditions. The transamidation of a structurally diverse set of amides and amines was accomplished in good to excellent yields. The salient features of the developed methodology include a simple operation, broad substrate scope, functional group tolerance, practicality, and the scalability.
Collapse
Affiliation(s)
- Vishal Singh
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi-221005, UP, India.
| | - Khushbu Rajput
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi-221005, UP, India.
| | - Ankush Mishra
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi-221005, UP, India.
| | - Sundaram Singh
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi-221005, UP, India.
| | - Vandana Srivastava
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi-221005, UP, India.
| |
Collapse
|
5
|
Moon H, Lee S. Reductive cross-coupling of N-acyl pyrazole and nitroarene using tetrahydroxydiboron: synthesis of secondary amides. Org Biomol Chem 2023; 21:8329-8334. [PMID: 37795749 DOI: 10.1039/d3ob01040f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
We report on a new method for the synthesis of amides using acyl pyrazoles and nitroarenes under reducing conditions. It was found that acyl pyrazoles react with organo-nitro compounds in the presence of B2(OH)4, giving the corresponding amides in good yields. We demonstrated that benzoyl pyrazoles having various substituents and nitroarenes with different substituents can be used to produce a range of N-substituted benzamides. The method shows good functional group tolerance and has potential application in the synthesis of a variety of organic molecules.
Collapse
Affiliation(s)
- Hayeon Moon
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Sunwoo Lee
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
6
|
Gao P, Rahman MM, Zamalloa A, Feliciano J, Szostak M. Classes of Amides that Undergo Selective N-C Amide Bond Activation: The Emergence of Ground-State Destabilization. J Org Chem 2023; 88:13371-13391. [PMID: 36054817 DOI: 10.1021/acs.joc.2c01094] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ground-state destabilization of the N-C(O) linkage represents a powerful tool to functionalize the historically inert amide bond. This burgeoning reaction manifold relies on the availability of amide bond precursors that participate in weakening of the nN → π*C=O conjugation through N-C twisting, N pyramidalization, and nN electronic delocalization. Since 2015, acyl N-C amide bond activation through ground-state destabilization of the amide bond has been achieved by transition-metal-catalyzed oxidative addition of the N-C(O) bond, generation of acyl radicals, and transition-metal-free acyl addition. This Perspective summarizes contributions of our laboratory in the development of new ground-state-destabilized amide precursors enabled by twist and electronic activation of the amide bond and synthetic utility of ground-state-destabilized amides in cross-coupling reactions and acyl addition reactions. The use of ground-state-destabilized amides as electrophiles enables a plethora of previously unknown transformations of the amide bond, such as acyl coupling, decarbonylative coupling, radical coupling, and transition-metal-free coupling to forge new C-C, C-N, C-O, C-S, C-P, and C-B bonds. Structural studies of activated amides and catalytic systems developed in the past decade enable the view of the amide bond to change from the "traditionally inert" to "readily modifiable" functional group with a continuum of reactivity dictated by ground-state destabilization.
Collapse
Affiliation(s)
- Pengcheng Gao
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Md Mahbubur Rahman
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Alfredo Zamalloa
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Jessica Feliciano
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
7
|
Rajendran N, Kamaraj K, Janakiraman S, Saral M, Dixneuf PH, Bheeter CB. A sustainable metal and base-free direct amidation of esters using water as a green solvent. RSC Adv 2023; 13:14958-14962. [PMID: 37200700 PMCID: PMC10186333 DOI: 10.1039/d3ra02637j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 04/28/2023] [Indexed: 05/20/2023] Open
Abstract
Herein, we report a simple and efficient synthetic approach for direct amidation of esters via C(acyl)-O bond cleavage without any additional reagents or catalysts, using only water as a green solvent. Subsequently, the reaction byproduct is recovered and utilized for the next phase of ester synthesis. This method emphasized metal-free, additive-free, and base-free characteristics making it a new, sustainable, and eco-friendly way to realize direct amide bond formation. In addition, the synthesis of the drug molecule diethyltoluamide and the Gram-scale synthesis of a representative amide are demonstrated.
Collapse
Affiliation(s)
- Nanthini Rajendran
- Department of Chemistry, School of Advanced Sciences, Vellore of Institute of Technology Vellore-632014 TamilNadu India
| | - Kiruthigadevi Kamaraj
- Department of Chemistry, School of Advanced Sciences, Vellore of Institute of Technology Vellore-632014 TamilNadu India
| | - Saranya Janakiraman
- Department of Chemistry, School of Advanced Sciences, Vellore of Institute of Technology Vellore-632014 TamilNadu India
| | - Mary Saral
- Department of Chemistry, School of Advanced Sciences, Vellore of Institute of Technology Vellore-632014 TamilNadu India
| | | | - Charles Beromeo Bheeter
- Department of Chemistry, School of Advanced Sciences, Vellore of Institute of Technology Vellore-632014 TamilNadu India
| |
Collapse
|
8
|
Lv C, Zhao R, Wang X, Liu D, Muschin T, Sun Z, Bai C, Bao A, Bao YS. Copper-Catalyzed Transamidation of Unactivated Secondary Amides via C-H and C-N Bond Simultaneous Activations. J Org Chem 2023; 88:2140-2157. [PMID: 36701175 DOI: 10.1021/acs.joc.2c02551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Here, we demonstrate that α-C-H and C-N bonds of unactivated secondary amides can be activated simultaneously by the copper catalyst to synthesize α-ketoamides or α-ketoesters in one step, which is a challenging and underdeveloped transformation. Using copper as a catalyst and air as an oxidant, the reaction is compatible with a broad range of acetoamides, amines, and alcohols. The preliminary mechanism studies and density functional theory calculation indicated that the reaction process may undergo first radical α-oxygenation and then transamidation with the help of the resonant six-membered N,O-chelation and molecular oxygen plays a role as an initiator to trigger the transamidation process. The combination of chelation assistance and dioxygen selective oxygenation strategy would substantially extend the modern mild synthetic amide cleavage toolbox, and we envision that this broadly applicable method will be of great interest in the biopharmaceutical industry, synthetic chemistry, and agrochemical industry.
Collapse
Affiliation(s)
- Cong Lv
- Inner Mongolia Key Laboratory of Green Catalysis, College of Chemistry and Environmental Science, Inner Mongolia Normal University, Hohhot 010022, China
| | - Ruisheng Zhao
- Inner Mongolia Key Laboratory of Green Catalysis, College of Chemistry and Environmental Science, Inner Mongolia Normal University, Hohhot 010022, China
| | - Xiuying Wang
- Inner Mongolia Autonomous Region Animal Epidemic Prevention Center, Hohhot 010020, China
| | - Dan Liu
- Inner Mongolia Key Laboratory of Green Catalysis, College of Chemistry and Environmental Science, Inner Mongolia Normal University, Hohhot 010022, China
| | - Tegshi Muschin
- Inner Mongolia Key Laboratory of Green Catalysis, College of Chemistry and Environmental Science, Inner Mongolia Normal University, Hohhot 010022, China
| | - Zhaorigetu Sun
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010020, China
| | - Chaolumen Bai
- Inner Mongolia Key Laboratory of Green Catalysis, College of Chemistry and Environmental Science, Inner Mongolia Normal University, Hohhot 010022, China
| | - Agula Bao
- Inner Mongolia Key Laboratory of Green Catalysis, College of Chemistry and Environmental Science, Inner Mongolia Normal University, Hohhot 010022, China
| | - Yong-Sheng Bao
- Inner Mongolia Key Laboratory of Green Catalysis, College of Chemistry and Environmental Science, Inner Mongolia Normal University, Hohhot 010022, China
| |
Collapse
|
9
|
Yang S, Yu X, Szostak M. Divergent Acyl and Decarbonylative Liebeskind-Srogl Cross-Coupling of Thioesters by Cu-Cofactor and Pd-NHC (NHC = N-Heterocyclic Carbene) Catalysis. ACS Catal 2023; 13:1848-1855. [PMID: 38037656 PMCID: PMC10686545 DOI: 10.1021/acscatal.2c05550] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Transition-metal-catalyzed cross-coupling reactions of thioesters by selective acyl C(O)-S cleavage have emerged as a powerful platform for the preparation of complex molecules. Herein, we report divergent Liebeskind-Srogl cross-coupling of thioesters by Pd-NHC (NHC = N-heterocyclic carbene) catalysis. The reaction provides straightforward access to functionalized ketones by highly selective C(acyl)-S cleavage under mild conditions. Most crucially, the conditions enable direct functionalization of a range of complex pharmaceuticals decorated with a palette of sensitive functional groups, providing attractive products for medicinal chemistry programs. Furthermore, decarbonylative Liebeskind-Srogl cross-coupling by C(acyl)-S/C(aryl)-C(O) cleavage is reported. Cu metal cofactor directs the reaction pathway to acyl or decarbonylative pathway. This reactivity is applicable to complex pharmaceuticals. The reaction represents the mildest decarbonylative Suzuki cross-coupling discovered to date. The Cu-directed divergent acyl and decarbonylative cross-coupling of thioesters opens up chemical space in complex molecule synthesis.
Collapse
Affiliation(s)
- Shiyi Yang
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Xiang Yu
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
10
|
Direct Synthesis of Amides through Transamidation Using Dichloroimidazolinedione (DCID). Tetrahedron Lett 2023. [DOI: 10.1016/j.tetlet.2023.154392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
11
|
Liu C, Szostak M. Amide N-C Bond Activation: A Graphical Overview of Acyl and Decarbonylative Coupling. SYNOPEN 2023; 7:88-101. [PMID: 38037650 PMCID: PMC10686541 DOI: 10.1055/a-2035-6733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
This Graphical Review provides an overview of amide bond activation achieved by selective oxidative addition of the N-C(O) acyl bond to transition metals and nucleophilic acyl addition, resulting in acyl and decarbonylative coupling together with key mechanistic details pertaining to amide bond distortion underlying this reactivity manifold.
Collapse
Affiliation(s)
- Chengwei Liu
- Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai 200444, China
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA
| |
Collapse
|
12
|
Chu W, Zhou T, Bisz E, Dziuk B, Lalancette R, Szostak R, Szostak M. CAAC-IPr*: easily accessible, highly sterically-hindered cyclic (alkyl)(amino)carbenes. Chem Commun (Camb) 2022; 58:13467-13470. [PMID: 36382995 PMCID: PMC9737351 DOI: 10.1039/d2cc05668b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
IPr* (IPr* = 1,3-bis(2,6-bis(diphenylmethyl)-4-methylphenyl)imidazol-2-ylidene) has emerged as a powerful highly hindered and sterically-flexible ligand platform for transition-metal catalysis. CAACs (CAAC = cyclic (al-kyl)(amino)carbenes) have gained major attention as strongly electron-rich carbon analogues of NHCs (NHC = N-heterocyclic carbene) with broad applications in both industry and academia. Herein, we report a merger of CAAC ligands with highly-hindered IPr*. The efficient synthesis, electronic characterization and application in model Cu-catalyzed hydroboration of alkynes is described. The ligands are strongly electron-rich, bulky and flexible around the N-Ar wingtip. The availability of various IPr* and CAAC templates offers a significant potential to expand the existing arsenal of NHC ligands to electron-rich bulky architectures with critical applications in metal stabilization and catalysis.
Collapse
Affiliation(s)
- Wenchao Chu
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, USA.
| | - Tongliang Zhou
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, USA.
| | - Elwira Bisz
- Department of Chemistry, Opole University, 48 Oleska Street, Opole 45-052, Poland
| | - Błażej Dziuk
- Faculty of Chemistry, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Roger Lalancette
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, USA.
| | - Roman Szostak
- Department of Chemistry, Wroclaw University, F. Joliot-Curie 14, Wroclaw 50-383, Poland
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, USA.
| |
Collapse
|
13
|
Zhou T, Gao P, Bisz E, Dziuk B, Lalancette R, Szostak R, Szostak M. Well-Defined, Air- and Moisture-Stable Palladium-Imidazo[1,5- a]pyridin-3-ylidene Complexes: A Versatile Catalyst Platform for Cross-Coupling Reactions by L-Shaped NHC Ligands. Catal Sci Technol 2022; 12:6581-6589. [PMID: 38045636 PMCID: PMC10691866 DOI: 10.1039/d2cy01136k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
We describe the development of [(NHC)Pd(cinnamyl)Cl] complexes of ImPy (ImPy = imidazo[1,5-a]pyridin-3-ylidene) as a versatile class of precatalysts for cross-coupling reactions. These precatalysts feature fast activation to monoligated Pd(0) with 1:1 Pd to ligand ratio in a rigid imidazo[1,5-a]pyridin-3-ylidene template. Steric matching of the C5-substituent and N2-wingtip in the catalytic pocket of the catalyst framework led to the discovery of ImPyMesDipp as a highly reactive imidazo[1,5-a]pyridin-3-ylidene ligand for Pd-catalyzed cross-coupling of nitroarenes by challenging C-NO2 activation. Kinetic studies demonstrate fast activation and high reactivity of this class of well-defined ImPy-Pd catalysts. Structural studies provide full characteristics of this new class of imidazo[1,5-a]pyridin-3-ylidene ligands. Computational studies establish electronic properties of sterically-restricted imidazo[1,5-a]pyridin-3-ylidene ligands. Finally, a scalable synthesis of C5-substituted imidazo[1,5-a]pyridin-3-ylidene ligands through Ni-catalyzed Kumada cross-coupling is disclosed. The method obviates chromatographic purification at any of the steps, resulting in a facile and modular access to ImPy ligands. We anticipate that well-defined [Pd-ImPy] complexes will find broad utility in organic synthesis and catalysis for activation of unreactive bonds.
Collapse
Affiliation(s)
- Tongliang Zhou
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA
| | - Pengcheng Gao
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA
| | - Elwira Bisz
- Department of Chemistry, Opole University, 48 Oleska Street, Opole 45-052, Poland
| | - Błażej Dziuk
- Department of Chemistry, University of Science and Technology, Norwida 4/6, Wroclaw 50-373, Poland
| | - Roger Lalancette
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA
| | - Roman Szostak
- Department of Chemistry, Wroclaw University, F. Joliot-Curie 14, Wroclaw 50-383, Poland
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA
| |
Collapse
|
14
|
Zhang W, Smillovich J, Albert V. Palladium Catalyzed Amidation of Phenyl Carboxylates and Anilines Using Aqueous Micellar Catalysis. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Flow reaction system for the synthesis of benzoylacetonitrile via the reaction of amides and acetonitrile. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Mukherjee A, Nad P, Gupta K, Sen A. Mechanistic Understanding of KOtBu-Mediated Direct Amidation of Esters with Anilines: An Experimental Study and Computational Approach. Chem Asian J 2022; 17:e202200800. [PMID: 36048008 DOI: 10.1002/asia.202200800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/22/2022] [Indexed: 11/12/2022]
Abstract
A sustainable and cost-effective protocol has been reported for the synthesis of amide bonds from unactivated esters and non-nucleophilic amines promoted by potassium tert -butoxide under aerobic conditions. The reaction proceeds under relatively mild conditions, encompassing wide substrate scope. A combined experimental and quantum chemical study has been performed to shed light on the mechanism, which implied that a radical pathway is operating for the present protocol.
Collapse
Affiliation(s)
- Arup Mukherjee
- Indian Institute of Technology Bhilai, Chemistry, GEC Campus, Raipur, 492015, Raipur, INDIA
| | - Pinaki Nad
- IIT Bhilai: Indian Institute of Technology Bhilai, Chemistry, INDIA
| | - Kriti Gupta
- IIT Bhilai: Indian Institute of Technology Bhilai, Chemistry, INDIA
| | - Anik Sen
- GITAM Institute of Science: Gandhi Institute of Technology and Management Institute of Science, Chemistry, INDIA
| |
Collapse
|
17
|
Lei P, Wang Y, Zhang C, Hu Y, Feng J, Ma Z, Liu X, Szostak R, Szostak M. Sonogashira Cross-Coupling of Aryl Ammonium Salts by Selective C-N Activation Catalyzed by Air- and Moisture-Stable, Highly Active [Pd(NHC)(3-CF 3-An)Cl 2] (An = Aniline) Precatalysts. Org Lett 2022; 24:6310-6315. [PMID: 36001796 DOI: 10.1021/acs.orglett.2c02534] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the Sonogashira cross-coupling of aryl ammonium salts catalyzed by air- and moisture-stable [Pd(NHC)(3-CF3-An)Cl2] (An = aniline). This highly active Pd(II)-NHC complex features broad scope and excellent C-N activation selectivity in the challenging alkynylative cross-coupling of aryl ammonium salts. Full structural characterization and computational studies demonstrate the effect of pyridine to aniline replacement as highly effective stabilizing ancillary ligand in well-defined Pd(II)-NHCs. Considering the high reactivity and the recent commercialization of [Pd(NHC)(3-CF3-An)Cl2] (Millipore Sigma, no. 915165), this catalyst represents an attractive approach to the activation of C-N bonds of broad synthetic interest.
Collapse
Affiliation(s)
- Peng Lei
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.,Shaanxi Research Center of Biopesticide Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.,State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yibo Wang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Caixia Zhang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuge Hu
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Juntao Feng
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.,Shaanxi Research Center of Biopesticide Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhiqing Ma
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.,Shaanxi Research Center of Biopesticide Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xili Liu
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.,State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Roman Szostak
- Department of Chemistry, Wroclaw University, F. Joliot-Curie 14, Wroclaw 50-383, Poland
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
18
|
Zhang J, Rahman M, Zhao Q, Feliciano J, Bisz E, Dziuk B, Lalancette R, Szostak R, Szostak M. N-Heterocyclic Carbene Complexes of Nickel(II) from Caffeine and Theophylline: Sustainable Alternative to Imidazol-2-ylidenes. Organometallics 2022; 41:1806-1815. [PMID: 36213557 PMCID: PMC9534456 DOI: 10.1021/acs.organomet.2c00019] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Xanthines, such as caffeine and theophylline, are abundant natural products that are often present in foods. Leveraging renewable and benign resources for ligand design in organometallic chemistry and catalysis is one of the major missions of green and sustainable chemistry. In this Special Issue on Sustainable Organometallic Chemistry, we report the first nickel-N-heterocyclic carbene complexes derived from Xanthines. Well-defined, air- and moisture-stable, half-sandwich, cyclopentadienyl [CpNi(NHC)I] nickel-NHC complexes are prepared from the natural products caffeine and theophylline. The model complex has been characterized by x-ray crystallography. The evaluation of steric, electron-donating and π-accepting properties is presented. High activity in the model Suzuki-Miyaura cross-coupling is demonstrated. The data show that nickel-N-heterocyclic carbenes derived from both Earth abundant 3d transition metal and renewable natural products represent a sustainable alternative to the classical imidazol-2-ylidenes.
Collapse
Affiliation(s)
- Jin Zhang
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an 710021, China
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Mahbubur Rahman
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Qun Zhao
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Jessica Feliciano
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Elwira Bisz
- Department of Chemistry, Opole University, 48 Oleska Street, Opole 45-052, Poland
| | - Błażej Dziuk
- Department of Chemistry, University of Science and Technology, Norwida 4/6, Wroclaw 50-373, Poland
| | - Roger Lalancette
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Roman Szostak
- Department of Chemistry, Wroclaw University, F. Joliot-Curie 14, Wroclaw 50-383, Poland
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
19
|
Zuo D, Wang Q, Liu L, Huang T, Szostak M, Chen T. Highly Chemoselective Transamidation of Unactivated Tertiary Amides by Electrophilic N-C(O) Activation by Amide-to-Acyl Iodide Re-routing. Angew Chem Int Ed Engl 2022; 61:e202202794. [PMID: 35355386 DOI: 10.1002/anie.202202794] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Indexed: 12/20/2022]
Abstract
The challenging transamidation of unactivated tertiary amides has been accomplished via cooperative acid/iodide catalysis. Most crucially, the method provides a novel manifold to re-route the reactivity of unactivated N,N-dialkyl amides through reactive acyl iodide intermediates, thus reverting the classical order of reactivity of carboxylic acid derivatives. This method provides a direct route to amide-to-amide bond interconversion with excellent chemoselectivity using equivalent amounts of amines. The combination of acid and iodide has been identified as the essential factor to activate the amide C-N bond through electrophilic catalytic activation, enabling the production of new desired transamidated products with wide substrate scope of both unactivated amides and amines, including late-stage functionalization of complex APIs (>80 examples). We anticipate that this powerful activation mode of unactivated amide bonds will find broad-ranging applications in chemical synthesis.
Collapse
Affiliation(s)
- Dongxu Zuo
- College of Chemical Engineering and Technology, Hainan University, Haikou, 570228, China
| | - Qun Wang
- College of Chemical Engineering and Technology, Hainan University, Haikou, 570228, China
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Long Liu
- College of Chemical Engineering and Technology, Hainan University, Haikou, 570228, China
| | - Tianzeng Huang
- College of Chemical Engineering and Technology, Hainan University, Haikou, 570228, China
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA
| | - Tieqiao Chen
- College of Chemical Engineering and Technology, Hainan University, Haikou, 570228, China
| |
Collapse
|
20
|
Zhang J, Zhao H, Li G, Zhu X, Shang L, He Y, Liu X, Ma Y, Szostak M. Transamidation of thioamides with nucleophilic amines: thioamide N-C(S) activation by ground-state-destabilization. Org Biomol Chem 2022; 20:5981-5988. [PMID: 35441645 DOI: 10.1039/d2ob00412g] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Thioamides are 'single-atom' isosteres of amide bonds that have found broad applications in organic synthesis, biochemistry and drug discovery. In this New Talent themed issue, we present a general strategy for activation of N-C(S) thioamide bonds by ground-state-destabilization. This concept is outlined in the context of a full study on transamidation of thioamides with nucleophilic amines, and relies on (1) site-selective N-activation of the thioamide bond to decrease resonance and (2) highly chemoselective nucleophilic acyl addition to the thioamide CS bond. The follow-up collapse of the tetrahedral intermediate is favored by the electronic properties of the amine leaving group. The ground-state-destabilization concept of thioamides enables weakening of the N-C(S) bond and rationally modifies the properties of valuable thioamide isosteres for the development of new methods in organic synthesis. We fully expect that in analogy to the burgeoning field of destabilized amides introduced by our group in 2015, the thioamide bond ground-state-destabilization activation concept will find broad applications in various facets of chemical science, including metal-free, metal-catalyzed and metal-promoted reaction pathways.
Collapse
Affiliation(s)
- Jin Zhang
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an 710021, China. .,Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA.
| | - Hui Zhao
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Guangchen Li
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA.
| | - Xinhao Zhu
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Linqin Shang
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Yang He
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Xin Liu
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Yangmin Ma
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA.
| |
Collapse
|
21
|
Zuo D, Wang Q, Liu L, Huang T, Szostak M, Chen T. Highly Chemoselective Transamidation of Unactivated Tertiary Amides by Electrophilic N–C(O) Activation via Amide‐to‐Acyl Iodide Re‐Routing. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Dongxu Zuo
- Hainan University College of Chemical Engineering and Technology CHINA
| | - Qun Wang
- Hunan University College of Chemistry and Chemical Engineering CHINA
| | - Long Liu
- Hainan University College of Chemical Engineering and Technology CHINA
| | - Tianzeng Huang
- Hainan University College of Chemical Engineering and Technology CHINA
| | - Michal Szostak
- Rutgers University Newark Department of Chemistry UNITED STATES
| | - Tieqiao Chen
- Hainan University College of Chemical Engineering and Technology No. 58, Renmin Avenue, Meilan District 570228 Haikou CHINA
| |
Collapse
|
22
|
Zhang J, Zhang P, Ma Y, Szostak M. Mechanochemical Synthesis of Ketones via Chemoselective Suzuki-Miyaura Cross-Coupling of Acyl Chlorides. Org Lett 2022; 24:2338-2343. [PMID: 35297638 DOI: 10.1021/acs.orglett.2c00519] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The direct synthesis of ketones via acyl Suzuki-Miyaura cross-coupling of widely available acyl chlorides is a central transformation in organic synthesis. Herein, we report the first mechanochemical solvent-free method for highly chemoselective synthesis of ketones from acyl chlorides and boronic acids. This acylation reaction is conducted in the solid state, in the absence of potentially harmful solvents, for a short reaction time and shows excellent selectivity for C(acyl)-Cl bond cleavage.
Collapse
Affiliation(s)
- Jin Zhang
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Pei Zhang
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yangmin Ma
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
23
|
Xu Y, Long Y, Ye R, Li Q, Ke F, Zhou X. Fe( iii)-catalysed selective C–N bond cleavage of N-phenylamides by an electrochemical method. RSC Adv 2022; 12:24217-24221. [PMID: 36128521 PMCID: PMC9403817 DOI: 10.1039/d2ra04709h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/17/2022] [Indexed: 11/21/2022] Open
Abstract
An Fe(iii)-catalysed transformation of secondary N-phenyl substituted amides to primary amides by an electrochemical method is developed. Regioselective aryl C–H oxygenation occurs during the reaction, promoting selective C(phenyl)-N bond cleavage to form primary amides in yields of up to 92%. An Fe(iii)-catalysed transformation of secondary N-phenyl substituted amides to primary amides by an electrochemical method is developed.![]()
Collapse
Affiliation(s)
- Yiwen Xu
- College of Chemistry, Sichuan University, Wangjiang Road 29, Chengdu 610064, China
| | - Yang Long
- College of Chemistry, Sichuan University, Wangjiang Road 29, Chengdu 610064, China
| | - Runyou Ye
- College of Chemistry, Sichuan University, Wangjiang Road 29, Chengdu 610064, China
| | - Qiang Li
- College of Chemistry, Sichuan University, Wangjiang Road 29, Chengdu 610064, China
| | - Fang Ke
- School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou 350004, China
| | - Xiangge Zhou
- College of Chemistry, Sichuan University, Wangjiang Road 29, Chengdu 610064, China
| |
Collapse
|
24
|
Zheng DZ, Xiong HG, Song AX, Yao HG, Xu C. Buchwald-Hartwig Amination of Aryl Esters and Chlorides catalyzed by Dianisole-decorated Pd-NHC complex. Org Biomol Chem 2022; 20:2096-2101. [DOI: 10.1039/d1ob02051j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A modular and generic method for the Buchwald-Hartwig amination reactions of relatively unreactive aryl esters as acyl electrophiles and aryl chlorides as aryl electrophiles is developed, delivering efficient synthesis of...
Collapse
|
25
|
Zhang J, Li T, Li X, Zhang G, Fang S, Yan W, Li X, Yang X, Ma Y, Szostak M. Air-Stable, Well-Defined Palladium–BIAN–NHC Chloro Dimer: Fast-Activating, Highly Efficient Catalyst for Cross-Coupling. Chem Commun (Camb) 2022; 58:7404-7407. [DOI: 10.1039/d2cc02253b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the synthesis, characterization and reactivity of an air-stable, well-defined acenaphthoimidazolylidene palladium–BIAN–NHC chloro dimer complex, [Pd(BIAN–IPr)(μ-Cl)Cl]2. This rapidly activating catalyst merges the reactive properties of palladium chloro dimers, [Pd(NHC)(μ-Cl)Cl]2,...
Collapse
|
26
|
Liu Y, Mo X, Majeed I, Zhang M, Wang H, Zeng Z. An Efficient and Straightforward Approach for Accessing Thioesters via Palladium-Catalyzed C-N Cleavage of Thioamides. Org Biomol Chem 2022; 20:1532-1537. [DOI: 10.1039/d1ob02349g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We first report the coupling of activated thioamides with alcohols to efficiently form thioesters via palladium-catalyzed C-N cleavage strategy. The new approach employs the thioamides as thioacylating reagent to give...
Collapse
|
27
|
Zhang HY, Tao XW, Yi LN, Zhao ZG, Yang Q. Transamidation and Decarbonylation of N-Phthaloyl-Amino Acid Amides Enabled by Palladium-Catalyzed Selective C-N Bond Cleavage. J Org Chem 2021; 87:231-242. [PMID: 34941259 DOI: 10.1021/acs.joc.1c02245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Amides are important functional synthons that have been widely used in the construction of peptides, natural products, and drugs. The C-N bond cleavage provides the direct method for amide conversion. However, amides, especially secondary amides, tend to be chemically inert due to the resonance of the amide bond. Here, we describe an efficient Pd-catalyzed transamidation and decarbonylation of multiamide structure molecules through C-N bond cleavage with excellent chemoselectivity. The transamidation of secondary amides and the decarbonylation of phthalimide provide meaningful tools for the modification of amino acid derivatives. Moreover, further transformations of azidation and C(sp3)-H monoarylation emphasized the potential utility of this selective C-N bond cleavage method.
Collapse
Affiliation(s)
- Hao-Yu Zhang
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Xuan-Wen Tao
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Li-Na Yi
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Zhi-Gang Zhao
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Qiang Yang
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|
28
|
Xiao HX, Hsu WY, Liang SW, Guo Y, Lee WC, Lu IC, Chang YC. Bulky Di(1-adamantyl)phosphinous Acid-Ligated Pd(II) Precatalysts for Suzuki Reactions of Unreactive Aryl Chlorides. ACS OMEGA 2021; 6:35134-35143. [PMID: 34963994 PMCID: PMC8697604 DOI: 10.1021/acsomega.1c06430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 11/25/2021] [Indexed: 06/14/2023]
Abstract
Di(1-adamantyl)phosphine oxide (SPO-Ad: Ad2P(V)(=O)H), a stable tautomer of di(1-adamantyl)phosphinous acid (PA-Ad: Ad2P(III)-OH), was employed to synthesize two new PA-Ad-coordinated complexes, POPd-Ad and POPd2-Ad. POPd-Ad was easily transformed from POPd2-Ad in acetonitrile, and the [M - H]- ion of the deprotonated POPd-Ad was observed in the electrospray ionization-mass spectrum of POPd2-Ad. Both complexes are effective precatalysts for the Suzuki reaction of aryl chlorides. The reduction of Pd(II) in POPd-Ad and POPd2-Ad by arylboronic acid was examined, and the ideal Pd-to-PA ratio in the Suzuki reaction was found to be 1:1. The effect of temperature on the catalytic yields was studied to examine the possible ligation state of the active species and the dimer-to-monomer process of POPd2-Ad. Mononuclear and mono-ligated Pd species was assumed to be catalytically active. The electronic and steric effects of PA-Ad were slightly better than those reported for PA-tBu ( t Bu2P(III)-OH). Density functional theory calculations were performed to evaluate the formation of mono-ligated and mononuclear Pd species from POPd-Ad and POPd2-Ad. Furthermore, the reaction time and catalyst loading could be reduced for the reported POPd1-tBu precatalyst using the optimized reaction conditions for POPd-Ad. The complexes synthesized in this extensive study will complement the existing SPO-coordinated POPd series of precatalysts.
Collapse
Affiliation(s)
- He-Xin Xiao
- Department
of Applied Chemistry, Providence University, 200, Sec. 7, Taiwan Boulevard, Shalu
Dist., Taichung City 43301, Taiwan
| | - Wan-Yun Hsu
- Department
of Applied Chemistry, Providence University, 200, Sec. 7, Taiwan Boulevard, Shalu
Dist., Taichung City 43301, Taiwan
| | - Siou-Wei Liang
- Department
of Applied Chemistry, Providence University, 200, Sec. 7, Taiwan Boulevard, Shalu
Dist., Taichung City 43301, Taiwan
| | - Yingjie Guo
- Department
of Cosmetic Science, Providence University, 200, Sec. 7, Taiwan Boulevard, Shalu
Dist., Taichung City 43301, Taiwan
| | - Wan-Ching Lee
- Department
of Chemistry, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City40227, Taiwan
| | - I-Chung Lu
- Department
of Chemistry, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City40227, Taiwan
| | - Yu-Chang Chang
- Department
of Applied Chemistry, Providence University, 200, Sec. 7, Taiwan Boulevard, Shalu
Dist., Taichung City 43301, Taiwan
| |
Collapse
|
29
|
Li DH, Lan XB, Song AX, Rahman MM, Xu C, Huang FD, Szostak R, Szostak M, Liu FS. Buchwald-Hartwig Amination of Coordinating Heterocycles Enabled by Large-but-Flexible Pd-BIAN-NHC Catalysts*. Chemistry 2021; 28:e202103341. [PMID: 34773313 DOI: 10.1002/chem.202103341] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Indexed: 01/21/2023]
Abstract
A new class of large-but-flexible Pd-BIAN-NHC catalysts (BIAN=acenaphthoimidazolylidene, NHC=N-heterocyclic carbene) has been rationally designed to enable the challenging Buchwald-Hartwig amination of coordinating heterocycles. This robust class of BIAN-NHC catalysts permits cross-coupling under practical aerobic conditions of a variety of heterocycles with aryl, alkyl, and heteroarylamines, including historically challenging oxazoles and thiazoles as well as electron-deficient heterocycles containing multiple heteroatoms with BIAN-INon (N,N'-bis(2,6-di(4-heptyl)phenyl)-7H-acenaphtho[1,2-d]imidazol-8-ylidene) as the most effective ligand. Studies on the ligand structure and electronic properties of the carbene center are reported. The study should facilitate the discovery of even more active catalyst systems based on the unique BIAN-NHC scaffold.
Collapse
Affiliation(s)
- Dong-Hui Li
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, Guangdong, 528458, P. R. China
| | - Xiao-Bing Lan
- Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds Research and Application, School of Chemistry and Environmental Science, Xiangnan University, Chenzhou, Hunan Province 423000, P. R. China
| | - A-Xiang Song
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, Guangdong, 528458, P. R. China
| | - Md Mahbubur Rahman
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA
| | - Chang Xu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, Guangdong, 528458, P. R. China
| | - Fei-Dong Huang
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, Guangdong, 528458, P. R. China
| | - Roman Szostak
- Department of Chemistry, Wroclaw University, F. Joliot-Curie 14, Wroclaw, 50-383, Poland
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA
| | - Feng-Shou Liu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, Guangdong, 528458, P. R. China
| |
Collapse
|
30
|
Nicholson WI, Barreteau F, Leitch JA, Payne R, Priestley I, Godineau E, Battilocchio C, Browne DL. Direct Amidation of Esters by Ball Milling**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- William I. Nicholson
- School of Chemistry Cardiff University Park Place, Main Building Cardiff CF10 3AT UK
| | - Fabien Barreteau
- Syngenta Crop Protection AG Schaffauserstrasse 101 4332 Stein Switzerland
| | - Jamie A. Leitch
- Department of Pharmaceutical and Biological Chemistry University College London (UCL) School of Pharmacy 29–39 Brunswick Square, Bloomsbury London WC1N 1AX UK
| | - Riley Payne
- Department of Pharmaceutical and Biological Chemistry University College London (UCL) School of Pharmacy 29–39 Brunswick Square, Bloomsbury London WC1N 1AX UK
| | - Ian Priestley
- Syngenta Ltd. Huddersfield Manufacturing Centre Huddersfield HD2 1FF UK
| | - Edouard Godineau
- Syngenta Crop Protection AG Schaffauserstrasse 101 4332 Stein Switzerland
| | | | - Duncan L. Browne
- Department of Pharmaceutical and Biological Chemistry University College London (UCL) School of Pharmacy 29–39 Brunswick Square, Bloomsbury London WC1N 1AX UK
| |
Collapse
|
31
|
Nicholson WI, Barreteau F, Leitch JA, Payne R, Priestley I, Godineau E, Battilocchio C, Browne DL. Direct Amidation of Esters by Ball Milling*. Angew Chem Int Ed Engl 2021; 60:21868-21874. [PMID: 34357668 DOI: 10.1002/anie.202106412] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Indexed: 12/25/2022]
Abstract
The direct mechanochemical amidation of esters by ball milling is described. The operationally simple procedure requires an ester, an amine, and substoichiometric KOtBu and was used to prepare a large and diverse library of 78 amide structures with modest to excellent efficiency. Heteroaromatic and heterocyclic components are specifically shown to be amenable to this mechanochemical protocol. This direct synthesis platform has been applied to the synthesis of active pharmaceutical ingredients (APIs) and agrochemicals as well as the gram-scale synthesis of an active pharmaceutical, all in the absence of a reaction solvent.
Collapse
Affiliation(s)
- William I Nicholson
- School of Chemistry, Cardiff University, Park Place, Main Building, Cardiff, CF10 3AT, UK
| | - Fabien Barreteau
- Syngenta Crop Protection AG, Schaffauserstrasse 101, 4332, Stein, Switzerland
| | - Jamie A Leitch
- Department of Pharmaceutical and Biological Chemistry, University College London (UCL), School of Pharmacy, 29-39 Brunswick Square, Bloomsbury, London, WC1N 1AX, UK
| | - Riley Payne
- Department of Pharmaceutical and Biological Chemistry, University College London (UCL), School of Pharmacy, 29-39 Brunswick Square, Bloomsbury, London, WC1N 1AX, UK
| | - Ian Priestley
- Syngenta Ltd., Huddersfield Manufacturing Centre, Huddersfield, HD2 1FF, UK
| | - Edouard Godineau
- Syngenta Crop Protection AG, Schaffauserstrasse 101, 4332, Stein, Switzerland
| | | | - Duncan L Browne
- Department of Pharmaceutical and Biological Chemistry, University College London (UCL), School of Pharmacy, 29-39 Brunswick Square, Bloomsbury, London, WC1N 1AX, UK
| |
Collapse
|
32
|
Hollanders C, Elsocht M, Van der Poorten O, Jida M, Renders E, Maes BUW, Ballet S. 3-Substituted 2-isocyanopyridines as versatile convertible isocyanides for peptidomimetic design. Chem Commun (Camb) 2021; 57:6863-6866. [PMID: 34132258 DOI: 10.1039/d1cc01701b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We report the use of 3-substituted 2-isocyanopyridines as convertible isocyanides in Ugi four-component reactions. The N-(3-substituted pyridin-2-yl)amide Ugi products can be cleaved by amines, alcohols, and water with Zn(OAc)2 as a catalyst. In addition, the applicability of the method was demonstrated in constrained di-/tripeptides bearing acid and base sensitive protective groups obtained via Ugi-4CR post-condensation modifications.
Collapse
Affiliation(s)
- Charlie Hollanders
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium. and Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, Antwerp 2020, Belgium
| | - Mathias Elsocht
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium.
| | - Olivier Van der Poorten
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium.
| | - Mouhamad Jida
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium.
| | - Evelien Renders
- Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, Antwerp 2020, Belgium
| | - Bert U W Maes
- Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, Antwerp 2020, Belgium
| | - Steven Ballet
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium.
| |
Collapse
|
33
|
Xie. P, Qin Z, Zhang S, Hong X. Understanding the Structure‐Activity Relationship of Ni‐Catalyzed Amide C−N Bond Activation using Distortion/Interaction Analysis. ChemCatChem 2021. [DOI: 10.1002/cctc.202100672] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Pei‐Pei Xie.
- Center of Chemistry for Frontier Technologies Department of Chemistry Zhejiang University Hangzhou 310027 P.R. China
| | - Zhi‐Xin Qin
- Center of Chemistry for Frontier Technologies Department of Chemistry Zhejiang University Hangzhou 310027 P.R. China
| | - Shuo‐Qing Zhang
- Center of Chemistry for Frontier Technologies Department of Chemistry Zhejiang University Hangzhou 310027 P.R. China
| | - Xin Hong
- Center of Chemistry for Frontier Technologies Department of Chemistry Zhejiang University Hangzhou 310027 P.R. China
| |
Collapse
|
34
|
Rendón-Nava D, Angeles-Beltrán D, Rheingold AL, Mendoza-Espinosa D. Palladium(II) Complexes of a Neutral CCC-Tris(N-heterocyclic carbene) Pincer Ligand: Synthesis and Catalytic Applications. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- David Rendón-Nava
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km 4.5, Mineral de la Reforma, Hidalgo, Mexico 42090
| | - Deyanira Angeles-Beltrán
- Departamento de Ciencias Básicas, Universidad Autónoma Metropolitana-Azcapotzalco, Avenida San Pablo 180, Ciudad de México, Mexico 02200
| | - Arnold L. Rheingold
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Daniel Mendoza-Espinosa
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km 4.5, Mineral de la Reforma, Hidalgo, Mexico 42090
| |
Collapse
|
35
|
Feng FF, Liu XY, Cheung CW, Ma JA. Tungsten-Catalyzed Transamidation of Tertiary Alkyl Amides. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01840] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Fang-Fang Feng
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Xuan-Yu Liu
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Chi Wai Cheung
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| | - Jun-An Ma
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| |
Collapse
|
36
|
Dardir AH, Casademont-Reig I, Balcells D, Ellefsen JD, Espinosa MR, Hazari N, Smith NE. Synthesis of Triarylmethanes via Palladium-Catalyzed Suzuki–Miyaura Reactions of Diarylmethyl Esters. Organometallics 2021; 40:2332-2344. [DOI: 10.1021/acs.organomet.1c00085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Amira H. Dardir
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Irene Casademont-Reig
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-0315 Oslo, Norway
- Donostia International Physics Center (DIPC), 20018 Donostia, Euskadi, Spain
- Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), 20080 Donostia, Euskadi, Spain
| | - David Balcells
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-0315 Oslo, Norway
| | - Jonathan D. Ellefsen
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Matthew R. Espinosa
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Nilay Hazari
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Nicholas E. Smith
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| |
Collapse
|
37
|
Yang S, Zhou T, Poater A, Cavallo L, Nolan SP, Szostak M. Suzuki-Miyaura Cross-Coupling of Esters by Selective O-C(O) Cleavage Mediated by Air- and Moisture-Stable [Pd(NHC)(μ-Cl)Cl] 2 Precatalysts: Catalyst Evaluation and Mechanism. Catal Sci Technol 2021; 11:3189-3197. [PMID: 34211698 PMCID: PMC8240519 DOI: 10.1039/d1cy00312g] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The cross-coupling of aryl esters has emerged as a powerful platform for the functionalization of otherwise inert acyl C-O bonds in chemical synthesis and catalysis. Herein, we report a combined experimental and computational study on the acyl Suzuki-Miyaura cross-coupling of aryl esters mediated by well-defined, air- and moisture-stable Pd(II)-NHC precatalysts [Pd(NHC)(μ-Cl)Cl]2. We present a comprehensive evaluation of [Pd(NHC)(μ-Cl)Cl]2 precatalysts and compare them with the present state-of-the-art [(Pd(NHC)allyl] precatalysts bearing allyl-type throw-away ligands. Most importantly, the study reveals [Pd(NHC)(μ-Cl)Cl]2 as the most reactive precatalysts discovered to date in this reactivity manifold. The unique synthetic utility of this unconventional O-C(O) cross-coupling is highlighted in the late-stage functionalization of pharmaceuticals and sequential chemoselective cross-coupling, providing access to valuable ketone products by a catalytic mechanism involving Pd insertion into the aryl ester bond. Furthermore, we present a comprehensive study of the catalytic cycle by DFT methods. Considering the clear advantages of [Pd(NHC)(μ-Cl)Cl]2 precatalysts on several levels, including facile one-pot synthesis, superior atom-economic profile to all other Pd(II)-NHC catalysts, and versatile reactivity, these should be considered as the 'first-choice' catalysts for all routine applications in ester O-C(O) bond activation.
Collapse
Affiliation(s)
- Shiyi Yang
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, United States
| | - Tongliang Zhou
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, United States
| | - Albert Poater
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Campus Montilivi, 17003 Girona, Catalonia, Spain
| | - Luigi Cavallo
- King Abdullah University of Science & Technology, KAUST Catalysis Center (KCC), 23955-6900 Thuwal, Saudi Arabia
| | - Steven P Nolan
- Department of Chemistry, Ghent University, Krijgslaan 281, S-3, B-9000 Ghent, Belgium
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, United States
| |
Collapse
|
38
|
Govindan K, Lin WY. Ring Opening/Site Selective Cleavage in N-Acyl Glutarimide to Synthesize Primary Amides. Org Lett 2021; 23:1600-1605. [PMID: 33570960 DOI: 10.1021/acs.orglett.1c00010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A LiOH-promoted hydrolysis selective C-N cleavage of twisted N-acyl glutarimide for the synthesis of primary amides under mild conditions has been developed. The reaction is triggered by a ring opening of glutarimide followed by C-N cleavage to afford primary amides using 2 equiv of LiOH as the base at room temperature. The efficacy of the reactions was considered and administrated for various aryl and alkyl substituents in good yield with high selectivity. Moreover, gram-scale synthesis of primary amides using a continuous flow method was achieved. It is noted that our new methodology can apply under both batch and flow conditions for synthetic and industrial applications.
Collapse
Affiliation(s)
- Karthick Govindan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, ROC
| | - Wei-Yu Lin
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, ROC.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan, ROC.,Drug Development and Value Creation Research Centre, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, ROC
| |
Collapse
|
39
|
Buchspies J, Rahman MM, Szostak M. Transamidation of Amides and Amidation of Esters by Selective N-C(O)/O-C(O) Cleavage Mediated by Air- and Moisture-Stable Half-Sandwich Nickel(II)-NHC Complexes. Molecules 2021; 26:E188. [PMID: 33401664 PMCID: PMC7795584 DOI: 10.3390/molecules26010188] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 11/30/2022] Open
Abstract
The formation of amide bonds represents one of the most fundamental processes in organic synthesis. Transition-metal-catalyzed activation of acyclic twisted amides has emerged as an increasingly powerful platform in synthesis. Herein, we report the transamidation of N-activated twisted amides by selective N-C(O) cleavage mediated by air- and moisture-stable half-sandwich Ni(II)-NHC (NHC = N-heterocyclic carbenes) complexes. We demonstrate that the readily available cyclopentadienyl complex, [CpNi(IPr)Cl] (IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene), promotes highly selective transamidation of the N-C(O) bond in twisted N-Boc amides with non-nucleophilic anilines. The reaction provides access to secondary anilides via the non-conventional amide bond-forming pathway. Furthermore, the amidation of activated phenolic and unactivated methyl esters mediated by [CpNi(IPr)Cl] is reported. This study sets the stage for the broad utilization of well-defined, air- and moisture-stable Ni(II)-NHC complexes in catalytic amide bond-forming protocols by unconventional C(acyl)-N and C(acyl)-O bond cleavage reactions.
Collapse
Affiliation(s)
| | | | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA; (J.B.); (M.M.R.)
| |
Collapse
|
40
|
Shan Y, Su L, Chen D, Yang M, Xie W, Qiu G. Palladium-catalyzed concerted [4 + 1] cyclization of prop-2-yn-1-ones and isocyanides. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.04.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
41
|
Joseph D, Park MS, Lee S. Metal-free transamidation of benzoylpyrrolidin-2-one and amines under aqueous conditions. Org Biomol Chem 2021; 19:6227-6232. [PMID: 34225358 DOI: 10.1039/d1ob00967b] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
N-Acyl lactam amides, such as benzoylpyrrolidin-2-one, benzoylpiperidin-2-one, and benzoylazepan-2-one reacted with amines in the presence of DTBP and TBAI to afford the transamidated products in good yields. The reactions were conducted under aqueous conditions and good functional group tolerance was achieved. Both aliphatic and aromatic primary amines displayed good activity under metal-free conditions. A radical reaction pathway is proposed.
Collapse
Affiliation(s)
- Devaneyan Joseph
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Myeong Seong Park
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Sunwoo Lee
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
42
|
He Z, Wang Z, Ru J, Wang Y, Liu T, Zeng Z. A Strategy for Accessing Aldehydes
via
Palladium‐Catalyzed C−O/C−N Bond Cleavage in the Presence of Hydrosilanes. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000794] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zhanyu He
- School of Chemistry South China Normal University Guangzhou 510006 People's Republic of China
| | - Zijia Wang
- School of Chemistry South China Normal University Guangzhou 510006 People's Republic of China
| | - Junxiang Ru
- School of Chemistry South China Normal University Guangzhou 510006 People's Republic of China
| | - Yulin Wang
- School of Chemistry South China Normal University Guangzhou 510006 People's Republic of China
| | - Tingting Liu
- School of Chemistry South China Normal University Guangzhou 510006 People's Republic of China
| | - Zhuo Zeng
- School of Chemistry South China Normal University Guangzhou 510006 People's Republic of China
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Science 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
43
|
Yang F, Ding D, Wang C. Nickel-Catalyzed Directed Cross-Electrophile Coupling of Phenolic Esters with Alkyl Bromides. Org Lett 2020; 22:9203-9209. [PMID: 33210932 DOI: 10.1021/acs.orglett.0c03342] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Herein, we demonstrate the successful use of robust phenolic esters as an electrophilic acyl source in the reaction with diverse primary and secondary unactivated alkyl bromides. The cleavage of the relatively inert C-O bond is facilitated by the neighboring coordinating hydroxyl or sulfonamide moiety. By circumventing the use of pregenerated organometallics, this method allows efficient preparation of a variety of o-hydroxyl and tosyl-protected o-amino aryl ketones with high compatibility with a wide range of functionalities.
Collapse
Affiliation(s)
- Feiyan Yang
- Hefei National Laboratory for Physical Science at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Decai Ding
- Hefei National Laboratory for Physical Science at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chuan Wang
- Hefei National Laboratory for Physical Science at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.,Center for Excellence in Molecular Synthesis of CAS, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
44
|
Grünwald A, Heinemann FW, Munz D. Oxidative Addition of Water, Alcohols, and Amines in Palladium Catalysis. Angew Chem Int Ed Engl 2020; 59:21088-21095. [PMID: 32745317 PMCID: PMC7692900 DOI: 10.1002/anie.202008350] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/22/2020] [Indexed: 11/25/2022]
Abstract
The homolytic cleavage of O-H and N-H or weak C-H bonds is a key elementary step in redox catalysis, but is thought to be unfeasible for palladium. In stark contrast, reported here is the room temperature and reversible oxidative addition of water, isopropanol, hexafluoroisopropanol, phenol, and aniline to a palladium(0) complex with a cyclic (alkyl)(amino)carbene (CAAC) and a labile pyridino ligand, as is also the case in popular N-heterocyclic carbene (NHC) palladium(II) precatalysts. The oxidative addition of protic solvents or adventitious water switches the chemoselectivity in catalysis with alkynes through activation of the terminal C-H bond. Most salient, the homolytic activation of alcohols and amines allows atom-efficient, additive-free cross-coupling and transfer hydrogenation under mild reaction conditions with usually unreactive, yet desirable reagents, including esters and bis(pinacolato)diboron.
Collapse
Affiliation(s)
- Annette Grünwald
- Department of Chemistry and Pharmacy, General and Inorganic ChemistryFriedrich-Alexander-Universität Erlangen-NürnbergEgerlandstraße 191058ErlangenGermany
| | - Frank W. Heinemann
- Department of Chemistry and Pharmacy, General and Inorganic ChemistryFriedrich-Alexander-Universität Erlangen-NürnbergEgerlandstraße 191058ErlangenGermany
| | - Dominik Munz
- Inorganic Chemistry: Coordination ChemistrySaarland UniversityCampus, Geb. C4.166123SaarbrückenGermany
- Department of Chemistry and Pharmacy, General and Inorganic ChemistryFriedrich-Alexander-Universität Erlangen-NürnbergEgerlandstraße 191058ErlangenGermany
| |
Collapse
|
45
|
Grünwald A, Heinemann FW, Munz D. Oxidative Addition of Water, Alcohols, and Amines in Palladium Catalysis. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Annette Grünwald
- Department of Chemistry and Pharmacy, General and Inorganic Chemistry Friedrich-Alexander-Universität Erlangen-Nürnberg Egerlandstraße 1 91058 Erlangen Germany
| | - Frank W. Heinemann
- Department of Chemistry and Pharmacy, General and Inorganic Chemistry Friedrich-Alexander-Universität Erlangen-Nürnberg Egerlandstraße 1 91058 Erlangen Germany
| | - Dominik Munz
- Inorganic Chemistry: Coordination Chemistry Saarland University Campus, Geb. C4.1 66123 Saarbrücken Germany
- Department of Chemistry and Pharmacy, General and Inorganic Chemistry Friedrich-Alexander-Universität Erlangen-Nürnberg Egerlandstraße 1 91058 Erlangen Germany
| |
Collapse
|
46
|
Boit TB, Bulger AS, Dander JE, Garg NK. Activation of C-O and C-N Bonds Using Non-Precious-Metal Catalysis. ACS Catal 2020; 10:12109-12126. [PMID: 33868770 PMCID: PMC8049354 DOI: 10.1021/acscatal.0c03334] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Timothy B Boit
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Ana S Bulger
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Jacob E Dander
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Neil K Garg
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
47
|
Wang Z, Matsumoto A, Maruoka K. Efficient cleavage of tertiary amide bonds via radical-polar crossover using a copper(ii) bromide/Selectfluor hybrid system. Chem Sci 2020; 11:12323-12328. [PMID: 34094440 PMCID: PMC8163011 DOI: 10.1039/d0sc05137c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023] Open
Abstract
A novel approach for the efficient cleavage of the amide bonds in tertiary amides is reported. Based on the selective radical abstraction of a benzylic hydrogen atom by a CuBr2/Selectfluor hybrid system followed by a selective cleavage of an N-C bond, an acyl fluoride intermediate is formed. This intermediate may then be derivatized in a one-pot fashion. The reaction proceeds under mild conditions and exhibits a broad substrate scope with respect to the tertiary amide moiety as well as to nitrogen, oxygen, and carbon nucleophiles for the subsequent derivatization. Mechanistic studies suggest that the present reaction proceeds via a radical-polar crossover process that involves benzylic carbon radicals generated by the selective radical abstraction of a benzylic hydrogen atom by the CuBr2/Selectfluor hybrid system. Furthermore, a synthetic application of this method for the selective cleavage of peptides is described.
Collapse
Affiliation(s)
- Zhe Wang
- Graduate School of Pharmaceutical Sciences, Kyoto University Sakyo Kyoto 606-8501 Japan
| | - Akira Matsumoto
- Graduate School of Pharmaceutical Sciences, Kyoto University Sakyo Kyoto 606-8501 Japan
| | - Keiji Maruoka
- Graduate School of Pharmaceutical Sciences, Kyoto University Sakyo Kyoto 606-8501 Japan
- School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou 510006 China
| |
Collapse
|
48
|
Idris MA, Lee S. Palladium-Catalyzed Amide N–C Hiyama Cross-Coupling: Synthesis of Ketones. Org Lett 2020; 22:9190-9195. [DOI: 10.1021/acs.orglett.0c03260] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Muhammad Aliyu Idris
- Department of Chemistry Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sunwoo Lee
- Department of Chemistry Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
49
|
Ahmadvand Z, Bayat M, Zolfigol MA. Toward prediction of the precatalyst activation mechanism through the cross-coupling reactions: Reduction of Pd(II) to Pd(0) in precatalyst of the type Pd-PEPPSI. J Comput Chem 2020; 41:2296-2309. [PMID: 32757323 DOI: 10.1002/jcc.26393] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 11/11/2022]
Abstract
Pd-PEPPSI type complexes are widely used as precatalyst in a variety of organic reactions, including the Negishi, Kumada and Suzuki-Miyaura cross-coupling reactions. The aim of this research is to determine potential proposed reaction pathways 1, 2, or 2' (See Schemes 1 and S1-S4) for Pd-PEPPSI precatalyst activation in the presence of ethylene glycol as a solvent also in the gas phase at Cam-B3LYP-D3 method nominated among eight DFT methods examined. There is also investigation into the impact of promoter bases (NaOEt, NaOi Pr, NaOt Bu) on precatalyst activation of Pd-PEPPSI. Eventually, the most favorable proposed reaction pathway and promoter base for reducing Pd(II) to Pd(0) are predicted computationally. Notably, our findings are consistent with the organ Pd-PEPPSI type complexes that offer increased catalytic activity and provide basic information in the presence of solvents designing the monoligated Pd(0)-solvent.
Collapse
Affiliation(s)
- Zeinab Ahmadvand
- Department of Inorganic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Mehdi Bayat
- Department of Inorganic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| |
Collapse
|
50
|
Thiyagamurthy P, Teja C, Naresh K, Gomathi K, Nawaz Khan FR. Design, synthesis and in silico evaluation of benzoxazepino(7,6-b)quinolines as potential antidiabetic agents. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02606-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|